首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emerging data indicate that growth factors such as insulin-like growth factor-1 (IGF-1) prevent neuronal death due to nitric oxide (NO) toxicity. On the other hand, growth factors can promote cell survival by acting on phosphatidylinositol 3-kinase (PI3-kinase) and its downstream target, serine-threonine kinase Akt, in various types of cells. Here, we examined the mechanism by which IGF-1 inhibits neuronal apoptosis induced by NO in primary hippocampal neurons. IGF-1 was capable of preventing apoptosis and caspase-3-like activation induced by a NO donor, sodium nitroprusside or 3-morpholin-osydnonimine. Incubation of neurons with a P13-kinase inhibitor, wortmannin or LY294002, blocked the effects of IGF-1 on NO-induced neurotoxicity and caspase-3-like activation. In addition, the P13-kinase inhibitors blocked the effect of IGF-1 on down-regulation in Bcl-2 and upregulation in Bax expression induced by NO. Adenovirus-mediated overexpression of the activated form of Akt significantly inhibited NO-induced cell death, caspase-3-like activation, and changes in Bcl-2 and Bax expression. Moreover, expression of the kinase-defective form of Akt almost completely blocked the effects of IGF-1. These findings suggest that activation of Akt is necessary and sufficient for the effect of IGF-1 and is capable of preventing NO-induced apoptosis by modulating the NO-induced changes in Bcl-2 and Bax expression.  相似文献   

2.
Kim HJ  Kang SK  Mun JY  Chun YJ  Choi KH  Kim MY 《FEBS letters》2003,555(2):217-222
Vitamin K-related analogs induce growth inhibition via a cell cycle arrest through cdc25A phosphatase inhibition in various cancer cell lines. We report that 2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone (DDN), a naphthoquinone analog, induces mitochondria-dependent apoptosis in human promyelocytic leukemia HL-60 cells. DDN induced cytochrome c release, Bax translocation, cleavage of Bid and Bad, and activation of caspase-3, -8, -9 upon the induction of apoptosis. Cleavage of Bid, the caspase-8 substrate, was inhibited by the broad caspase inhibitor z-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk), whereas cytochrome c release was not affected, suggesting that activation of caspase-8 and subsequent Bid cleavage occur downstream of cytochrome c release. DDN inhibited the activation of Akt detected by decreasing level of phosphorylation. Overexpression of constitutively active Akt protected cells from DDN-induced apoptosis, while dominant negative Akt moderately enhanced cell death. Furthermore, Akt prevented release of cytochrome c and cleavage of Bad in DDN-treated HL-60 cells. Taken together, DDN-induced apoptosis is associated with mitochondrial signaling which involves cytochrome c release via a mechanism inhibited by Akt.  相似文献   

3.
Akt regulates cell survival and apoptosis at a postmitochondrial level   总被引:26,自引:0,他引:26  
Phosphoinositide 3 kinase/Akt pathway plays an essential role in neuronal survival. However, the cellular mechanisms by which Akt suppresses cell death and protects neurons from apoptosis remain unclear. We previously showed that transient expression of constitutively active Akt inhibits ceramide-induced death of hybrid motor neuron 1 cells. Here we show that stable expression of either constitutively active Akt or Bcl-2 inhibits apoptosis, but only Bcl-2 prevents the release of cytochrome c from mitochondria, suggesting that Akt regulates apoptosis at a postmitochondrial level. Consistent with this, overexpressing active Akt rescues cells from apoptosis without altering expression levels of endogenous Bcl-2, Bcl-x, or Bax. Akt inhibits apoptosis induced by microinjection of cytochrome c and lysates from cells expressing active Akt inhibit cytochrome c induced caspase activation in a cell-free assay while lysates from Bcl-2-expressing cells have no effect. Addition of cytochrome c and dATP to lysates from cells expressing active Akt do not activate caspase-9 or -3 and immunoprecipitated Akt added to control lysates blocks cytochrome c-induced activation of the caspase cascade. Taken together, these data suggest that Akt inhibits activation of caspase-9 and -3 by posttranslational modification of a cytosolic factor downstream of cytochrome c and before activation of caspase-9.  相似文献   

4.
In this study we have determined the ability of IGF-1 to protect cardiac fibroblasts against osmotic-induced apoptosis and investigated the potential mechanism(s) underlying this protection. Treatment with IGF-1 (1-100 ng/ml) promoted a dose dependent increase in cell survival against osmotic cell death. Both Akt and ERK1/2 were rapidly phosphorylated by IGF-1 and blocked by wortmannin and PD98059, inhibitors of their upstream activators respectively. However, IGF-1-induced protection was mediated via a wortmannin-dependent but PD98059-independent pathway as determined by cell survival assay suggesting a role of PI3-K/Akt. Furthermore, IGF-1 appeared to reduce the activation of a number of early components in the apoptotic pathway in a wortmannin dependent manner including the osmotic stress-induced perturbation in mitochondrial membrane potential, cleavage and activation of caspase-3 and DNA fragmentation. Thus, the results suggest that IGF-1 regulates osmotic stress-induced apoptosis via the activation of the PI3-K/Akt pathway at a point upstream of the mitochondria and caspase-3.  相似文献   

5.
Dopamine (50 or 100 microM) attenuated the nuclear damage and cell death due to 500 microM SIN-1, a donor of superoxide and nitric oxide, in differentiated PC12 cells whereas 200 microM dopamine did not depress cell death. Dopamine at 50-100 microM for a 4-h treatment did not show a significant cytotoxic effect on PC12 cells. Dopamine (100 microM) inhibited the decrease in mitochondrial transmembrane potential, cytochrome c release, activation of caspase-3, formation of reactive oxygen species, and depletion of glutathione (GSH) due to 500 microM SIN-1 in PC12 cells. The reaction of dopamine with peroxynitrite reduced an amount of peroxynitrite. The results suggest that dopamine exhibits a biphasic effect against the cytotoxicity of SIN-1 depending on concentrations. Dopamine at 50-100 microM may attenuate the reactive nitrogen species-induced viability loss in PC12 cells by suppressing the mitochondrial membrane permeability change through inhibition of the formation of reactive species, including peroxynitrite.  相似文献   

6.
We previously showed (Gastroenterology 123: 206-216, 2002) that lysophosphatidic acid (LPA) protects and rescues rat intestinal epithelial cells (IEC-6) from apoptosis. Here, we provide evidence for the LPA-elicited inhibition of the mitochondrial apoptotic pathway leading to attenuation of caspase-3 activation. Pretreatment of IEC-6 cells with LPA inhibited campothecin-induced caspase-9 and caspase-3 activation and DNA fragmentation. A caspase-9 inhibitor peptide mimicked the LPA-elicited antiapoptotic activity. LPA elicited ERK1/ERK2 and PKB/Akt phosphorylation. The LPA-elicited antiapoptotic activity and inhibition of caspase-9 activity were abrogated by pertussis toxin, PD 98059, wortmannin, and LY 294002. LPA reduced cytochrome c release from mitochondria and prevented activation of caspase-9. LPA prevented translocation of Bax from cytosol to mitochondria and increased the expression of the antiapoptotic Bcl-2 mRNA and protein. LPA had no effect on Bcl-xl, Bad, and Bak mRNA or protein expression. These data indicate that LPA protects IEC-6 cells from camptothecin-induced apoptosis through G(i)-coupled inhibition of caspase-3 activation mediated by the attenuation of caspase-9 activation due to diminished cytochrome c release, involving upregulation of Bcl-2 protein expression and prevention of Bax translocation.  相似文献   

7.
ASK1 activates JNK and p38 mitogen-activated protein kinases and constitutes a pivotal signaling pathway in cytokine- and stress-induced apoptosis. However, little is known about the mechanism of how ASK1 executes apoptosis. Here we investigated the roles of caspases and mitochondria in ASK1-induced apoptosis. We found that benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk), a broad-spectrum caspase inhibitor, mostly inhibited ASK1-induced cell death, suggesting that caspases are required for ASK1-induced apoptosis. Overexpression of ASK1DeltaN, a constitutively active mutant of ASK1, induced cytochrome c release from mitochondria and activation of caspase-9 and caspase-3 but not of caspase-8-like proteases. Consistently, caspase-8-deficient (Casp8 (-/-)) cells were sensitive to ASK1-induced caspase-3 activation and apoptosis, suggesting that caspase-8 is dispensable for ASK1-induced apoptosis, whereas ASK1 failed to activate caspase-3 in caspase-9-dificient (Casp9 (-/-)) cells. Moreover, mitochondrial cytochrome c release, which was not inhibited by zVAD-fmk, preceded the onset of caspase-3 activation and cell death induced by ASK1. ASK1 thus appears to execute apoptosis mainly by the mitochondria-dependent caspase activation.  相似文献   

8.
Recent studies have shown that nitric oxide (NO) donors can trigger apoptosis of neurons, and growth factors such as insulin-like growth factor-1 (IGF-1) and basic fibroblast growth factor (bFGF) can protect against NO-induced neuronal cell death. The purpose of this study was to elucidate the possible mechanisms of NO-mediated neuronal apoptosis and the neuroprotective action of these growth factors. Both IGF-1 and bFGF prevented apoptosis induced by NO donors, sodium nitroprusside (SNP) or 3-morpholinosydnonimin (SIN-1) in hippocampal neuronal cultures. Incubation of neurons with SNP induced caspase-3-like activation following downregulation of Bcl-2 and upregulation of Bax protein levels in cultured neurons. Treatment of neurons with a bax antisense oligonucleotide inhibited the caspase-3-like activation and neuronal death induced by SNP. In addition, treatment of neurons with an inhibitor of caspase-3, Ac-DEVD-CHO, together with SNP did not affect the changes in the protein levels, although it inhibited NO-induced cell death. Pretreatment of cultures with either IGF-1 or bFGF prior to NO exposure inhibited caspase-3-like activation together with the changes in Bcl-2 and Bax protein levels. These results suggest that the changes in Bcl-2 and Bax protein levels followed by caspase-3-like activation are a component in the cascade of NO-induced neuronal apoptosis, and that the neuroprotective actions of IGF-1 and bFGF might be due to inhibition of the changes in the protein levels of the Bcl-2 family.  相似文献   

9.
We investigated the effect of vanadate, a tyrosine phosphatase inhibitor, on cell death induced by peroxynitrite in human neuroblastoma SH-SY5Y cells. Vanadate prevented cell death induced by 3-morpholinosydnonimine (SIN-1), a peroxynitrite donor; whereas SIN-1-induced cell death was not prevented by neither okadaic acid, an inhibitor of serine/threonine phosphatases 1 and 2A, nor cyclosporin A, an inhibitor of serine/threonine phosphatase 2B. Vanadate did not prevent cell death induced by N-ethyl-2-(1-ethyl-hydroxy-2-nitrosohydrazino)-ethanamine, a nitric oxide donor. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-kinase), did not block the protective effect of vanadate, suggesting that the protective effect of vanadate is independent on PI3-kinase. Vanadate increased tyrosine phosphorylation of several proteins including the focal adhesion protein p130 Crk-associated substrate (p130(cas)). By the treatment with SIN-1, the endogenous association of p130(cas) and Crk was disrupted, and the association was restored by vanadate treatment. These results suggest that disruption of tyrosine phosphorylation signaling may be critical for peroxynitrite-induced cell death, and that vanadate prevents cell death at least in part through the enhancement in tyrosine phosphorylation of the proteins including p130(cas).  相似文献   

10.
Insulin-like growth factor-1 (IGF-1) inhibited N-acetylsphingosine (C2-ceramide)-induced HL-60 cell apoptosis via relieving oxidative damage. This inhibitory action of IGF-1 was blocked by a phosphatidylinositol-3 (PI-3) kinase inhibitor wortmannin and enhanced by overexpression of the p110 catalytic subunit of PI-3 kinase. Either IGF-1 pretreatment or PI-3 kinase overexpression restored ceramide-depleted catalase function, and this restoration was inhibited by wortmannin. A catalase inhibitor 3-amino-1h-1, 2, 4-triazole (ATZ) blocked the inhibitory action of IGF-1 on ceramide-induced apoptosis, whereas exogenous purified catalase enhanced it. Ceramide-activated caspase-3 was inhibited by IGF-1/PI-3 kinase and enhanced by wortmannin, while the addition of a specific caspase-3 inhibitor DMQD-CHO significantly enhanced the restoration by IGF-1 of ceramide-depleted catalase function. Moreover, IGF-1 inhibited C2-ceramide-induced decrease of mitochondrial membrane potential, and increase of cytochrome c release, caspase-3 cleavage and caspase-3 activity as judged by PhiPhiLux cleaving method. In summary, these results suggest that IGF-1/PI-3 kinase inhibited C2-ceramide-induced apoptosis due to relieving oxidative damage, which resulted from the inhibition of catalase by activated caspase-3.  相似文献   

11.
Peroxynitrite is a strong oxidant produced by rapid interaction between superoxide anion and nitric oxide radicals and induces oxidative stress and cell death. Treatment of PC12 cells with 3-morpholinosydnonimine (SIN-1), a generator of peroxynitrite, induced the expression of heme oxygenase-1 (HO-1), an antioxidant cytoprotective enzyme. Inhibition of the HO activity by zinc protoporphyrin IX or knockdown of HO-1 gene expression with siRNA exacerbated the SIN-1-induced apoptosis. After SIN-1 treatment, there was a time-related increase in nuclear localization and subsequent binding of NF-E2-related factor 2 (Nrf2) to the antioxidant-responsive element (ARE). Transfection of PC12 cells with dominant-negative Nrf2 abolished the SIN-1-induced increase in Nrf2-ARE binding and subsequent upregulation of HO-1 expression, leading to enhanced cell death. Upon exposure of PC12 cells to SIN-1, the phosphatidylinositol 3-kinase (PI3K) activity was increased in a time-dependent manner. Pretreatment of cells with LY294002, a pharmacologic inhibitor of PI3K or transfection with the kinase-dead mutant Akt abrogated the SIN-1-induced Nrf2 activation and HO-1 expression. Taken together, these results suggest that peroxynitrite activates Nrf2 via PI3K/Akt signaling and enhances Nrf2-ARE binding, which leads to upregulation of HO-1 expression. The SIN-1-induced HO-1 upregulation may confer the adaptive survival response against nitrosative stress.  相似文献   

12.
Treatment of L929 fibroblasts by the topoisomerase II inhibitor etoposide killed 50% of the cells within 72 h. The cell killing was preceded by the release of cytochrome c from the mitochondria. Simultaneous treatment of the cells with wortmannin, cycloheximide, furosemide, cyclosporin A, or decylubiquinone prevented the release of cytochrome c and significantly reduced the loss of viability. Etoposide caused the phosphorylation of p53 within 6 h, an effect prevented by wortmannin, an inhibitor of DNA-dependent protein kinase (DNA-PK). The activation of p53 by etoposide resulted in the up-regulation of the pro-apoptotic protein Bax, a result that was prevented by the protein synthesis inhibitor cycloheximide. The increase in the content of Bax was followed by the translocation of this protein from the cytosol to the mitochondria, an event that was inhibited by furosemide, a chloride channel inhibitor. Stably transfected L929 fibroblasts that overexpress Akt were resistant to etoposide and did not translocate Bax to the mitochondria or release cytochrome c. Bax levels in these transfected cells were comparable with the wild-type cells. The release of cytochrome c upon translocation of Bax has been attributed to induction of the mitochondrial permeability transition (MPT). Cyclosporin A and decylubiquinone, inhibitors of MPT, prevented the release of cytochrome c without affecting Bax translocation. These data define a sequence of biochemical events that mediates the apoptosis induced by etoposide. This cascade proceeds by coupling DNA damage to p53 phosphorylation through the action of DNA-PK. The activation of p53 increases Bax synthesis. The translocation of Bax to the mitochondria induces the MPT, the event that releases cytochrome c and culminates in the death of the cells.  相似文献   

13.
14.
In a previous report, we characterized several oxidative stress parameters during the course of amyloid beta (Abeta) peptide/Fe2+-induced apoptotic death in neuronal cells. In extending these findings, we now report a marked decrease in protein kinase C (PKC) isoforms, reduced Akt serine/threonine kinase activity, Bcl 2-associated death promoter (BAD) phosphorylation and enhanced p38 mitogen-activated protein kinase (MAPK) and caspase-9 and -3 activation, 12 h after addition of both 5 micro m Abeta and 5 micro m Fe2+. These activities reminiscent for a pro-apoptotic cellular course were blocked in the presence of the iron chelator deferroxamine. Abeta alone, increased PKC isoform levels between three- and four-fold after 12 h, enhanced Akt activity approximately eight-fold and Ser136 BAD phosphorylation two-fold, suggesting that by itself is not toxic. Fe2+ alone transiently enhanced p38 MAPK and caspase-9 and -3 enzymes indicative for cell damage, but was not sufficient to cause cell death as previously indicated. GF, a PKC inhibitor or wortmannin, a blocker of the Akt pathway enhanced Abeta/Fe2+-induced toxicity, while SB, a p38 MAPK inhibitor, prevented cell damage and apoptosis. These findings further support the hypothesis that metal ion chelation and inhibitors of pro-apoptotic kinase cascades may be beneficial for Alzheimer's disease therapy.  相似文献   

15.
Choi WT  Youn YC  Han ES  Lee CS 《Neurochemical research》2004,29(10):1807-1816
The present study investigated the effect of 1-methylated beta-carbolines (harmaline, harmalol and harmine) on change in the mitochondrial membrane permeability and cell death due to reactive nitrogen species in differentiated PC12 cells. beta-Carbolines, caspase inhibitors (z-LEHD.fmk and z-DQMD.fmk) and antioxidants (N-acetylcysteine, dithiothreitol, melatonin, carboxy-PTIO and uric acid) depressed cell viability loss due to 3-morpholinosydnonimine (SIN-1) in PC12 cells. beta-Carbolines inhibited the nuclear damage, the decrease in mitochondrial transmembrane potential, the cytochrome c release, the formation of reactive oxygen species and the depletion of GSH caused by SIN-1 in PC12 cells. beta-Carbolines decreased the SIN-1-induced formations of 3-nitrotyrosine, malondialdehyde and carbonyls in PC12 cells. The results show that 1-methylated beta-carbolines attenuate SIN-1-induced mitochondrial damage. This results in the inhibition of caspase-9 and -3 and apoptotic cell death in PC12 cells by suppressing the toxic actions of reactive oxygen and nitrogen species, including the GSH depletion.  相似文献   

16.
There is increasing evidence that proteases other than caspases, for example, the lysosomal cathepsins B, D and L, are involved in apoptotic cell death. In the present study, we present data that suggest a role for cathepsin D in staurosporine-induced apoptosis in human foreskin fibroblasts. Cathepsin D and cytochrome c were detected partially released to the cytosol after exposure to 0.1 muM staurosporine for 1 h. After 4 h, activation of caspase-9 and -3 was initiated and later caspase-8 activation and a decrease in full-length Bid were detected. Pretreatment of cells with the cathepsin D inhibitor, pepstatin A, prevented cytochrome c release and caspase activation, and delayed cell death. These results imply that cytosolic cathepsin D is a key mediator in staurosporine-induced apoptosis. Analysis of the relative sequence of apoptotic events indicates that, in this cell type, cathepsin D acts upstream of cytochrome c release and caspase activation.  相似文献   

17.
Cholesterol oxidation products formed under the enhanced oxidative stress in the brain are suggested to induce neuronal cell death. However, it is still unknown whether oxysterol-induced apoptosis in neuronal cells is mediated by Akt and NF-κB pathways. We assessed the apoptotic effect of 7-ketocholesterol against differentiated PC12 cells in relation to activation of the reactive oxygen species-dependent nuclear factor (NF)-κB, which is mediated by the Akt pathway. 7-Ketocholesterol induced a decrease in cytosolic Bid and Bcl-2 levels, increase in cytosolic Bax levels, cytochrome c release, caspase-3 activation and upregulation of p53. 7-Ketocholesterol induced an increase in phosphorylated inhibitory κB-α, NF-κB p65 and NF-κB p50 levels, binding of NF-κB p65 to DNA, and activation of Akt. Treatment with Bay 11-7085 (an inhibitor of NF-κB activation) and oxidant scavengers, including N-acetylcysteine, prevented the 7-ketocholesterol-induced formation of reactive oxygen species, activation of NF-κB, Akt and apoptosis-related proteins, and cell death. Results from this study suggest that 7-ketocholesterol may exert an apoptotic effect against PC12 cells by inducing activation of the caspase-8-dependent pathway as well as activation of the mitochondria-mediated cell death pathway, leading to activation of caspases, via the reactive oxygen species-dependent activation of NF-κB, which is mediated by the Akt pathway.  相似文献   

18.
Indomethacin (IND), a nonsteroidal anti-inflammatory drug, has been known to cause gastric mucosal injury as a side effect. Using a rat gastric mucosal cell line, RGM1, we determined whether apoptosis is involved in IND-mediated gastropathy, and whether caspase activation and mitochondrial cytochrome c release play an important role in producing apoptosis of IND-treated RGM1 cells in the presence of serum. IND caused caspase-3-like protease activation followed by apoptosis in a dose- and time-dependent manner. Caspase-1-like protease activity did not change during IND-induced apoptosis. IND also increased mitochondrial cytochrome c release in a time-dependent fashion. Mitochondrial cytochrome c efflux occurred just before or at the same time as caspase-3-like protease activation, and preceded the increase in apoptotic cell numbers. Z-VAD-FMK, a caspase inhibitor, inhibited both the increase in caspase-3-like protease activity and apoptosis in IND-treated RGM1 cells but did not affect caspase-1-like protease activity or mitochondrial cytochrome c release. These observations suggest that the apoptosis of gastric mucosal cells could be involved in IND-induced gastropathy, that cytochrome c is released from mitochondria into the cytosol during the early phase of IND-mediated apoptosis, and that subsequent activation of caspase-3-like protease, but not caspase-1-like protease, is required for the execution of apoptosis.  相似文献   

19.
Both phosphatidylinositol 3-kinase (PI3K)/Akt and NF-kappaB pathways function to promote cellular survival following stress. Recent evidence indicates that the anti-apoptotic activity of these two pathways may be functionally dependent. Ultraviolet (UV) irradiation causes oxidative stress, which can lead to apoptotic cell death. Human skin cells (keratinocytes) are commonly exposed to UV irradiation from the sun. We have investigated activation of the PI3K/Akt and NF-kappaB pathways and their roles in protecting human keratinocytes (KCs) from UV irradiation-induced apoptosis. This activation of PI3K preceded increased levels (3-fold) of active/phosphorylated Akt. UV (50 mJ/cm2 from UVB source) irradiation caused rapid recruitment of PI3K to the epidermal growth factor receptor (EGFR). Pretreatment of KCs with EGFR inhibitor PD169540 abolished UV-induced Akt activation/phosphorylation, as did the PI3K inhibitors LY294002 or wortmannin. This inhibition of Akt activation was associated with a 3-4-fold increase of UV-induced apoptosis, as measured by flow cytometry and DNA fragmentation ELISA. In contrast to Akt, UV irradiation did not detectably increase nuclear localization of NF-kappaB, indicating that it was not strongly activated. Consistent with this observation, interference with NF-kappaB activation by adenovirus-mediated overexpression of dominant negative IKK-beta or IkappaB-alpha did not increase UV-induced apoptosis. However, adenovirus-mediated overexpression of constitutively active Akt completely blocked UV-induced apoptosis observed with PI3K inhibition by LY294002, whereas adenovirus mediated overexpression of dominant negative Akt increased UV-induced apoptosis by 2-fold. Inhibition of UV-induced activation of Akt increased release of mitochondrial cytochrome c 3.5-fold, and caused appearance of active forms of caspase-9, caspase-8, and caspase-3. Constitutively active Akt abolished UV-induced cytochrome c release and activation of caspases-9, -8, and -3. These data demonstrate that PI3K/Akt is essential for protecting human KCs against UV-induced apoptosis, whereas NF-kappaB pathway provides little, if any, protective role.  相似文献   

20.
It has previously been shown that apoptosis is increased in ischaemic/reperfused heart. However, little is known about the mechanism of induction of apoptosis in myocardium during ischaemia. We investigated whether prolonged myocardial ischaemia causes activation of caspases and whether this activation is related to cytochrome c release from mitochondria to cytosol during ischaemia. Using an in vitro model of heart ischaemia, we show that 60 min ischaemia leads to a significant accumulation of cytochrome c in the cytosol and a decrease in mitochondrial content of cytochrome c but not cytochrome a. The release of cytochrome c from mitochondria was accompanied by activation of caspase-3-like proteases (measured by cleavage of fluorogenic peptide substrate DEVD-amc) and a large increase in number of cells with DNA strand breaks (measured by TUNEL staining). Caspase-1-like proteases (measured by YVAD-amc cleavage) were not activated during ischaemia. Addition of 14 microM cytochrome c to cytosolic extracts prepared from control hearts induced ATP-dependent activation of caspase-3-like protease activity. Our data suggest that extended heart ischaemia can cause apoptosis mediated by release of cytochrome c from mitochondria and subsequent activation of caspase-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号