首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prawn (Penaeus penicillatus) acid phosphatase (EC 3.1.3.2) catalyzes the nonspecific hydrolysis of phosphate monoesters. The effects of some pollutants in sea water on the enzyme activity results in the loss of the biological function of the enzyme, which leads to disruption of phosphate metabolism in cells. This paper analyzes the effects of methanol on the activity and conformation of prawn acid phosphatase. The results show that low concentrations of methanol can lead to reversible inactivation. Inhibition of the enzyme by methanol is classified as non-competitive inhibition, and the inhibition constant (Ki) is 8.5%. Conformational changes of the enzyme molecule in methanol solutions of different concentrations were measured using fluorescence emission, differential UV-absorption, and circular dichroism spectra. Increased methanol concentrations caused the fluorescence emission intensity of the enzyme to increase. The ultraviolet difference spectra of the enzyme denatured with methanol had two negative peaks, at 222 and 270 nm, and a positive peak at 236 nm. The changes in the fluorescence and ultraviolet difference spectra reflected the changes of the microenvironments of tryptophan and tyrosine residues of the enzyme. The CD spectrum changes of the enzyme show that the secondary structure of the enzyme also changed some. These results suggest that methanol is a non-competitive inhibitor and the conformational integrity of the enzyme is essential for its activity.  相似文献   

2.
The effect of ethanol on the activity of Penaeus penicillatus acid phosphatase has been studied. The results show that ethanol significantly inhibits enzyme activity as a non-competitive inhibitor, with Ki 8.75%. The conformational changes of the enzyme molecule induced by ethanol were followed using fluorescence emission, ultraviolet difference and circular dichroism (CD) spectra. Increasing the ethanol concentration caused the fluorescence emission intensity of the enzyme to increase. The ultraviolet difference spectra of the enzyme denatured with ethanol had two negative peaks at 220 and 278 nm, and a positive peak at 240 nm. Increasing the ethanol concentration produced a small shoulder peak at 287 nm in addition to the increases in the negative magnitudes of the 220 and 278 nm peaks. The changes of the fluorescence and ultraviolet difference spectra reflected the changes of the microenvironments of the tryptophan and tyrosine residues of the enzyme. The CD spectrum changes of the enzyme show that the secondary structure of the enzyme also changed. The results suggest that ethanol is a non-competitive inhibitor and the conformational integrity of the enzyme is essential for its activity.  相似文献   

3.
Palczewsski等[1]以邻苯二甲醛修饰醛缩酶活性部位的氨基和流基以形成一异蚓噪环,利用该基团的荧光特性来探测醛缩酶的活性部位构象,Weq[2],Le[3]并成功地运用这一方法研究肌酸激酶和酵母乙醇脱氢酶的活性部位构象变化.中华猕猴桃蛋白酶的唯一游离流基(CyS-25)是催化功能团【'」,而且氨基也是活性部位的必需基因【到,符合邻苯二甲醛的反应性,所以我们借鉴Pal_ski等的方法【1]将这一荧光基因引人中华猕猴桃蛋白酶,用以探测该酶在抓溶液中活性部位的构象变化,并与相应的活力变化以及酶的内源荧光及CD谱变化作比较.1材…  相似文献   

4.
Horse liver alcohol dehydrogenase (HLADH) has been non‐covalently immobilized on an immobilized artificial membrane (IAM) high‐performance liquid chromatography (HPLC) stationary phase. The resulting IAM‐HLADH retained the reductive activity of native HLADH as well as the enzyme's enantioselectivity and enantiospecificity. HLADH was also immobilized in an IAM HPLC stationary phase prepacked in a 13 × 4.1 mm ID column to create an immobilized enzyme reactor (HLADH‐IMER). The reactor was connected through a switching valve to a column containing a chiral stationary phase (CSP) based upon p‐methylphenylcarbamate derivatized cellulose (Chiralcel OJR‐CSP). The results from the combined HLADH‐IMER/CSP and chromatographic system demonstrate that the enzyme retained its activity and stereoselectivity after immobilization in the column and that the substrate and products from the enzymatic reduction could be transferred to a second column for analytical or preparative separation. The combined HLADH‐IMER/CSP system is a prototype for the preparative on‐line use of cofactor‐dependent enzymes in large‐scale chiral syntheses. Chirality 11:39–45, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
Negatively charged ultrafine silica particles (average diameter 20 nm) were used as support materials for adsorption immobilization of porcine trypsin, horseradish peroxidase, and bovine catalase under various conditions, and the changes in the enzyme activities and the circular dichroism (CD) spectra of these enzymes upon adsorption were measured. Since the light scattering intensity of the ultrafine particles was very low, the activities and the CD spectra of the enzymes adsorbed on the particle surfaces could be measured. The enzymes adsorbed at pH around and above their isoelectric points (pI) showed high activities. On the other hand, the enzymes adsorbed at pHs below their pI had significantly diminished activities and showed large CD spectral changes upon adsorption. The extent of CD spectral changes in the enzymes upon adsorption correlated very closely with that of the activity reduction. Therefore, the conformational changes in enzymes upon adsorption are one of the important factors that reduce the activities of adsorbed enzymes. These results demonstrate that the ultrafine particles are not only a novel support for enzyme immobilization but also are helpful for the molecular understanding of the immobilized enzymes. Correspondence to: A. Kondo  相似文献   

6.
The process of pressure-induced modification of horse liver alcohol dehydrogenase (HLADH) was followed by measuring in situ catalytic activity (up to 250 MPa), intrinsic fluorescence (0.1-600 MPa) and modifications of FTIR spectra (up to 1000 MPa). The tryptophan fluorescence measurements and the kinetic data indicated that the pressure-induced denaturation of HLADH was a process involving several transitions and that the observed transient states have characteristic properties of molten globules. Low pressure (< 100 MPa) induced no important modification in the catalytic efficiency of the enzyme and slight conformational changes, characterized by a small decrease in the centre of spectral mass of the enzyme's intrinsic fluorescence: a native-like state was assumed. Higher pressures (100-400 MPa) induced a strong decrease of HLADH catalytic efficiency and further conformational changes. At 400 MPa, a dimeric molten globule-like state was proposed. Further increase of pressure (400-600 MPa) seemed to induce the dissociation of the dimer leading to a transition from the first dimeric molten globule state to a second monomeric molten globule. The existence of two independent structural domains in HLADH was assumed to explain this transition: these domains were supposed to have different stabilities against high pressure-induced denaturation. FTIR spectroscopy was used to follow the changes in HLADH secondary structures. This technique confirmed that the intermediate states have a low degree of unfolding and that no completely denatured form seemed to be reached, even up to 1000 MPa.  相似文献   

7.
Previous studies have predicted five disulfide bonds in Aspergillus niger phytase (phy A). To investigate the role of disulfide bonds, intrinsic fluorescence spectra, far-ultraviolet circular dichroism (CD) spectra, and an enzyme activity assay were used to compare the differences of catalytic activity and conformational stability of phytase during denaturation in urea in the presence and absence of dithiothreitol (DTT). In the presence of 2 mM DTT, the inactivation and unfolding were greatly enhanced at the same concentration of denaturant. The fluorescence emission maximum red shift and decreases of ellipticity at 222 nm were in accord with the changes of catalytic activity. The kinetics of the unfolding courses were a biphasic process consisting of two first-order reactions in the absence of DTT and a monophasic process of a first-order reaction in the presence of DTT. The results suggested that the loss of enzymatic activity was most likely because of a conformational change, and that disulfide bonds played an important role in three-dimensional structure and catalytic activity.  相似文献   

8.
Purified porcine heart lactate dehydrogenase was inactivated and partially unfolded with p-chloromercuribenzoate (pCMB). With the increase of pCMB/enzyme ratio the enzyme was gradually inhibited till almost completely inactivated at the pCMB/enzyme ratio of 20 : 1. Native polyacrylamide gel electrophoresis showed that with the increase of pCMB/enzyme ratio the bands of native enzyme decreased till completely vanished. Meanwhile inactive multiple bands emerged and became thicker, which implied that lactate dehydrogenase became loose. The conformational changes of the enzyme molecule modified with pCMB were followed using fluorescence emission, ultraviolet difference, and circular dichroism (CD) spectra. Increasing pCMB concentration resulted in the decrease of fluorescence emission intensity. The ultraviolet difference spectra of the enzyme modified with pCMB exhibited an increasing absorbance in the vicinity of 240 nm with the increasing concentration of the inhibitor. The changes of the fluorescence and ultraviolet difference spectra reflected the conformational changes of the enzyme. The CD spectrum changes of the enzyme showed that its secondary structure changed as well. These results suggest that pCMB not only inhibits this enzyme but also influences its conformation (partial unfolding).  相似文献   

9.
The aspartic acid (Asp)-induced unfolding and the salt-induced folding of arginine kinase (AK) were studied in terms of enzyme activity, intrinsic fluorescence emission spectra, 1-anilino-8-naphthalenesulfonate (ANS) fluorescence spectra and far-UV circular dichroism (CD) spectra. The results showed that Asp caused inactivation and unfolding of AK with no aggregation during AK denaturation. The unfolding of the whole molecule and the inactivation of AK in different Asp concentrations were compared. Much lower Asp concentration was required to induce inactivation than to produce significant conformational changes of the enzyme molecule. However, with further addition of Asp, the molar ellipticity at 222 and 208 nm, the wavelength shift and the emission intensity of ANS hardly changed. Asp denatured AK was reactivated by dilution. In addition, potassium chloride (KCl) induced the molten globule state with a compact structure after AK was denatured with 7.5 mM Asp. These results collectively elucidate the osmotic effect of Asp anions for the molten globule formed during unfolding process. They also suggest that the effect of Asp differed from that of other denaturants such as guanidine hydrochloride or urea during AK folding. The molten globule state indicates that intermediates exist during AK folding.  相似文献   

10.
The effect of denaturants such as urea, sodium dodecylsulphate (SDS), guanidinium hydrochloride (Gu.HCl) on the structure of enzyme 3-hydroxybenzoate-6-hydroxylase was studied using intrinsic fluorescence and far and near-UV-CD spectroscopic techniques. Also, activity profiles of the enzyme, as a function of increasing concentrations of denaturants were studied. The far-UV CD spectrum of the enzyme did not show appreciable alterations in the presence of urea, SDS or Gu.HCl, thereby suggesting that the protein does not undergo gross conformational changes in its alpha-helical secondary structure. The treatment of enzyme with 2 M urea resulted in almost complete loss of catalytic activity, accompanied by the reduction of emission fluorescence of enzyme. Similarly, treatment with 0.01% SDS also caused almost complete loss of activity and quenching of enzyme fluorescence as well as a red shift in the emission peak. In addition, reduction in the intensity of near-UV-CD spectrum, especially at 280 nm was observed. About 70% of the activity was lost by treatment with 20 mM Gu.HCl, accompanied by quenching of intrinsic fluorescence of the enzyme. The change in intrinsic fluorescence of the enzyme in the presence of 5 mM-100 mM Gu.HCI could be correlated to progressive loss of catalytic activity. Thus, intrinsic fluorescence (due to tryptophan residues) could be used as an effective probe to provide an insight into the relation between the activity and subtle conformational changes of the enzyme. The results suggested that denaturants caused very slight conformational changes in the enzyme that perturbed the microenvironment of aromatic amino acid residues such as tryptophan accompanied by reduction or loss of catalytic activity.  相似文献   

11.
The effect of kallikrein and factor XIa proteolysis of high molecular weight kininogen (HK) was investigated. Circular dichroism (CD) spectroscopy showed that cleavage of HK by plasma kallikrein or urinary kallikrein, both of which result in an active cofactor (HKa), results in conformational change that is characterized by increase in CD ellipticity at 222 nm. This suggests an increase in organized secondary structures. By contrast, cleavage of HK by factor XIa which results in an inactive cofactor (HKi) is characterized by a dramatic decrease in CD ellipticity at 222 nm suggesting an entirely different type of conformational change. The intrinsic fluorescence of HK is enhanced after cleavage by all three proteases. These conformational changes may play a role in determining the structure and function of HKa and HKi.  相似文献   

12.
本文用荧光光谱,紫外差示光谱和CD谱研究果菠萝蛋白酶在不同浓度的脲溶液中的构象及酶活力的变化情况。酶的荧光强度随脲浓度增大而明显增加,8mol/L脲使荧光强度增强65%,发射峰出现红移。差示谱表明在232nm和288nm出现二个正峰,它们均随脲浓度增大而加剧,前者与主链构象变化有关,而后者与生色基团(Trp、Tyr)的微环境变化相关。CD谱表明:天然酶在208nm和225nm处有二个负峰,脲变性后,225nm的负峰基本上不随脲浓度增大而变化,但208nm峰则明显发生变化并逐渐出现红移,6mol/L以上此峰则完全消失。  相似文献   

13.
Conformational changes of beta-lactoglobulin (beta-LG) induced by anionic phospholipid (dimyristoylphosphatidylglycerol, DMPG) at physiological conditions (pH 7.0) have been investigated by UV-VIS, circular dichroism (CD) and fluorescence spectra. The experimental results suggest that beta-LG-DMPG interactions cause beta-LG a structural reorganization of the secondary structure elements accompanied by an increase in alpha-helical content, and a loosening of the protein tertiary structure. The interaction forces between beta-LG and DMPG are further evaluated by fluorescence spectra. The fluorescence spectral data show that conformational changes in the protein are driven by electrostatic interaction at first, then by hydrophobic interaction between a protein with a negative net charge and a negatively charged phospholipid.  相似文献   

14.
 利用紫外差光谱,荧光光谱和圆二色谱法对比地研究了淀粉液化茅孢杆菌α-淀粉酶在盐酸胍和碳酸胍变性过程的构象变化与活性关系以及在变性早期钙离子对酶构象的稳定作用。  相似文献   

15.
Changes of activity and conformation of Ampullarium crossean beta-glucosidase in different concentrations of guanidine hydrochloride (GuHCl) have been studied by measuring the fluorescence spectra and its relative activity after denaturation. The fluorescence intensity of the enzyme decreased distinctly with increasing guanidine concentrations, the emission peaks appeared red shifted (from 338.4 to 350.8 nm), whereas a new fluorescence emission peak appeared near 310 nm. Changes in the conformation and catalytic activity of the enzyme were compared. A corresponding rapid decrease in catalytic activity of the enzyme was also observed. The extent of inactivation was greater than that of conformational changes, indicating that the active site of the enzyme is more flexible than the whole enzyme molecule. k(+0)>k(+0)' also showed that the enzyme was protected by substrate to a certain extent during guanidine denaturation.  相似文献   

16.
We have designed, synthesized, and characterized a 216 amino acid residue sequence encoding a putative idealized alpha/beta-barrel protein. The design was elaborated in two steps. First, the idealized backbone was defined with geometric parameters representing our target fold: a central eight parallel-stranded beta-sheet surrounded by eight parallel alpha-helices, connected together with short structural turns on both sides of the barrel. An automated sequence selection algorithm, based on the dead-end elimination theorem, was used to find the optimal amino acid sequence fitting the target structure. A synthetic gene coding for the designed sequence was constructed and the recombinant artificial protein was expressed in bacteria, purified and characterized. Far-UV CD spectra with prominent bands at 222nm and 208nm revealed the presence of alpha-helix secondary structures (50%) in fairly good agreement with the model. A pronounced absorption band in the near-UV CD region, arising from immobilized aromatic side-chains, showed that the artificial protein is folded in solution. Chemical unfolding monitored by tryptophan fluorescence revealed a conformational stability (DeltaG(H2O)) of 35kJ/mol. Thermal unfolding monitored by near-UV CD revealed a cooperative transition with an apparent T(m) of 65 degrees C. Moreover, the artificial protein did not exhibit any affinity for the hydrophobic fluorescent probe 1-anilinonaphthalene-8-sulfonic acid (ANS), providing additional evidence that the artificial barrel is not in the molten globule state, contrary to previously designed artificial alpha/beta-barrels. Finally, 1H NMR spectra of the folded and unfolded proteins provided evidence for specific interactions in the folded protein. Taken together, the results indicate that the de novo designed alpha/beta-barrel protein adopts a stable three-dimensional structure in solution. These encouraging results show that de novo design of an idealized protein structure of more than 200 amino acid residues is now possible, from construction of a particular backbone conformation to determination of an amino acid sequence with an automated sequence selection algorithm.  相似文献   

17.
R Manohar  A G Rao  N A Rao 《Biochemistry》1984,23(18):4116-4122
The kinetic mechanism for the interaction of D-cycloserine with serine hydroxymethyltransferase (EC 2.1.2.1) from sheep liver was established by measuring changes in the activity, absorbance, and circular dichoism (CD) of the enzyme. The irreversible inhibition of the enzyme was characterized by three detectable steps: an initial rapid step followed by two successive steps with rate constants of 5.4 X 10(-3) s-1 and 1.4 X 10(-4) s-1. The first step was distinguished by a rapid disappearance of the enzyme absorbance peak at 425 nm, a decrease in the enzyme activity to 25% of the uninhibited velocity, and a lowering of the CD intensity at 432 nm to about 65% of the original value. The second step of the interaction was accompanied by a complete loss of enzyme activity and a marginal increase in the CD intensity at 432 nm. The final step resulted in the complete loss of the enzyme absorbance at 425 nm and of the CD band at 432 nm. The products of the reaction were identified as (a) apoenzyme by absorbance measurements, CD spectra, and reconstitution with pyridoxal 5'-phosphate and (b) a pyridoxal 5'-phosphate-D-cycloserine Schiff's base complex identified by its fluorescence and absorbance spectra. The Schiff base complex was expelled from the enzyme active site in the final step of the reaction. The proposed mechanism, which is different from those operative in other pyridoxal phosphate dependent enzymes, probably accounts for the selective inhibition of serine hydroxymethyltransferase by the drug in vivo.  相似文献   

18.
The removal of copper from beef heart cytochrome c oxidase by either dialysis against potassium cyanide or by treatment with bathocuproine sulfonate produced changes in the enzyme which are indicative of a spin state transition. In the Soret region of the CD spectrum copper depletion of the enzyme caused a significant decrease in amplitude in combination with a red shift of the peak maximum for oxidized samples, while reduced copper-depleted samples exhibited decreased amplitude and a blue shift of the peak maximum. In the magnetic CD spectra of oxidized copper-depleted samples the peak at 420 nm was shifted to lower wave-length along with a significant increase in amplitude. In reduced samples the peak at 446 nm exhibited a slight red shift concomitant with a substantial decrease in amplitude. The conformational changes indicated by the CD and magnetic CD spectra when copper is removed from the enzyme were supported by the EPR spectra of the NO complex of the reduced copper-depleted enzyme. The removal of copper from cytochrome c oxidase caused the NO complex to exhibit a 3-line splitting pattern of gz in the EPR spectrum instead of the 9 lines seen in the NO complex of the native enzyme. When [15N]NO was used, a 2-line pattern was seen at gz when copper was removed from the enzyme. The changes in the CD and magnetic CD spectra and in the EPR spectra of the NO derivatives of cytochrome c oxidase can be explained by the rearrangement of the axial ligands to iron in cytochrome a3 as a result of copper depletion. These results emphasize the close structural interdependence of the metallic components of this enzyme.  相似文献   

19.
G E Arnold  L A Day  A K Dunker 《Biochemistry》1992,31(34):7948-7956
The circular dichroism (CD) spectrum of fd bacteriophage has a deep minimum at 222 nm characteristic of highly alpha-helical protein, but there is a shoulder at 208 nm rather than a minimum, with a 222/208-nm amplitude ratio near 1.5 rather than near 1. Oxidation of fd phage with the tryptophan reagent N-bromosuccinimide (NBS) changes the ratio. In this report, the NBS titration of fd is followed by CD and three other spectroscopies, the results of which yield an explanation of the unusual CD spectrum. Absorbance, fluorescence, and Raman data show the oxidation to have two phases, the first of which involves the destruction of tryptophan and the second, tryptophan and tyrosine. Raman spectra reveal the invariance of an environmentally-sensitive tyrosine Fermi resonance doublet during the first oxidative phase. Raman spectra also show that little or no change of alpha-helicity occurs in the first or second oxidation phase, although very slight changes in the helix parameters might be occurring. Concurrent with the destruction of tryptophan during the first phase is the appearance in CD difference spectra ([theta]NBS-treated fd - [theta]native fd) of positive maxima at 208-210 nm and negative maxima at 224 nm, with crossovers at 217 nm. Enormous difference ellipticities, per oxidized subunit of 50 amino acids, of +490,000 +/- 80,000 deg cm2 dmol-1 at 208 nm and -520,000 +/- 110,000 deg cm2 dmol-1 at 224 nm have been derived from the data.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
用近紫外CD光谱技术追踪了PEP羧化酶与各种配基的相互作用。底物PEP、必需金属离子Mg~( )、PEP-Mg~( )以及效应剂G6P、Gly、G6P-Gly,均可引起高粱叶片PEP羧化酶近紫外CD光谱各不相同的变化。这表明高粱叶片PEP羧化酶分子构象有较大的灵活性,不同的配基与酶相互作用可引起酶分子不同的构象变化,因而使酶分子表现出催化功能、调节特性、必需氨基酸残基的化学反应性以及稳定性诸方面的差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号