首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the relationship between fluctuation patterns of groundwater levels (WL) and the distribution dynamics of the vascular plant Sasa palmata, in Sarobetsu Mire, northern Japan. WLs were recorded at 30 stations: 11 Sphagnum lawns, which is the original vegetation type in the area, nine Sasa communities, and ten boundary stations between those two areas. The ten boundary stations were composed of five vegetation change sites and five stable sites, categorized using maps of Sasa distribution in 1977 and 2000. The results showed that Sphagnum lawns and Sasa communities significantly differed in the average, minimum, and fluctuation range of WLs, and increases in WL after rain events. The differences between change sites and stable sites were not significant in the average WL, but were significant in the minimum and fluctuation ranges of WL and the increase in WL after rain events. These results indicate that the distribution dynamics of Sasa communities would be regulated by groundwater flow that was affected by drainage and inflow condition rather than merely groundwater drawdown as suggested in previous studies. The WL regimes at two Sphagnum lawns were similar to those at change sites, suggesting that Sasa may expand into these two stations more readily than the other Sphagnum lawn stations.  相似文献   

2.
South Park is a high‐elevation, semi‐arid, treeless intermountain basin in central Colorado. A few extreme rich fens occur on the western margin and in the center of South Park where regional and local groundwater flow systems discharge to the ground surface. Over the past 40 years there has been extensive peat mining in these fens, but restoration methods have yet to be developed and successfully applied. The first part of this study compared the naturally reestablished vegetation on six mined peatlands with six pristine sites, while the second part of the study tested different revegetation techniques in 27 plots with varying depths to the water table. The six mined sites had only 30 plant species as compared with 122 species in the unmined sites; 43% of the species in the mined sites were not present in the undisturbed fens. Even after 40 years the sedges and willows that dominate the undisturbed sites were largely absent on the mined sites. The revegetation experiments seeded eight species, transplanted Carex aquatilis (water sedge) seedlings, transplanted rhizomes from six species, and transplanted four species of willow cuttings. Of the eight species seeded, only Triglochin maritima (arrowgrass) germinated and established seedlings. C. aquatilis seedlings, rhizome transplants of C. aquatilis, Kobresia simpliciuscula (elk sedge), and Juncus arcticus (arctic rush), and willow cuttings all had differing patterns of survival with respect to the annual maximum height of the water table. These results indicate that the dominant species can be successfully reintroduced to mined surfaces with the appropriate hydrologic conditions, but human intervention will be necessary to rapidly re‐establish these species. The slow rate of peat accumulation means that restoration of the mined fens will require hundreds, if not thousands, of years.  相似文献   

3.
We investigated the relationships between testate amoebae (Arcellinida, Euglyphida), vegetation and water chemistry along environmental gradients in minerotrophic peatlands (fens) in western Poland. We hypothesized that: a) hydrochemistry significantly influences structure of testate amoeba communities, and b) testate amoeba communities are more closely correlated with the hydrochemical variables (environment) than with the vegetation data. Testate amoeba communities and vegetation from 71 sample plots were investigated together with the hydro‐chemistry and hydrology based on 16 environmental variables and vegetation composition. Testate amoeba communities revealed a distinctive poor‐rich gradient in analysed fens. Mineral‐rich habitats, which were dominated by brown mosses, were preferred by a higher number of taxa than acidic habitats, which were dominated by Sphagnum. We recorded a total of 107 testate amoebae taxa. The average species richness of testate amoebae for brown mosses was higher (20) than for Sphagnum (13). We found that testate amoebae communities were similarly correlated with vascular plants, mosses and environmental parameters. Results of direct ordination demonstrate that hydrology, pH, Mg2+ and sodium remain the most important environmental control for the entire data set. CCA showed that in case of brown mosses hydrology, sodium and oxygen affect testate amoeba communities significantly whereas in Sphagnum only sodium emerge as most significant determining testate amoeba assemblages. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We investigated the importance of water chemistry and water regime for vascular plant and bryophyte species distribution in Western Carpathian mires dominated bySphagnum. Seventy-seven small circle plots distributed across a wide geographical area, a wide range of mineral richness and all possible microtopographical features were sampled in terms of species composition, physical-chemical water properties and water regime during one growing season. Both water chemistry and water regime were found to be important factors for vegetation composition. Bryophytes reflected only one clear gradient, connected to base-richness (pH, conductivity) and maximal water-level, whereas three different environmental gradients determined the occurrence of vascular plants: water-level amplitude, base-richness and an indistinct gradient presumably connected to peat layer thickness. When the entire data set was subjected to DCA ordination, the first resulting axis was governed by the bryophyte subset, whereas the second one was governed by the vascular plant subset. The species density of vascular plants was positively correlated with pH and conductivity. On the contrary, bryophyte species density showed no relationship to environmental factors. We further compared the pH values measured in groundwater and in water squeezed from bryophytes from the same plot; these plots were distributed along the base-richness gradient. Only in the acidic mires did the use of squeezed-water chemistry in the analyses give results similar to the use of groundwater pH. Further, we found thatSphagnum species with a similar response to the base-richness gradient had differentiated niches with respect to the water level gradient and vice versa.Sphagnum contortum andS. warnstorfii exhibiting the same demands for groundwater pH were segregated along the gradient of maximum water level. An analogous pattern was detected for acidophilous speciesSphagnum magellanicum andS. papillosum.  相似文献   

5.
We measured vegetation patterns on palsas with reference to topographic characteristics on the Arctic National Wildlife Refuge, northern Alaska, to obtain benchmark data because of the changes expected from global warming. Vegetation was examined in 60 plots of area 50 cm × 50 cm by five environmental factors: water content in the peat and duff layers, groundwater level, slope angle, depth to frozen surface, and presence of pellets and feces. Three palsas were selected for the survey, and the heights were fewer than 50 cm from the groundwater surface. Based on TWINSPAN and canonical correspondence analysis, we confirmed that clear patterns of vegetation zonation had developed within a 60-cm difference in water level. Vaccinium vitis-idaea occurred well on the top areas of palsas, while Carex aquatilis was established on the bottom areas. Sphagnum spp. were established on intermediate locations between V. vitis-idaea and C. aquatilis. The prime determinant of the vegetation zonation seems to be water content in peat and duff layers rather than water level, although the five factors that we examined interact intricately with each other.  相似文献   

6.

Aims

The cultivation of Sphagnum mosses in paludiculture has high potential for the use of formerly drained peatlands under wet conditions. The aim of this study was to evaluate the plant species composition and vegetation structure of Sphagnum cultivation sites in comparison with near-natural donor sites and rewetted sites without Sphagnum introduction.

Location

Central Europe, northwest Germany close to the Dutch–German border.

Methods

The treatments (rewetting with and without Sphagnum introduction) and a near-natural donor as a reference were each studied at three different sites. At each site, bryophyte and vascular plant species composition as well as parameters of vegetation structure were sampled in 40 randomly positioned plots of 25 cm × 25 cm.

Results

In addition to the highly frequent Sphagnum, several further plant species typical of bogs were introduced. At two cultivation sites, the species composition showed a high degree of similarity to the near-natural donor sites, whereas the third site was more similar to the rewetted sites without the introduction of Sphagnum biomass. Rewetted sites were species-poor in comparison with all other sites. Apart from a high cover of Sphagnum, the vegetation structure at the cultivation sites differed significantly from the near-natural donor sites.

Conclusions

Sphagnum cultivation sites can be used to grow donor material for peatland restoration and contribute to species conservation by providing substitute habitat for bog-typical and threatened plant species.  相似文献   

7.
A large proportion of northern peatlands consists of Sphagnum-dominated ombrotrophic bogs. In these bogs, peat mosses (Sphagnum) and vascular plants occur in an apparent stable equilibrium, thereby sustaining the carbon sink function of the bog ecosystem. How global warming and increased nitrogen (N) deposition will affect the species composition in bog vegetation is still unclear. We performed a transplantation experiment in which mesocosms with intact vegetation were transplanted southward from north Sweden to north-east Germany along a transect of four bog sites, in which both temperature and N deposition increased. In addition, we monitored undisturbed vegetation in control plots at the four sites of the latitudinal gradient. Four growing seasons after transplantation, ericaceous dwarf shrubs had become much more abundant when transplanted to the warmest site which also had highest N deposition. As a result ericoid aboveground biomass in the transplanted mesocosms increased most at the southernmost site, this site also had highest ericoid biomass in the undisturbed vegetation. The two dominant Sphagnum species showed opposing responses when transplanted southward; Sphagnum balticum height increment decreased, whereas S. fuscum height increment increased when transplanted southward. Sphagnum production did not differ significantly among the transplanted mesocosms, but was lowest in the southernmost control plots. The dwarf shrub expansion and increased N concentrations in plant tissues we observed, point in the direction of a positive feedback toward vascular plant-dominance suppressing peat-forming Sphagnum in the long term. However, our data also indicate that precipitation and phosphorus availability influence the competitive balance between Sphagnum, dwarf shrubs and graminoids.  相似文献   

8.
Testate amoebae are a group of moisture-sensitive, shell-producing protozoa that have been widely used as indicators of changes in mean water-table depth within oligotrophic peatlands. However, short-term environmental variability (i.e., sub-annual) also probably influences community composition. The objective of this study was to assess the potential influence of short-term environmental variability on the composition of testate amoeba communities in Sphagnum-dominated peatlands. Testate amoebae and environmental conditions, including hourly measurements of relative humidity within the upper centimeter of the peatland surface, were examined throughout the 2008 growing season at 72 microsites within 11 peatlands of Pennsylvania and Wisconsin, USA. Relationships among testate amoeba communities, vegetation, depth to water table, pH, and an index of short-term environmental variability (EVI), were examined using nonmetric multidimensional scaling and correlation analysis. Results suggest that EVI influences testate amoeba communities, with some taxa more abundant under highly variable conditions (e.g., Arcella discoides, Difflugia pulex, and Hyalosphenia subflava) and others more abundant when environmental conditions at the peatland surface were relatively stable (e.g., Archerella flavum and Bullinularia indica). The magnitude of environmental variability experienced at the peatland surface appears to be primarily controlled by vegetation composition and density. In particular, sites with dense Sphagnum cover had lower EVI values than sites with loose-growing Sphagnum or vegetation dominated by vascular plants and/or non-Sphagnum bryophytes. Our results suggest that more environmental information may be inferred from testate amoebae than previously recognized. Knowledge of relationships between testate amoebae and short-term environmental variability should lead to more detailed and refined environmental inferences.  相似文献   

9.
Following disturbance events vegetation can either be resilient and return to its original state, or there can be shifts in vegetation composition and abundance patterns that may indicate alternative equilibiria. We conducted a long‐term field experiment that simulated impact by aerially transported volcanic ejecta (tephra) in a Sphagnum‐dominated plant community in order to test the effects of this type of large‐scale disturbance. Sixty plots of 1.4 × 1.4 m were established at Sarobetsu mire in northern Hokkaido, Japan and subjected to seven treatments (including the control) with natural tephra or ground glass shards differing in grain size, layer thickness and season of application. Water chemistry and vegetation were surveyed before tephra application and during five and eight years after the perturbation, respectively. Leaching of ions from fine‐grained glass shards caused a sustained increase of soil water pH and electric conductivity. Under coarser materials water quality differed little from the control, but a short‐lived peak of potassium suggested that mechanisms like nutrient release from decomposing plant material may influence water chemistry after volcanic disturbance. The perturbation initially reduced the cover of the dominant functional group (Sphagnum mosses) in all treatments; vascular plants were less affected. All species were able to recover by growing through the tephra, and open tephra surfaces were colonized by ubiquitous cryptogams, but not by spermatophytes. In contrast to the overall resilient behaviour of the vegetation, in some plots that received natural tephra an alternative state with high cover of the dwarf shrub Myrica gale developed. The patterns indicated that physical and chemical properties of the tephra determined the initial effects on plants, but that stochastic processes contributed to subsequent succession. These are likely to have effects on ecosystem functioning, e.g. hydrological processes and carbon sequestration.  相似文献   

10.
Abstract. Wetland vegetation developed in the crater of Mount Usu, northern Japan, soon after the 1977–1978 eruptions which destroyed the vegetation. The cover of each species was measured in 1994 in 118 50 cm × 50 cm plots situated in transects and related to environmental factors (elevation, water depth, soil texture, soil compaction, soil organic matter, and soil pH) to clarify vegetation development. Five vegetation types were recognized dominated by Eleocharis kamtschatica, Equisetum arvense, Lythrum salicaria, Juncus fauriensis and Phragmites australis respectively. Sedge/grass marsh and reed swamp dominated deep-water sites; willow swamp and wet meadow vegetation characterized shallow-water sites, indicating that vegetation zonation developed soon after the eruption. Since those wetland plants were derived neither from seed banks nor from vegetative propagules, they had to immigrate from outside the summit areas. However, except for willows, most species lack the ability for long-distance dispersal. Late successional species, such as P. australis established in the early stages of the primary succession. The water depth varied by 27.5 cm among the plots. Coarse soil particles accumulated, and pH (5.22–6.55) was low on the elevated sites. Organic matter ranged from 2.8 % to 19.1 %, and was high on the elevated sites. Water depth was responsible for the establishment of large-scale vegetation patterns, while edaphic factors, i.e. soil compaction, pH, and organic matter, were determinants of small-scale vegetation patterns. Among the edaphic factors, soil compaction appeared to have a strong influence on vegetation development.  相似文献   

11.
Abstract. The relationship between substrate quality and pattern of revegetation of harvested peat surfaces was studied by means of a survey and a field experiment examining influences of modest NPK-fertilization on plant colonization of an initially bare peat surface. The harvested peat surfaces varied a great deal in their chemical and physical characteristics and the sites differed in revegetation pattern. Early successional vegetation was dominated by perennial species native to nutrient-poor habitats on all sites. Soluble phosphorus and ash content, mean particle size of surface peat, and thickness of peat layer had the strongest influence in a CCA-ordination of species. The species composition depended on the amount and form of soluble nitrogen in the surface peat. Sites with a high content of phosphorus and ammonium nitrogen, and with a thick peat layer were usually densely revegetated by Eriophorum vaginatum alone, while sites characterized by thin peat layers associated with a high ash content, large particle size and a high content of nitrate nitrogen were mainly dominated by different grass and weed species. Deschampsia cespitosa clearly favoured sites with a high potassium content and small particle sizes of the peat. The importance of nutrient availability for the rate and pattern of colonization was also demonstrated by the field experiment. Application of 20 g/m2 of NPK-fertilizer resulted in a significant increase in the number of established plant individuals and marked differences in species composition compared to unfertilized plots.  相似文献   

12.
We studied the natural regeneration of an ombrotrophic peatland (Cacouna bog) located in southern Québec that was disturbed by peat mining and other anthropogenic activities over a 200-year period. Using an extensive collection of historical documents, as well as dendrochronological data, we reconstructed the history of the peatland. We also sampled vegetation and environmental variables, and integrated the data in a geographic information system. More than 60% of the total area of the bog was mined between 1942 and 1975, and 98 km of ditches were dug to drain the site. The peatland lost 34% of its initial peat volume between 1946 and 1998. Although the bog was severely disturbed, the spontaneous revegetation of the site by vascular plants was successful (90%–100% cover). However, only 10% of the total mined area has been recolonized by Sphagnum species, mainly because drainage ditches are still operational and contribute to drying out the bog. Water table level, peat deposit thickness, and pH are abiotic factors strongly influencing the vegetation composition in the bog. Spatial and historical factors are also important components in this study since they explain, either alone or in interaction with abiotic factors, 44% of the variation of the species data. The intensity of mining activities and the pattern of abandonment of mined sectors strongly influenced abiotic factors, which in turn affected the revegetation process. Even if the Sphagnum cover of the bog is low, the rapid “recovery” of the vegetation cover in the peatland indicates that after the reestablishment of an appropriate hydrological regime, a highly disturbed peatland has a considerable potential for regeneration. Received 24 April 2001; accepted 30 October 2001.  相似文献   

13.
Unsanctioned travel routes through alpine ecosystems can influence water drainage patterns, cause sedimentation of streams, and erode soils. These disturbed areas can take decades to revegetate. In 2012, a volunteer‐driven project restored a 854‐m section of unsanctioned road along the Continental Divide in Colorado, United States. The restored area was seeded with three native grass species and then treated by installing erosion matting or adding supplemental rock cover. Four years later, results suggest that the seeding along with the use of erosion matting or supplemental rock can enhance revegetation. Matting appeared to accumulate litter, and this effect might have contributed to enhanced moisture retention. Treated areas contained 40% of the vegetation cover found on adjacent controls, which averaged 69% vascular plant absolute cover. Recovery on both treatments was markedly higher than published estimates of passive revegetation of disturbed areas measured elsewhere suggesting seeding with added cover or protection led to substantial vegetative cover after 4 years. Two of the 3 seeded grass species, Trisetum spicatum and Poa alpina, dominated the restored plots, composing 81.7% of relative vegetation cover on matting sites and 73.4% of relative cover on rock‐supplemented areas. Presumably due to its preference for moister sites, Deschampsia cespitosa had low establishment rates. Volunteer species, that is species that appeared on their own, contributed 6.3% to the absolute vegetation cover of matting and rock sites, and species such as Minuartia biflora, Minuartia obtusiloba, Poa glauca, and Festuca brachyphylla should be considered for use in future restorations.  相似文献   

14.
The relationship between the small‐scale distribution pattern of bryophyte biomass on restored milled peatlands and substrate properties (e.g. moisture, pH, nutrients, and their ratios) was studied. Substrate properties may determine the species composition of bryophyte communities that have developed in such areas. Two experimental sites were established in northern Estonia where the moss‐layer‐transfer technique had been used for the revegetation of abandoned peatfields for almost a decade before sampling. Diaspores of Sphagnum species common on bogs were distributed in these sites. After 7 years one site was mainly dominated by Sphagnum whereas true mosses (Polytrichum strictum, Aulacomnium palustre, and Pleurozium schreberi) were abundant in the other site. Three moss groups were distinguished: Sphagnum, P. strictum, and other mosses based on cluster analysis. The biomass of Sphagnum was related to peat moisture and potassium content. For P. strictum the N/K ratio was important, and the production of A. palustre grew with the increase in the N/P ratio of peat. It was concluded that peat properties played an important role in the formation and development of bryophyte communities on revegetated peatfields on a small scale (<0.1 ha).  相似文献   

15.
Hydro-ecological analysis of the Biebrza mire (Poland)   总被引:2,自引:0,他引:2  
Vegetation composition and structure of 58 sites along gradients in the valley mire of Biebrza, Poland, are related to physical and chemical variables of groundwater and peat. The three most prominent hydrochemical processes in the valley are (a) dissolution of calcite; (b) dissolution of iron, manganese and aluminium; and (c) enrichment with nitrogen and potassium. Major factors determining these processes are vertical flow of the groundwater and river flooding.Within the rheophilous zone of the mire, calcium-richness of the shallow groundwater and base-saturation of the peat are caused by upward seepage of groundwater originating from adjacent higher grounds. This groundwater movement keeps the larger part of the mire saturated with calcium.Good correlations exist between hydrochemistry and vegetation patterns. Groundwater-fed sites support a characteristic rich fen vegetation (Caricetum limoso-diandrae) with a low biomass production. The flood-plain vegetation consists of highly-productive communities of Glycerietum maximae and Caricetum elatae. In a belt in the Upper Basin where neither flooding nor upward seepage occurs, succession, probably caused by intensified drainage, leads to a dwarf-shrub vegetation (Betuletum humilis; poor fen).  相似文献   

16.
Reindeer Rangifer tarandus L. grazing shapes forest vegetation, microclimate, and soil respiration in Lapland, especially due to grazing on lichens (Cladina). We studied how these changes and their magnitude affect ground‐dwelling species of beetle families Carabidae (predators) and Curculionidae (herbivores), by using pitfall traps to collect invertebrates from pairs of grazed and ungrazed study plots over a wide range of site types. Changes in abundance, composition, richness and diversity of beetle assemblage were tested in relation to magnitude of the impacts on vegetation. The species compositions of Carabidae and Curculionidae differed between grazed and ungrazed plots in all sites. The relative difference between grazed and ungrazed plots in the number of individuals increased linearly with the impact of reindeer on vegetation cover. Carabid beetles, as a family, were more common in grazed plots in all sites. Curculionid beetles were more common in ungrazed plots in the birch dominated sites. This difference was mainly due to the species that feeds on deciduous leaves. In the pine dominated sites with high Cladina cover and more changes in ground vegetation, the number of curculionids feeding on conifers was higher in grazed plots. Species richness and diversity (H’) of both families were higher in grazed plots. Of the total 27 species, 11 were found only in grazed plots, while not a single species was found only in ungrazed plots. The relative difference between plots in diversity and evennes (H’/H'max) had humped response to the difference in Cladina cover. The diversity values were greater in grazed plots at the intermediate levels of grazing impact, and only in sites with very low or extremely high Cladina cover difference was the diversity higher in ungrazed plots. The response of beetle diversity resembled the hypotheses suggested for the relationship between grazing and vegetation diversity: greatest positive effect at intermediate grazing intensity and negative effects at unproductive sites.  相似文献   

17.
Ecosystem restoration frequently involves the reintroduction of plant material in the degraded ecosystem. When there are no plant nurseries or seeds available on the market, the plant material has to be harvested in the wild, in a “donor ecosystem.” A comprehensive assessment of donor ecosystem recovery is lacking, especially for Sphagnum‐dominated donor peatlands, where all top vegetation is harvested mechanically with different practices. We aimed to evaluate (1) the regeneration of vegetation, especially of Sphagnum mosses, to determine which harvesting practices are best to enhance recovery and (2) the influence of the site hydrological conditions and meteorological variables of the first complete growing season postharvesting on peat moss regeneration. Twenty‐five donor sites covering a 17‐year chronosequence (harvested 1–17 years ago) were inventoried along with 15 associated natural reference sites located in Quebec, New Brunswick, and Alberta, Canada. All donor sites aged 10 years or more were dominated by Sphagnum mosses, though plant composition varied between donor and their associated reference sites because of the wetter conditions at harvested donor sites. Harvesting practices strongly influenced donor site recovery, showing that the skills of the practitioner are an essential ingredient. Harvesting practices minimizing donor site disturbances are recommended, such as the choice of the adequate donor site (localization, hydrologic conditions, vegetation), the use of less disruptive methods, and harvesting when the soil is deeply frozen. This study demonstrated that harvesting surface plant material for peatland restoration is not detrimental towards the recovery of near‐natural peatland ecosystems.  相似文献   

18.
  • 1 Blanket mire in Northern Ireland is an ecologically threatened habitat in which land use for hand peat‐cutting, forestry and agriculture has had a major influence. A recent land use change is the introduction of tractor‐powered peat‐harvesting. In this paper, the effect of machine peat‐cutting on ombrotrophic blanket mire vegetation is assessed from a regional sample of cut and uncut plots.
  • 2 Principal components analysis identified water‐table depth and grazing intensity as major factors influencing the species composition of uncut mire. A key variable affecting the composition of machine‐cut mire across the drainage gradient was the number of times cut, with multiple annual cutting causing progressive decreases in acrotelm depth, catotelm bulk density and plant cover. Ericaceous species and Sphagnum spp. were particularly sensitive to cutting, with Eriophorum angustifolium and Campylopus introflexus characteristic of multiple‐cut sites.
  • 3 Redundancy analysis, with number of times cut partialled out, showed that recovery time accounted for a significant amount of variance in vegetation composition. Species that significantly increased in abundance with recovery time were Sphagnum spp., Odontoschisma sphagni , Erica tetralix and Drosera rotundifolia.
  • 4 Sites cut frequently, or which were grazed, recovered more slowly. Recovery from cutting was partly dependent on the post‐cutting structure of the mire surface and the species that survive cutting. The rate of recovery on sites cut once, then abandoned, is relatively rapid compared with multiple‐cut sites where species colonization is constrained by bare compacted peat.
  相似文献   

19.
The lizard fauna of sand‐mined dunes of the central coast of New South Wales, Australia has been shown to be dominated by Ctenotus robustus and Ctenotus taeniolatus (Scincidae), with relative abundance changing with time since mining. However, there is little published information on how this lizard fauna compares to that of the undisturbed open forest that previously grew on these sites. Here, existing data are added to in order to produce a longer chronosequence of times since sand‐mining (4, 8, 14 and 20 years) than has been examined previously. The new data are compared to those from unmined forests. Ctenotus robustus and C. taeniolatus dominated lizard captures on mined areas, with peak abundances at 8 and 14 years, respectively. Lampropholis guichenoti (Scincidae) was at low abundance until 20 years post‐mining and L. delicata was present only at 20 years post‐mining. Unmined forest burned 4, 8 or 14 years ago had a significantly different lizard community from that of sand‐mined areas. Ctenotus robustus and C. taeniolatus were absent from unmined forest at all post‐fire periods. Lampropholis guichenoti and Lampropholis delicata were numerically dominant in forest, with increasing abundance of L. guichenoti with time since fire. Thus the composition of the lizard community on these coastal dunes is not solely determined by time since disturbance per se. Comparisons of sites on the basis of accumulated leaf litter showed a significant relationship between Lampropholis abundance and litter density. On sand‐mined sites and forested sites with similar leaf litter densities, the abundances of L. guichenoti were similar. As Ctenotus were absent from unmined forest, we could not compare their distribution in unmined and mined areas. However, negative correlations of Ctenotus abundance with canopy cover and understorey vegetation density offer a possible explanation for the absence of these species from forest.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号