首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the growth of diabetic mellitus (DM) and diabetic nephropathy as a significant complication for diabetic patients, study on effective treatment with fewer side effects has been fascinated. In this study for the first time carvedilol effects on both function and structure of kidney in diabetic nephropathy treatment were evaluated. Diabetes was induced by injection of streptozotocin (STZ) intravenously in rats and three groups including control, diabetic, and treatment with carvedilol were considered. Biochemical parameters such as, blood glucose level, BUN, creatinine, uric acid, Na+, K+ was determined. Results showed that glucose (516 to 291 mg/dl), BUN (42 to 21.67 mg/dl), creatinine (0.75 to 0.6 mg/dl), uric acid (4.45 to 1.36 mg/dl), and K+ (7.433 to 5.433 mEq/l) level reduced. Decrease in glucose, BUN, creatinine, uric acid, and K+ and increase in Na+ level (138 to 146.33 mEq/l) confirmed therapeutic effect of carvedilol. Furthermore, the histopathological study was done for each group. Histopathological results confirmed the data obtained by biochemical parameters. For further investigation, SPECT imaging with 99mTc-DMSA, which is a gold standard in diabetic nephropathy detection, was done. SPECT imaging showed that accumulation of 99mTc-DMSA was increased in treated group (5 to 25 kcpm) which means the improvement in renal structure in the treated group compare to the diabetic group (5 kcpm). Finally, obtained results confirmed our hypothesis that carvedilol had a therapeutic effect on diabetic nephropathy.  相似文献   

2.
Abstract: This is a study of the effects of a single “therapeutic” dose of glycerol [2 g(22 mmol)/kg i.p.] on brain carbohydrate and energy metabolism in normal nursing weanling mice. Findings were correlated with brain water and electrolyte content and with metabolite changes in plasma, red blood cells, and liver. Plasma glycerol levels peaked at 21 mM 7.5 min after injection and returned to the control value, 0.16 mM, by 2 h. Plasma Na+ concentration decreased and plasma protein increased for as long as 2 h after injection. Although red blood cells were freely permeable to glycerol, there was no evidence for glycerol metabolism in these cells. Glycerol levels in liver paralleled those in plasma. Glycerol injection increased liver glucose concentration 23% and doubled hepatic glycerol-1-phosphate levels. Liver ATP levels were reduced 24% after glycerol injection. Brain water concentration was significantly reduced from 7.5 min to 30 min after glycerol injection; brain Na+ and K+ levels were unchanged. There was no evidence for glycerol entry into brain (the amount detected in brain tissue could be explained by the glycerol content in the blood of the brain). While plasma glucose increased 33%, brain glucose increased 87%. Concomitantly there were statistically significant increases in fructose-1,6-diphosphate, lactate, α-ketoglutarate, and malate levels. The disproportionately high brain glucose value suggests increased transport of glucose from the blood to the brain. Increases in fructose-1,6-diphosphate, lactate, α-ketoglutarate, and malate are compatible with an increased metabolic flux in the glycolytic pathway and Krebs citric acid cycle. As has been previously shown for urea and/or mannitol, these changes may result from the effects of the hyperosmolar glycerol solution on the blood-brain barrier and on cerebral glucose utilization. The sustained lowering of plasma Na+ concentration after a single “therapeutic” glycerol injection suggests a need for monitoring plasma Na+ levels in the clinical situation. Possible lowering of hepatic ATP levels by the use of glycerol in humans is another concern.  相似文献   

3.
We studied the ATP dependence of NHE-1, the ubiquitous isoform of the Na+/H+ antiporter, using the whole-cell configuration of the patch-clamp technique to apply nucleotides intracellularly while measuring cytosolic pH (pHi) by microfluorimetry. Na+/H+ exchange activity was measured as the Na+-driven pHi recovery from an acid load, which was imposed via the patch pipette. In Chinese hamster ovary (CHO) fibroblasts stably transfected with NHE-1, omission of ATP from the pipette solution inhibited Na+/H+ exchange. Conversely, ATP perfusion restored exchange activity in cells that had been metabolically depleted by 2-deoxy-d-glucose and oligomycin. In cells dialyzed in the presence of ATP, no “run-down” was observed even after extended periods, suggesting that the nucleotide is the only diffusible factor required for optimal NHE-1 activity. Half-maximal activation of the antiporter was obtained at ∼5 mM Mg-ATP. Submillimolar concentrations failed to sustain Na+/H+ exchange even when an ATP regenerating system was included in the pipette solution. High ATP concentrations are also known to be required for the optimal function of other cation exchangers. In the case of the Na/Ca2+ exchanger, this requirement has been attributed to an aminophospholipid translocase, or “flippase.” The involvement of this enzyme in Na+/H+ exchange was examined using fluorescent phosphatidylserine, which is actively translocated by the flippase. ATP depletion decreased the transmembrane uptake of NBD-labeled phosphatidylserine (NBD-PS), indicating that the flippase was inhibited. Diamide, an agent reported to block the flippase, was as potent as ATP depletion in reducing NBD-PS uptake. However, diamide had no effect on Na+/H+ exchange, implying that the effect of ATP is not mediated by changes in lipid distribution across the plasma membrane. K-ATP and ATPγS were as efficient as Mg-ATP in sustaining NHE-1 activity, while AMP-PNP and AMP-PCP only partially substituted for ATP. In contrast, GTPγS was ineffective. We conclude that ATP is the only soluble factor necessary for optimal activity of the NHE-1 isoform of the antiporter. Mg2+ does not appear to be essential for the stimulatory effect of ATP. We propose that two mechanisms mediate the activation of the antiporter by ATP: one requires hydrolysis and is likely an energy-dependent event. The second process does not involve hydrolysis of the γ-phosphate, excluding mediation by protein or lipid kinases. We suggest that this effect is due to binding of ATP to an as yet unidentified, nondiffusible effector that activates the antiporter.  相似文献   

4.
5.
We redirect attention to contributions to the energization of the active transport of amino acids in the Ehrlich cell, beyond the known energization by down-gradient comigration of Na+, beyond possible direct energization by coupling to ATP breakdown, and beyond known energization by exchange with prior accumulations of amino acids. We re-emphasize the uphill operation of System L, and by prior depletion of cellular amino acids show that this system must receive energy beyond that made available by their coupled exodus. After this depletion the Na+-independent accumulation of the norbornane amino acid, 2-aminobicycloheptane-2-carboxylic acid becomes strongly subject to stimulation by incubation with glucose. Energy transfer between Systems A and L through the mutual substrate action of ordinary amino acids was minimized although not entirely avoided by the use of amino acid analogs specific to each system.When 2,4-dinitrophenol was included in the depleting treatment, and pyruvate, phenazine methosulfate, or glucose used for restoration, recovery of uptake of the norbornane amino acid was independent of external Na+ or K+ levels. Restoration of the uptake of 2-(methylamino)isobutyric acid was, however, decreased by omission of external K+. Contrary to an earlier finding, restoration of uptake of each of these amino acids was associated with distinct and usually correlated rises in cellular ATP levels. ATP addition failed to stimulate exodus of the norbornane amino acid from plasma membrane vesicles, although either NADH or phenazine methosulfate did stimulate exodus. ATP production and use is thus associated with transport energization, although evidence for a direct role failed to appear.  相似文献   

6.
In order to assess the potential role of the plasma membrane sodium-proton (Na/H+) exchanger in the pathogenesis of diabetic nephropathy, we investigated 32 insulin dependent (type 1) diabetic patients and 21 control subjects. We tested the Na+/H+ exchange as the rate of amiloride sensitive and sodium dependent volume gain of platelets suspended in sodium propionate. Patients with diabetic nephropathy had significantly increased rates of Na+/H+ exchange (0.31 ± 0.06 s–1 × 10–2) when compared to those without nephropathy (0.24 ± 0.07, p < 0.05) or to a control group (0.23 ± 05, p < 0.05). Nine patients who were classified as hypertensive had a highly significant increase in the Na+/H+ exchange rates when compared to 23 non-hypertensive diabetic patients: 0.33 ± 0.04 versus 0.24 ± 0.06 (p < 0.001). There was no significant correlation between the Na+/H+ exchange rates and age, diabetes duration, glycated hemoglobin or fructosamine levels on the day of the test. In summary, the data presented here demonstrate an increase in the Na+/H+ exchange rate in insulin-dependent diabetic patients with nephropathy and hypertension  相似文献   

7.
Na+,K+-ATPase is an ubiquitous membrane enzyme that allows the extrusion of three sodium ions from the cell and two potassium ions from the extracellular fluid. Its activity is decreased in many tissues of streptozotocin-induced diabetic animals. This impairment could be at least partly responsible for the development of diabetic complications. Na+,K+-ATPase activity is decreased in the red blood cell membranes of type 1 diabetic individuals, irrespective of the degree of diabetic control. It is less impaired or even normal in those of type 2 diabetic patients. The authors have shown that in the red blood cells of type 2 diabetic patients, Na+,K+-ATPase activity was strongly related to blood C-peptide levels in non–insulin-treated patients (in whom C-peptide concentration reflects that of insulin) as well as in insulin-treated patients. Furthermore, a gene-environment relationship has been observed. The alpha-1 isoform of the enzyme predominant in red blood cells and nerve tissue is encoded by the ATP1A1 gene.Apolymorphism in the intron 1 of this gene is associated with lower enzyme activity in patients with C-peptide deficiency either with type 1 or type 2 diabetes, but not in normal individuals. There are several lines of evidence for a low C-peptide level being responsible for low Na+,K+-ATPase activity in the red blood cells. Short-term C-peptide infusion to type 1 diabetic patients restores normal Na+,K+-ATPase activity. Islet transplantation, which restores endogenous C-peptide secretion, enhances Na+,K+-ATPase activity proportionally to the rise in C-peptide. This C-peptide effect is not indirect. In fact, incubation of diabetic red blood cells with C-peptide at physiological concentration leads to an increase of Na+,K+-ATPase activity. In isolated proximal tubules of rats or in the medullary thick ascending limb of the kidney, C-peptide stimulates in a dose-dependent manner Na+,K+-ATPase activity. This impairment in Na+,K+-ATPase activity, mainly secondary to the lack of C-peptide, plays probably a role in the development of diabetic complications. Arguments have been developed showing that the diabetesinduced decrease in Na+,K+-ATPase activity compromises microvascular blood flow by two mechanisms: by affecting microvascular regulation and by decreasing red blood cell deformability, which leads to an increase in blood viscosity. C-peptide infusion restores red blood cell deformability and microvascular blood flow concomitantly with Na+,K+-ATPase activity. The defect in ATPase is strongly related to diabetic neuropathy. Patients with neuropathy have lower ATPase activity than those without. The diabetes-induced impairment in Na+,K+-ATPase activity is identical in red blood cells and neural tissue. Red blood cell ATPase activity is related to nerve conduction velocity in the peroneal and the tibial nerve of diabetic patients. C-peptide infusion to diabetic rats increases endoneural ATPase activity in rat. Because the defect in Na+,K+-ATPase activity is also probably involved in the development of diabetic nephropathy and cardiomyopathy, physiological C-peptide infusion could be beneficial for the prevention of diabetic complications.  相似文献   

8.
To prevent sodium toxicity in plants, Na+ is excluded from the cytosol to the apoplast or the vacuole by Na+/H+ antiporters. The secondary active transport of Na+ to apoplast against its electrochemical gradient is driven by plasma membrane H+-ATPases that hydrolyze ATP and pump H+ across the plasma membrane. Current methods to determine Na+ flux rely either on the use of Na-isotopes (22Na) which require special working permission or sophisticated equipment or on indirect methods estimating changes in the H+ gradient due to H+-ATPase in the presence or absence of Na+ by pH-sensitive probes. To date, there are no methods that can directly quantify H+-ATPase-dependent Na+ transport in plasma membrane vesicles. We developed a method to measure bidirectional H+-ATPase-dependent Na+ transport in isolated membrane vesicle systems using atomic absorption spectrometry (AAS). The experiments were performed using plasma membrane-enriched vesicles isolated by aqueous two-phase partitioning from leaves of Populus tomentosa. Since most of the plasma membrane vesicles have a sealed right-side-out orientation after repeated aqueous two-phase partitioning, the ATP-binding sites of H+-ATPases are exposed towards inner side. Leaky vesicles were preloaded with Na+ sealed for the study of H+-ATPase-dependent Na+ transport. Our data implicate that Na+ movement across vesicle membranes is highly dependent on H+-ATPase activity requiring ATP and Mg2+ and displays optimum rates of 2.50 μM Na+ mg− 1 membrane protein min− 1 at pH 6.5 and 25 °C. In this study, for the first time, we establish new protocols for the preparation of sealed preloaded right-side-out vesicles for the study of H+-ATPase-dependent Na+ transport. The results demonstrate that the Na+ content of various types of plasma membrane vesicle can be directly quantified by AAS, and the results measured using AAS method were consistent with those determined by the previous established fluorescence probe method. The method is a convenient system for the study of bidirectional H+-ATPase-dependent Na+ transport with membrane vesicles.  相似文献   

9.
10.
R. Behl  K. Raschke 《Planta》1986,167(4):563-568
Excised Na+-starved barley roots were suspended in solutions of Na+ in combination with NO 3 - , Cl-, and SO 4 2- , and effects of the added phytohormone, abscisic acid (ABA), to the medium were determined. Abscisic acid increased the rate of Na+ (22Na+) accumulation and the amount of Na+ deposited in the vacuoles. These stimulating effects of ABA were modified by anions following the sequence NO 3 - >Cl->SO 4 2- . Testing whether the magnitude of the pH gradient across the plasmalemma of the cells of the root cortex affects rates of Na+ accumulation and their dependence upon ABA, we observed that, in the pH range from 4 to 8, the ABA-induced stimulation was strongest at pH 5.8, and least at pH 4. Changes in pH during the experiment caused changes in the rates of Na+ accumulation in agreement with experiments performed at constant pH values. Simultaneously with ABA-enhanced accumulation, loss of Na+ occurred. Loss of Na+ was strongest at pH 4 and was affected by anions, being greatest with SO 4 2- and following the sequence SO 4 2- >Cl->NO 3 - . On the basis of the finding that initial acceleration of uptake as well as loss of Na+ depended on the pH of the medium we suggest that, in barley roots, ABA stimulates an exchange of Na+ for H+ at the plasmalemma of the cortical cells. The results indicate that ABA-stimulated expulsion of Na+, in combination with ABA-stimulated sequestration in the vacuoles, constitutes one of the mechanisms which enable barley plants to tolerate higher than normal levels of Na+.Abbreviations ABA abscisic acid - FW fresh weight  相似文献   

11.
Modifications of some membranal enzymatic activities in rabbit brain edema induced by cold injury were studied. The edema was characterized by the tissue H2O content and the K+/Na+ ratio. Comparison of the respiratory rate of isolated mitochondria in the state 3 and 4 and the ADP/O ratio suggested an alteration in the ATP synthesis mechanism. The oligomycin sensitive ATPase activity was severely reduced in mitochondria isolated from edematous cells. The alteration of the ouabain sensitive Na+-K+-ATPase was first qualitative in the sense where the response of the ATPase to the K+/Na+ ratio was modified. A loss of the total activity was then observed. Intravenous injection of CDP choline induced a regression of the edema, a restoration of the sensitivity of the mitochondrial ATPase towards oligomycin and a restoration of the sensitivity of the Na+-K+-ATPase to the K+/Na+ ratio. These results suggest that the reversible damages of the cells induced by cold injury were due to a disorder at the protein-lipid interaction level.  相似文献   

12.
NaChBac is a bacterial voltage-gated sodium (Nav) channel that shows sequence similarity to voltage-gated calcium channels. To understand the ion-permeation mechanism of Nav channels, we combined molecular dynamics simulation, structural biology and electrophysiological approaches to investigate the recently determined structure of NavRh, a marine bacterial NaChBac ortholog. Two Na+ binding sites are identified in the selectivity filter (SF) in our simulations: The extracellular Na+ ion first approaches site 1 constituted by the side groups of Ser181 and Glu183, and then spontaneously arrives at the energetically more favorable site 2 formed by the carbonyl oxygens of Leu179 and Thr178. In contrast, Ca2+ ions are prone to being trapped by Glu183 at site 1, which then blocks the entrance of both Na+ and Ca2+ to the vestibule of the SF. In addition, Na+ permeates through the selective filter in an asymmetrical manner, a feature that resembles that of the mammalian Nav orthologs. The study reported here provides insights into the mechanism of ion selectivity on Na+ over Ca2+ in mammalian Nav channels.  相似文献   

13.
The membrane potential of the Ehrlich ascites tumor cell was shown to be influenced by its amino acid content and the activity of the Na+: K+ pump. The membrane potential (monitored by the fluorescent dye, 3,3′-dipropylthiodicarbocyanine iodide) varied with the size of the endogenous amino acid pool and with the concentration of accumulated 2-aminoisobutyrate. When cellular amino acid content was high, the cells were hyperpolarized; as the pool declined in size, the cells were depolarized. The hyperpolarization seen with cellular amino acid required cellular Na+ but not cellular ATP. Na+ efflux was more rapid from cells containing 2-aminoisobutyrate than from cells low in internal amino acids. These observations indicate that the hyperpolarization recorded in cells with high cellular amino acid content resulted from the electrogenic co-efflux of Na+ and amino acids.Cellular ATP levels were found to decline rapidly in the presence of the dye and hence the influence of the pump was seen only if glucose was added to the cells. When the cells contained normal Na+ (approx. 30 mM), the Na+: K+ pump was shown to have little effect on the membrane potential (the addition of ouabain had little effect on the potential). When cellular Na+ was raised to 60 mM, the activity of the pump changed the membrane potential from the range ?25 to ?30 mV to ?44 to ?63 mV. This hyperpolarization required external K+ and was inhibited by ouabain.  相似文献   

14.
Highly purified Na+, K+-ATPase of the dog kidney was reacted with Mg2++32Pi or Mg2++32Pi + ouabain. 32P-phosphorylation was terminated by the addition of EDTA, and the effects of various ligands on dephosphoration rate were studied. ATP reduced the dephosphorylation rates of both the native and the ouabain-complexed enzymes. K0.5 for this effect of ATP was about 0.2 mM. ADP also slowed dephosphorylation, but less effectively than ATP. The ATP effect on the native enzyme, but not that on the ouabain-complexed enzyme, was antagonized by Na+. The data establish the binding of ATP to the phosphoenzyme. Since the site that is phosphorylated by Pi is the same that is phosphorylated by ATP, coexistence of two ATP sites on the functional unit of the enzyme is suggested.  相似文献   

15.
Abstract— To determine the mechanism of neurotoxicity of kainic acid, striatal slices (350μ) were incubated in oxygenated Krebs buffer with kainic acid and other depolarizing agents; and the alterations in the uptake and retention of 22Na+, 86Rb+ (as a measure of K +), 3HzO and the levels of ATP were determined. The excitatory amino acid, L-glutamate (10 mM) increases striatal slice uptake and retention of Na+, K+ and H2O but decreases ATP levels whereas the neuroexcitant, A'-methyl aspartate, increases only Na+ and H2O. Veratridine (100μM), which opens electrogenic sodium channels, and ouabain (100μM), which inhibits Na+-K+ ATPase, both elevate striatal Na+ and H2O but considerably reduce K+ and ATP. The effects of these different depolarizing agents on the parameters examined are consistent with their mechanisms of actions and support the validity of this in vitro method. Although 10mM-kainate significantly depresses striatal K+ and ATP, lower concentrations of kainate (5mM-0.1μ) elevate striatal uptake of Na+ but do not markedly affect H2O, K+ or ATP. Kainate (10mM-lμM) does not exhibit additivity with 10 mM-glutamate with respect to Na+ permeability but does significantly potentiate glutamate's ATP depleting effects. Injection of 10 nmol of kainate into the striatum in vivo causes a reduction in striatal ATP 1 h afterward which is comparable to that occurring in vitro with 10mM-kainate alone or with lower concentrations of kainate (≥1/μM) with 10 mM-glutamate. These results suggest that kainate alone is directly neurotoxic at 10mM or neurotoxic at lower concentrations in combination with the high intrasynaptic levels of glutamate on neurons receiving glutamatergic innervation.  相似文献   

16.
Pig kidney Na+,K+-ATPase was studied by means of reaction-induced infrared difference spectroscopy. The reaction from E1Na3+ to an E2P state was initiated by photolysis of P3-1-(2-nitrophenyl)ethyl ATP (NPE caged ATP) in samples that contained 3 mM free Mg2+ and 130 mM NaCl at pH 7.5. Release of ATP from caged ATP produced highly detailed infrared difference spectra indicating structural changes of the Na+,K+-ATPase. The observed transient state of the enzyme accumulated within seconds after ATP release and decayed on a timescale of minutes at 15°C. Several controls ensured that the observed difference signals were due to structural changes of the Na+,K+-ATPase. Samples that additionally contained 20 mM KCl showed similar spectra but less intense difference bands. The absorbance changes observed in the amide I region, reflecting conformational changes of the protein backbone, corresponded to only 0.3% of the maximum absorbance. Thus the net change of secondary structure was concluded to be very small, which is in line with movement of rigid protein segments during the catalytic cycle. Despite their small amplitude, the amide I signals unambiguously reveal the involvement of several secondary structure elements in the conformational change. Similarities and dissimilarities to corresponding spectra of the Ca2+-ATPase and H+,K+-ATPase are discussed, and suggest characteristic bands for the E1 and E2 conformations at 1641 and 1661 cm−1, respectively, for αβ heterodimeric ATPases. The spectra further indicate the participation of protonated carboxyl groups or lipid carbonyl groups in the reaction from E1Na3+ to an E2P state. A negative band at 1730 cm−1 is in line with the presence of a protonated Asp or Glu residue that coordinates Na+ in E1Na3+. Infrared signals were also detected in the absorption regions of ionized carboxyl groups.  相似文献   

17.
The inhibitory effect of ouabain on (Na+ + K+)-activated ATPase (Mg2+-dependent, (Na+ + K+)-activated ATP phosphohydrolase, EC 3.6.1.3) obtained from rat brain microsomal fraction was re-examined using a modified method to estimate the inhibited reaction velocity. This method involves a preincubation of a ouabain-enzyme mixture in the presence of Na+, Mg2+ and ATP to bring the ouabain-enzyme reaction to near equilibrium. The (Na+ + K+)-activated ATPase reaction was subsequently started by the addition of a KCl solution.  相似文献   

18.
Incubation with graded doses of rotenone can bring about a graded lowering of the cellular ATP level. Using cells with varying ATP levels, it can be shown that the initial uptake of [14C]glycine, before the cellular concentration exceeds that of the medium, is decreased as ATP decreases. Alterations in cellular cations cannot account for the difference in glycine influx. Prolonged exposure of cells to a lowered ATP content increases the exodus of cellular glycine. Valinomycin reduces the steady-state level of glycine uptake, but its effects can to a major extent be overcome by the addition of glucose. At high extracellular K+ (70 mM) neither the sum of the Na++K+ gradients, nor the electrochemical potential of Na+ provides sufficient energy to account for glycine and 2-aminoisobutyrate accumulation if a 1:1 coupling between Na+ and the amino acid occurs.  相似文献   

19.
Summary The cell membrane K+-activated phosphatase activity was measured in reconstituted ghosts of human red cells having different ionic contents and incubated in solutions of varying ionic composition. When K+-free ghosts are suspended in K+-rich media, full activation of the phosphatase is obtained. Conversely, very little ouabainsensitive activity is detected in K+-rich ghosts suspended in K+-free media. These results, together with the fact that Na+ competitively inhibits the effects of K+ only when present externally, show that the K+ site of the membrane phosphatase is located at the outer surface of the cell membrane. The Mg++ requirements for K+ activation of the membrane phosphatase are fulfilled by internal Mg++. Addition of intracellular Na+ to ATP-containing ghosts raises the apparent affinity of the enzyme for K+, suggesting that the sites where ATP and Na+ produce this effect are located at the inner surface of the cell membrane. The asymmetrical features of the membrane phosphatase are those expected from the proposed role of this enzyme in the Na+–K+-ATPase system.The authors are established investigators of the Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.  相似文献   

20.
Summary To distinguish ligand-induced structural states of the (Na+–K+)-ATPase, the purified membrane-bound enzyme isolated from rat kidneys was digested with trypsin in the presence of various combinations of Na+, K+, Mg++ and ATP. It was found that first the large and then the small polypeptide chain of the (Na+–K+)-ATPase was degraded, indicating that the lysine and arginine residues of the large chain are more exposed than are those of the small one. The (Na+–K+)-ATPase activity was inactivated in parallel with the degradation of the large polypeptide chain. After the degradation of the large polypeptide chain, about 75% of the (Na+–K+)-ATPase protein remained bound to the membrane, demonstrating that the split protein segments were only partially released.It was found that the combinations of ATP, Mg++, Na+ and K+ present during trypsin digestion influenced the time course and degree of degradation of the (Na+–K+)-ATPase protein. The degradations of the large and the small polypeptide chain were affected in parallel. Thus, certain ATP and ligand combinations influenced neither the degradation of the large nor the degradation of the small polypeptide chain, whereas by other combinations of ATP and ligands the degree of susceptibility of both polypeptide chains to trypsin was equally increased or reduced.In the absence of ATP the time course of trypsin digestion of the (Na+–K+)-ATPase was the same, whether Na+ or K+ was present. With low ATP concentrations (e.g., 0.1mm), however, binding of Na+ or K+ led to different degradation patterns of the enzyme. If a high concentration of ATP (e.g., 10mm) was present, Na+ and K+ also influenced the degradation pattern of the (Na+–K+)-ATPase, but differentially compared to that at low ATP concentrations, since the effects of Na+ and K+ were reversed. Furthermore, it was found that the degradation of the small chain was only influenced by certain combinations of ATP, Mg++, Na+ and K+ if the large chain was intact when the ligands were added to the enzyme.The described results demonstrate structural alterations of the (Na+–K+)-ATPase complex which are supposed to include a synchronous protrusion or retraction of both (Na+–K+)-ATPase subunits. The data further suggest that ATP and other ligands primarily alter the structure of the large (Na+–K+)-ATPase subunit. This structural alteration is presumed to lead to a synchronous movement of the small subunit of the enzyme. The structural state of the (Na+–K+)-ATPase is regulated by binding of Na+ or K+ to the enzyme-ATP complex. The effects of Na+ and K+ on the (Na+–K+)-ATPase structure are modulated by the ATP binding to high affinity and to low affinity ATP binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号