首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serban MA  Kaplan DL 《Biomacromolecules》2010,11(12):3406-3412
Silk-fibroin-based biomaterials have been widely utilized for a range of biomaterial-related systems. For all these previously reported systems, the β-sheet forming feature of the silk was the key stabilizing element of the final material structure. Herein, we describe a different strategy, based on the engineering of silk-based ionomers that can yield stable colloidal composites or particle suspensions through electrostatic interactions. These silk-based ionomers were obtained by carbodiimide-mediated coupling of silk fibroin with polylysine hydrobromide and polyglutamic acid sodium salts, respectively. Colloidal composites could be obtained by mixing the ionomeric pair at high concentration (i.e., 25% w/v), while combining them at lower concentrations (i.e., 5% w/v) yielded particle suspensions. The assembly of the ionomers was driven by electrostatic interactions, pH-dependent, and reversible. The network assembly appeared to be polarized, with the interacting poly(amino acid) chains clustered to the core of the particles and the silk backbone oriented outward. In agreement with this assembly mode, doxorubicin, a hydrophilic antitumor drug, could be released at a slow rate, in a pH-dependent manner, indicating that the inside of the ionomeric particles was mainly hydrophilic in nature.  相似文献   

2.
卢宝勇  李敏 《生命科学》2008,20(1):153-157
丝纤维特别是丝素蛋白和蜘蛛丝蛋白作为具有良好生物相容性的高分了生物材料在组织工程和生物医学领域里有着广泛的应用。本文阐述了近年来在组织工程研究中所涉及的利用丝纤维进行支架材料制备、细胞培养和体内植入检测手段等方面的研究概况。  相似文献   

3.
This review mainly introduces the types of silk hydrogels, their processing methods, and applications. There are various methods for hydrogel preparation, and many new processes are being developed for various applications. Silk hydrogels can be used in cartilage tissue engineering, drug release materials, 3D scaffolds for cells, and artificial skin, among other applications because of their porous structure and high porosity and the large surface area for growth, migration, adhesion and proliferation of cells that the hydrogels provide. All of these advantages have made silk hydrogels increasingly attractive. In addition, silk hydrogels have wide prospects for application in the field of biomedical materials. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:630–640, 2015  相似文献   

4.
Carbon dioxide induced silk protein gelation for biomedical applications   总被引:1,自引:0,他引:1  
We present a novel method to fabricate silk fibroin hydrogels using high pressure carbon dioxide (CO(2)) as a volatile acid without the need for chemical cross-linking agents or surfactants. The simple and efficient recovery of CO(2) post processing results in a remarkably clean production method offering tremendous benefit toward materials processing for biomedical applications. Further, with this novel technique we reveal that silk protein gelation can be considerably expedited under high pressure CO(2) with the formation of extensive β-sheet structures and stable hydrogels at processing times less than 2 h. We report a significant influence of the high pressure CO(2) processing environment on silk hydrogel physical properties such as porosity, sample homogeneity, swelling behavior and compressive properties. Microstructural analysis revealed improved porosity and homogeneous composition among high pressure CO(2) specimens in comparison to the less porous and heterogeneous structures of the citric acid control gels. The swelling ratios of silk hydrogels prepared under high pressure CO(2) were significantly reduced compared to the citric acid control gels, which we attribute to enhanced physical cross-linking. Mechanical properties were found to increase significantly for the silk hydrogels prepared under high pressure CO(2), with a 2- and 3-fold increase in the compressive modulus of the 2 and 4 wt % silk hydrogels over the control gels, respectively. We adopted a semiempirical theoretical model to elucidate the mechanism of silk protein gelation demonstrated here. Mechanistically, the rate of silk protein gelation is believed to be a function of the kinetics of solution acidification from absorbed CO(2) and potentially accelerated by high pressure effects. The attractive features of the method described here include the acceleration of stable silk hydrogel formation, free of residual mineral acids or chemical cross-linkers, reducing processing complexity, and avoiding adverse biological responses, while providing direct manipulation of hydrogel physical properties for tailoring toward specific biomedical applications.  相似文献   

5.
Hu X  Shmelev K  Sun L  Gil ES  Park SH  Cebe P  Kaplan DL 《Biomacromolecules》2011,12(5):1686-1696
We present a simple and effective method to obtain refined control of the molecular structure of silk biomaterials through physical temperature-controlled water vapor annealing (TCWVA). The silk materials can be prepared with control of crystallinity, from a low content using conditions at 4 °C (α helix dominated silk I structure), to highest content of ~60% crystallinity at 100 °C (β-sheet dominated silk II structure). This new physical approach covers the range of structures previously reported to govern crystallization during the fabrication of silk materials, yet offers a simpler, green chemistry, approach with tight control of reproducibility. The transition kinetics, thermal, mechanical, and biodegradation properties of the silk films prepared at different temperatures were investigated and compared by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), uniaxial tensile studies, and enzymatic degradation studies. The results revealed that this new physical processing method accurately controls structure, in turn providing control of mechanical properties, thermal stability, enzyme degradation rate, and human mesenchymal stem cell interactions. The mechanistic basis for the control is through the temperature-controlled regulation of water vapor to control crystallization. Control of silk structure via TCWVA represents a significant improvement in the fabrication of silk-based biomaterials, where control of structure-property relationships is key to regulating material properties. This new approach to control crystallization also provides an entirely new green approach, avoiding common methods that use organic solvents (methanol, ethanol) or organic acids. The method described here for silk proteins would also be universal for many other structural proteins (and likely other biopolymers), where water controls chain interactions related to material properties.  相似文献   

6.
The domesticated silkworm, Bombyx mori, is a fundamental insect for silk industry. Silk is obtained from cocoons, protective envelopes produced during pupation and composed of single raw silk filaments secreted by the insect silk glands. Currently, silk is used as a textile fibre and to produce new materials for technical and biomedical applications. To enhance the use of both fabrics and silk-based materials, great efforts to obtain silk with antimicrobial properties have been made. In particular, a convincing approach is represented by the enrichment of the textile fibre with antimicrobial peptides, the main effectors of the innate immunity. To this aim, silkworm-based transgenic techniques appear to be cost-effective strategies to obtain cocoons in which antimicrobial peptides are integrated among the silk proteins. Recently, cocoons transgenic for a recombinant silk protein conjugated to the silkworm Cecropin B antimicrobial peptide were obtained and showed enhanced antibacterial properties (Li et al. in Mol Biol Rep 42:19–25,  https://doi.org/10.1007/s11033-014-3735-z, 2015a). In this work we used the piggyBac-mediated germline transformation to generate several transgenic B. mori lines able to overexpress Cecropin B or Moricin antimicrobial peptides at the level of the silk gland. The derived cocoons were characterised by increased antimicrobial properties and the resulting silk fibre was able to inhibit the bacterial growth of the Gram-negative Escherichia coli. Our results suggest that the generation of silkworm overexpressing unconjugated antimicrobial peptides in the silk gland might represent an additional strategy to obtain antimicrobial peptide-enriched silk, for the production of new silk-based materials.  相似文献   

7.
Due to their biocompatibility, biodegradability, and low immunogenicity, recombinant spider silk proteins have a high potential for a variety of applications when processed into morphologies such as films, capsules, beads, or hydrogels. Here, hydrogels made of the engineered and recombinantly produced spider silk protein eADF4(C16) were analyzed in detail. It has previously been shown that eADF4(C16) nanofibrils self-assemble by a mechanism of nucleation-aggregation, providing the basis of silk hydrogels. We focused on establishing a reproducible gelation process by employing different protein concentrations, chemical crosslinking, and functionalization of eADF4(C16) with fluorescein. Fluorescein strongly influenced assembly as well as the properties of the hydrogels, such as pore sizes and mechanical behavior, possibly due to its interference with packing of silk nanofibrils during hydrogel formation.  相似文献   

8.
X-ray studies on degummed B. mori silk fibers and on hydrogels prepared under a variety of conditions reveal moderately small angle reflections. These reflections are often highly oriented and are correlated to silk II lattice reflections. A superstructure can explain these features. Silk fibroin hydrogels were monitored as they dried to form the silk II structure. The silk II wide angle and moderately small angle patterns obtained from dried hydrogels and silk fibers are identical. The "superstructure" reflections at moderately small angle (3-7 nm) were first to appear, followed by the "intersheet" spacing, and then the remainder of the silk II wide angle scattering pattern. Thus, any superstructure hypothesized for the hydrogels (and for Silk II in fibers) must be both stable in a highly hydrated environment and must convert to silk II with little large scale diffusion. A folded structure, similar to amyloids and cross-beta-sheets but with much longer beta-strand stems, is proposed for silk II in fibers.  相似文献   

9.
Structure and properties of silk hydrogels   总被引:8,自引:0,他引:8  
Control of silk fibroin concentration in aqueous solutions via osmotic stress was studied to assess relationships to gel formation and structural, morphological, and functional (mechanical) changes associated with this process. Environmental factors potentially important in the in vivo processing of aqueous silk fibroin were also studied to determine their contributions to this process. Gelation of silk fibroin aqueous solutions was affected by temperature, Ca(2+), pH, and poly(ethylene oxide) (PEO). Gelation time decreased with increase in protein concentration, decrease in pH, increase in temperature, addition of Ca(2+), and addition of PEO. No change of gelation time was observed with the addition of K(+). Upon gelation, a random coil structure of the silk fibroin was transformed into a beta-sheet structure. Hydrogels with fibroin concentrations >4 wt % exhibited network and spongelike structures on the basis of scanning electron microscopy. Pore sizes of the freeze-dried hydrogels were smaller as the silk fibroin concentration or gelation temperature was increased. Freeze-dried hydrogels formed in the presence of Ca(2+) exhibited larger pores as the concentration of this ion was increased. Mechanical compressive strength and modulus of the hydrogels increased with increase in protein concentration and gelation temperature. The results of these studies provide insight into the sol-gel transitions that silk fibroin undergoes in glands during aqueous processing while also providing important insight in the in vitro processing of these proteins into useful new materials.  相似文献   

10.
Mixed protein-based hydrogels have been prepared by blending gelatin (G) with amorphous Bombyx mori silk fibroin (SF) and promoting beta-crystallization of SF via subsequent exposure to methanol or methanol/water solutions. The introduction of beta crystals in SF serves to stabilize the hydrogel network and extend the solidlike behavior of these thermally responsive materials to elevated temperatures beyond the helix-->coil (h-->c) transition of G. In this work, we investigate the swelling and protein release kinetics of G/SF hydrogels varying in composition at temperatures below and above the G h-->c transition. At 20 degrees C, G and G-rich mixed hydrogels display evidence of moderate swelling with negligible mass loss in aqueous solution, resulting in porous polymer matrixes upon solvent removal according to electron microscopy. When the solution temperature is increased beyond the G h-->c transition to body temperature (37 degrees C), these gels exhibit much higher swelling with considerable mass loss due to dissolution and release of G. The extent to which these properties respond to temperature decreases systematically with increasing SF content. The unique temperature- and composition-dependent properties of G/SF hydrogels dictate the efficacy of these novel materials as stimuli-responsive delivery vehicles.  相似文献   

11.
Porous 3-D scaffolds from regenerated silk fibroin   总被引:13,自引:0,他引:13  
Three fabrication techniques, freeze-drying, salt leaching and gas foaming, were used to form porous three-dimensional silk biomaterial matrixes. Matrixes were characterized for morphological and functional properties related to processing method and conditions. The porosity of the salt leached scaffolds varied between 84 and 98% with a compressive strength up to 175 +/- 3 KPa, and the gas foamed scaffolds had porosities of 87-97% and compressive strength up to 280 +/- 4 KPa. The freeze-dried scaffolds were prepared at different freezing temperatures (-80 and -20 degrees C) and subsequently treated with different concentrations (15 and 25%) and hydrophilicity alcohols. The porosity of these scaffolds was up to 99%, and the maximum compressive strength was 30 +/- 2 KPa. Changes in silk fibroin structure during processing to form the 3D matrixes were determined by FT-IR and XrD. The salt leached and gas foaming techniques produced scaffolds with a useful combination of high compressive strength, interconnected pores, and pore sizes greater than 100 microns in diameter. The results suggest that silk-based 3D matrixes can be formed for utility in biomaterial applications.  相似文献   

12.
This paper describes the synthesis and characterization of new regenerated silk fibroin (SF)/nano-TiO(2) composite films. The preparation method, based on the sol-gel technique using butyl titanate as oxide precursor, could avoid reagglomeration of the prepared nanoparticles. Samples were characterized mainly by X-ray diffraction (XRD), ultra-violet (UV) spectroscopy, atomic force microscopy (AFM), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). The UV and AFM results indicated that TiO(2) nanoparticles could be well dispersed inside the SF film, and the size of TiO(2) was about 80nm. The XRD and FT-IR analysis implied that the formation of nano-TiO(2) particles may induce the conformational transition of silk fibroin to a typical Silk II structure partly with the increasing of crystallinity in the composite films. Compared to the pure SF films, the mechanical and thermal properties of composite films were improved, and the solubility in water was decreased due to the conformational transition of silk fibroin to Silk II structure.  相似文献   

13.
A novel technique was developed to regulate the bulk water content of silk hydrogels by adjusting the concentrations of silk proteins, which is helpful to investigate the effects of the state of water in polymeric hydrogel on its biological functions, such as cytotoxicity. Gelation of the silk hydrogel was induced with ethanol and its gelation behavior was analyzed by rheometry. The silk hydrogels prepared at various silk concentrations were characterized with respect to their water content, molecular and network structures, state of water, mechanical properties, and cytotoxicity to human mesenchymal stem cells. The network structure of silk hydrogel was heterogeneous with β-sheet and fibrillar structures. The influence of the state of water in the silk hydrogel on the cytotoxicity was recognized by means of differential scanning calorimetry and cell proliferation assay, which revealed that the bound water will support cell-adhesion proteins in the cellular matrix to interact with the surface of the silk hydrogels.  相似文献   

14.
The silk gland of silkworm Bombyx mori, is one of the most important organs that has been fully studied and utilized so far. It contributes finest silk fibers to humankind. The silk gland has excellent ability of synthesizing silk proteins and is a kind tool to produce some useful recombinant proteins, which can be widely used in the biological, biotechnical and pharmaceutical application fields. It’s a very active area to express recombinant proteins using the silk gland as a bioreactor, and great progress has been achieved recently. This review recapitulates the progress of producing recombinant proteins and silk-based biomaterials in the silk gland of silkworm in addition to the construction of expression systems. Current challenges and future trends in the production of valuable recombinant proteins using transgenic silkworms are also discussed.  相似文献   

15.
Methods to generate fibers from hydrogels, with control over mechanical properties, fiber diameter, and crystallinity, while retaining cytocompatibility and degradability, would expand options for biomaterials. Here, we exploited features of silk fibroin protein for the formation of tunable silk hydrogel fibers. The biological, chemical, and morphological features inherent to silk were combined with elastomeric properties gained through enzymatic crosslinking of the protein. Postprocessing via methanol and autoclaving provided tunable control of fiber features. Mechanical, optical, and chemical analyses demonstrated control of fiber properties by exploiting the physical cross‐links, and generating double network hydrogels consisting of chemical and physical cross‐links. Structure and chemical analyses revealed crystallinity from 30 to 50%, modulus from 0.5 to 4 MPa, and ultimate strength 1–5 MPa depending on the processing method. Fabrication and postprocessing combined provided fibers with extensibility from 100 to 400% ultimate strain. Fibers strained to 100% exhibited fourth order birefringence, revealing macroscopic orientation driven by chain mobility. The physical cross‐links were influenced in part by the drying rate of fabricated materials, where bound water, packing density, and microstructural homogeneity influenced cross‐linking efficiency. The ability to generate robust and versatile hydrogel microfibers is desirable for bottom‐up assembly of biological tissues and for broader biomaterial applications.  相似文献   

16.
The aim of this study was to understand the structure and biodegradation relationships of silk particles intended for targeted biomedical applications. Such a study is also useful in understanding structural remodelling of silk debris that may be generated from silk-based implants. Ultrafine silk particles were prepared using a combination of efficient wet-milling and spray-drying processes with no addition of chemicals other than those used in degumming. Milling reduced the intermolecular stacking forces within the β-sheet crystallites without changing the intramolecular binding energy. Because of the rough morphology and the ultrafine size of the particles, degradation of silk particles by protease XIV was increased by about 3-fold compared to silk fibers. Upon biodegradation, the thermal degradation temperature of silk increased, which was attributed to the formation of tight aggregates by the hydrolyzed residual macromolecules. A model of the biodegradation mechanism of silk particles was developed based on the experimental data. The model explains the process of disintegration of β-sheets, supported by quantitative secondary structural analysis and microscopic images.  相似文献   

17.
This paper reports a preparation method for silk sericin hydrogel using the Sericin-hope silkworm, whose cocoons consist almost exclusively of sericin. Sericin solution, prepared from Sericin-hope cocoons, contains intact sericin and forms elastic hydrogels with the addition of ethanol. The sericin hydrogel can be prepared without crosslinking by chemicals or irradiation and might be usable as a naturally occurring biomaterial.  相似文献   

18.
A system was designed to utilize silk fibroin (SF) as a matrix for wound dressing. For this system, we prepared a sponge type of porous semi-interpenetrating networks (SIPNs) hydrogel composed of SF and poloxamer 407 macromer to enhance the mechanical and functional properties of SF. The thermal and mechanical properties of the hydrogels as well as their swelling behaviors were studied by means of differential scanning calorimetry, compressive modulus measurement, and gravimetric method, respectively. The morphology and crystalline structure of these SIPN hydrogels were also investigated by scanning electron microscopy (SEM) and wide-angle diffractometry, respectively. Conformational change of SF from random coil to beta-sheet structure was accelerated by formation of SIPNs with poloxamer. The melting temperature of poloxamer in the SIPNs decreased due to the prevention of crystallization by the incorporation of SF. The mechanical strength of SIPNs hydrogel was much higher than those of SF itself or SF/poloxamer blend and increased with the poloxamer content. The equilibrium water content of SF was remarkably increased by formation of SIPNs with poloxamer due to the hydrophilicity of poloxamer. The crystallinity and morphology of SIPNs hydrogel were affected by SIPNs hydrogel composition.  相似文献   

19.
丝蛋白生物材料具有优异的力学性能、良好的生物相容性及可降解性,在生物医学领域具有巨大的应用潜力。现有丝蛋白生物材料在结构和功能方面的相关知识,为设计合成新型丝蛋白生物材料提供了理论基础。此外,利用基因工程技术可将编码新肽或结构域的基因序列添加到编码丝蛋白的基因序列中,以获得具有新功能的丝蛋白生物材料,并更好地满足现代生物医学的需求。文中总结了基因工程功能化的丝蛋白生物材料在生物医学领域中的应用现状和发展前景。  相似文献   

20.
To develop materials with improved controllability and specificity, we have investigated composite hydrogels with temperature-sensitive properties using photo cross-linking. Specifically, our novel composite materials are composed of nanoparticles made of poly(N-isopropylacrylamide) (PNIPAAm), temperature-sensitive hydrogels, and a photo cross-linker, poly(ethylene glycol) diacrylate (PEGDA). PNIPAAm particles were synthesized by emulsion polymerization and by varying concentration of four main factors: monomers (N-isopropylacrylamide), cross-linkers (N,N'-methylenebisacrylamide), surfactants (sodium dodecyl sulfate, SDS), and initiators (potassium persulfate). We found that the surfactant, SDS, was the most important factor affecting the particle size using the factorial design analysis. Additionally, both nano- and micro-PNIPAAm particles had excellent loading efficiency (>80% of the incubated bovine serum albumin (BSA)), and their release kinetics expressed an initial burst effect followed by a sustained release over time. Furthermore, BSA-loaded PNIPAAm nanoparticles were used to form three-dimensional gel networks by means of a photocuring process using a photo cross-linker, PEGDA, and a photoinitiator, Irgacure-2959 (I-2959). Results from scanning electron microscopy and in vitro BSA release studies from these hydrogels demonstrated that PNIPAAm nanoparticles were embedded inside the PEG polymeric matrix and the composite material was able to release BSA in response to changes in temperature. These PNIPAAm nanoparticle hydrogel networks may have advantages in applications of controlled drug delivery systems because of their temperature sensitivity and their ability of in situ photopolymerization to localize at the specific region in the body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号