首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
兰英  魏琮 《昆虫学报》2020,(12):1441-1451
【目的】本研究旨在明确蒙古寒蝉Meimuna mongolica末龄(5龄)若虫与成虫复眼的差异,探讨蝉总科昆虫在若虫与成虫生态位发生改变的过程中复眼的形态结构及功能变化。【方法】采用光学显微镜、扫描电子显微镜和透射电子显微镜技术,详细观察和比较研究了蒙古寒蝉末龄若虫和成虫复眼的一般形态、组织结构和超微结构。【结果】蒙古寒蝉的复眼为并列像眼。出土羽化前其末龄若虫复眼的颜色逐渐由白色变为红色至深褐色,成虫复眼则为浅褐色。末龄若虫复眼表面具有毛形感器、锥形感器和刺形感器,成虫复眼表面无感器。末龄若虫白色复眼的表面为完整的角膜,未分化形成小眼面;末龄若虫红色和深褐色复眼则由许多五边形或六边形小眼组成,排列不甚规则;成虫复眼均由排列整齐的等边六边形小眼组成。末龄若虫白色复眼内部由大量细胞团构成,未分化形成小眼结构;在末龄若虫深褐色复眼中,小眼次级色素细胞的细胞核集中分布在视杆和晶锥之间;在成虫复眼中,小眼次级色素细胞的细胞核分布在晶锥近心端周围。末龄若虫深褐色复眼中的初级色素细胞和小网膜细胞内的色素颗粒分布较均匀,而成虫复眼小网膜细胞内的色素颗粒都分布在视杆周围。【结论】蒙古寒蝉不同发育阶段的...  相似文献   

2.
【目的】为探索昆虫视觉信号处理的重要神经结构,详细观察和描述了直翅目(Orthoptera)蟋蟀科(Gryllidae)代表性昆虫双斑蟋Gryllus bimaculatus De Geer复眼和视叶的组织学结构特征。【方法】利用扫描电镜技术和组织学切片技术,观察分析了30只双斑蟋的复眼和视叶组织学结构。【结果】双斑蟋复眼约有3400个小眼,均为六边形结构,小眼间隙内分布有机械感受器——感觉毛和钟形感受器。每个小眼均由角膜、晶锥、感杆束、6个网膜细胞及基膜等构成。视叶呈两个扇形结构,由三大神经纤维网构成,分别为神经节层、外髓、内髓。【结论】双斑蟋复眼表面具有少量感觉毛和钟形感受器,每个小眼均由角膜、晶锥、感杆束、6个网膜细胞及基膜等构成,属并列像眼,视叶由三大神经纤维网构成。  相似文献   

3.
了解红火蚁Solenopsis invicta Buren复眼形态结构及其与不同性别、品级的关系,为探索其基于视觉行为习性的、有效的非化学防控措施提供新思路和依据。采用扫描电镜技术,比较研究红火蚁工蚁、有翅雌蚁、雄蚁的复眼形态差异。结果表明:(1)工蚁复眼圆形,略外凸,小眼数约110个;雌蚁复眼长椭圆形,外凸,小眼数约510个;雄蚁复眼近半球形,小眼数约805个;(2)工、雌和雄蚁复眼中心区域小眼排列较紧密,多为较规则的五、六边形,边缘区域小眼排列不紧密,多为不规则的四至六边形,且少量相邻小眼的间距较大。工蚁、雌蚁和雄蚁复眼小眼面积大小依次为500,360,348.61μm2,同品级内小眼面大小相差不大;(3)雌、雄蚁复眼中心区域近背区小眼间着生少量感觉毛,感觉毛长度和直径依次为:雌蚁17.5~90.2,2.16~4.29μm,雄蚁17.5~27.9,1.41~2.52μm。表明雌蚁、雄蚁复眼及视力较发达,工蚁则较弱,不同性别或品级个体复眼的形状、小眼数目和形状、表面被物均有较大差异和区域性分化。  相似文献   

4.
桃小食心虫复眼的外部形态及结构特征*   总被引:1,自引:0,他引:1  
高慰曾  李世文 《昆虫学报》1993,36(3):354-356
桃小食心虫(Carposina nipponensis Wals)蛾复眼的外部形态与棉铃虫(Heliothis armi-gera Hubner)蛾等较相似,但大小及结构明显不同,它的体长为o.54毫米,宽为o.50毫米,每只复眼大约有l500个小眼组成。 小眼密度为每平方毫米3301个。透明区占小眼总长的64%。网膜细胞多在远端膨大,细胞核也大都在此集中。本文对小眼及其周围分10个层次进行了描述和摄影。  相似文献   

5.
白薯天蛾的复眼结构及形态特征   总被引:1,自引:1,他引:0  
高慰曾 《昆虫学报》1986,(3):267-271
白薯天蛾Herse convolvuli L.复眼的外部形状与棉铃虫蛾Heliothis armigera Hübner眼虽较相似但其结构却明显不同,大小也不等,其长为4.28毫米,宽为3.78毫米,整个复眼大约有27,000个小眼组成。小眼密度为1177.9/毫米,约为棉铃虫蛾小眼密度的1/3。复眼不同部位上的小眼长度不等,侧部最短,背、后、前、腹依次递增。视杆长度占小眼总长的比例明显地短于棉铃虫,其侧部小眼的视杆约占小眼总长的23%,而腹部视杆仅占小眼总长的18%左右。屏蔽色素移动的幅度也较小,当充分光适应色素带最宽时才仅占屈光器加透明区总长的35%左右,同样条件下棉铃虫蛾眼的色素带可宽达80%以上。网膜细胞在透明区基部膨大,细胞核大多数在此集中。本文对小眼及小眼间16个不同水平的横切面进行了形态上的描述并根据小眼结构上的某些特征讨论了与其功能和蛾子趋光行为之间相关的一些问题。  相似文献   

6.
【目的】柚木野螟Eutectona machaeralis主要取食危害珍贵树种柚木。本研究旨在观察研究柚木野螟成虫复眼的形态、组织结构和超微结构,分析其复眼结构特征,为更好了解该物种复杂的视觉行为与感光、趋光机制的关系奠定基础。【方法】运用光学显微镜以及扫描和透射电子显微镜技术观察了柚木野螟成虫复眼的形态、组织结构和超微结构。【结果】柚木野螟成虫复眼着生于头部触角基部,呈椭球形,属对称性复眼。雌、雄成虫复眼分别有2 300~2 755和1 950~2 316个小眼。小眼呈正六边形,表面密被角膜乳突,间隙偶有感觉毛。每个小眼由1个角膜、4个晶锥细胞、1对初级色素细胞,6个次级色素细胞、不同水平面分布的12个视网膜细胞和基膜等组成。沿小眼纵轴11个视网膜细胞的向心侧细胞膜特化成细丝状微绒毛,形成放射状排列的视小杆,组合呈融合型视杆;第12个视网膜细胞位于小眼基部。基膜上方,视网膜细胞和次级色素细胞末端膨大,以轴突形式穿过基底膜。【结论】柚木野螟复眼为典型的重叠像眼,雌、雄成虫小眼排列方式及内部结构无明显差异,但雌、雄虫小眼数量和大小具有明显的性二型现象。  相似文献   

7.
棉铃虫蛾复眼的微细结构及其区域性差异   总被引:6,自引:2,他引:4  
郭炳群 《昆虫学报》1988,(2):165-170
用电子显微镜观察棉铃虫蛾复眼的微细结构及其区域性差异。此复眼具有小网膜细胞柱的透明带。每个小眼包括一个外凸内平的角膜,一个晶锥,四个形成晶锥、晶束的晶锥细胞和两个围绕着晶锥的主虹膜细胞,六至八个小网膜细胞和一个基细胞。晶锥末端有一短小固定的晶束。小网膜细胞柱远侧中央有似微绒毛结构的视杆束。每个小眼被六个附色素细胞围绕。 微细结构的区域性差异:1.背方小眼视杆中段横切面近似矩形,主要由六个微绒毛平行排列的三角形视小杯组成,整个视杆包含两个互相垂直的微绒毛轴;腹方、前方、后方和侧方区域的小眼视杆中段横切面为风扇形,“V”字形视小杆内微绒毛排列不平行;2.前方区域小眼视杆中段的横切面要比后方大;3.前方、腹方区域内,有的相邻小眼的小网膜细胞柱互相连结,背方、后方区域未观察到这一现象。  相似文献   

8.
【目的】观察研究黑带食蚜蝇Episyrphus balteatus De Geer成虫复眼形态、小眼结构和不同光暗条件对小眼结构的影响,以明确其光视觉的结构基础和调光机制。【方法】利用组织切片法和扫描电镜等技术。【结果】1.复眼位于头部两侧,正面观呈半球形,占据除额颜外大部分头部。雄虫与雌虫单个复眼分别有约7 180个、7 230个小眼。各小眼面呈整齐排列的规则六边形。2.小眼由角膜及伪晶锥组成的屈光器、不同水平面分布的8个小网膜细胞及其特化形成的离散型视杆、屏蔽色素细胞和基膜等组成。小眼自远端至近端由主色素细胞和12个附属色素细胞围绕。3.随光暗条件的改变小眼内的附属色素细胞色素和基细胞细胞核沿小眼纵轴移动。光适应时,附属色素细胞色素颗粒沿小眼纵轴均匀分布,基细胞细胞核位于基膜上方。暗适应时,附属色素细胞色素颗粒向伪晶锥近端压缩,基细胞细胞核亦向远端移动,到达视杆中段。【结论】黑带食蚜蝇复眼精密的小眼排列形式和内部结构均显示了其强大的生理功能;屏蔽色素颗粒的移动是其复眼适应外界光环境变化的重要机制。本试验为进一步探究黑带食蚜蝇视觉结构和光调节机制,以及与其飞行行为间的关系提供了一定的理论基础。  相似文献   

9.
吴春娟  陈洁  范凡  秦秋菊  何运转 《昆虫学报》2011,54(11):1274-1280
复眼是昆虫的主要视觉器官,对于其寻找食物、配偶、栖息场所以及学习记忆等活动具有重要作用。本研究采用扫描电镜和石蜡切片技术对异色瓢虫显现变种Harmonia axyridis ab. conspicua复眼的外部形态和内部显微结构进行了观察。结果发现:(1)复眼近椭圆形,位于头部两侧,触角窝处有缺刻,小眼表面光滑平坦,无角膜乳突结构。其雌、雄成虫复眼的小眼数分别约为705和691;(2)复眼中心区域小眼呈六边形,排列紧密,边缘区域的小眼为不规则的四边形或五边形; (3)每个小眼由角膜、晶锥、8个小网膜细胞、视杆、基膜以及色素细胞组成。晶锥由4个晶锥细胞构成,8个小网膜细胞中6个位于边缘、2个位于中央;(4)暗条件下复眼显微结构存在明显差异:光适应条件下,色素颗粒主要分布在晶锥和视杆交界处的周围,周围视杆呈环形,内、外两侧均被色素颗粒包围;暗适应条件下,色素颗粒发生纵向移动,均匀地分布在晶锥和视杆的周围,周围视杆发生扭曲呈不规则的多角形,仅外侧有色素颗粒分布。结果表明,异色瓢虫显现变种的复眼属于并列复眼,可通过色素颗粒的纵向移动以及周围视杆扭曲变形等机制来适应外界明暗环境的变化。  相似文献   

10.
小眼薄鳅是长江上游特有的小型鱼类,自然分布狭窄。本研究采用线粒体细胞色素b(cytochrome b,cyt b)和控制区序列,对长江上游江津段和岷江下游宜宾段两个群体共108尾小眼薄鳅(Leptobotia microphthalma)样本的遗传多样性和遗传结构进行了分析。结果表明:小眼薄鳅群体cyt b序列共检出28个多态位点,34种单倍型,平均单倍型多样性指数(Hd)和核苷酸多样性指数(Pi)分别为0.889和0.00382;控制区序列共检出变异位点49个,单倍型65种,Hd指数和Pi指数分别为0.958和0.00420。分子方差分析(AMOVA)显示:小眼薄鳅采样点群体内的变异大于群体间的变异,遗传变异绝大部分来自群体内部,群体间无显著遗传分化(F_(ST)0.05),平均基因流(Nm)表明小眼薄鳅各采样点群体间基因交流十分频繁。基于Network网络结构可将小眼薄鳅样本划分成3个谱系,谱系间显示了显著的遗传分化(FST0.25),提示小眼薄鳅种群内部可能有隔离的产生。核苷酸错配分布及Tajima's D中性检验结果显示小眼薄鳅可能未发生种群扩张事件。  相似文献   

11.
The ommatidial acceptance angle (angular sensitivity) of seven species of butterflies was determined by a novel technique. Measurements were based upon the fact that light adaptation produces a graded contraction of specific retinula cells with a concomitant reduction in the brillance of the observed reflection (glow). Measurements were, therefore, based upon the changes in the intensity of the reflections as an adapting light was moved to various spatial positions. Measurements were also made on the angle of illumination that would produce reflections, as well as the angle through which reflections could be observed. Average angles so determined were: half-linear sensitivity, 1°16′; reflection (acceptance), 2°47′; reflection (viewing), 9–10°; inter-ommatidial, 1°47′. These results suggest that the butterfly eye may have greater acuity than those of previously studied insects.  相似文献   

12.
Pattern formation and ommatidial differentiation were examined in the developing retina of the lobster Homarus americanus using light and electron microscopy. In the lobster the retina differentiates from the surface ectoderm that covers the optic primordia. Initially a single band of proliferation moves across this surface ectoderm. Immediately following this wave of proliferation, rows of ommatidial cell clusters appear. The earliest cell clusters are often seen adjacent to dividing cells of the proliferation band. The changing organization of the first seven rows of ommatidial clusters, visible at the surface of the retina, reveals events in early ommatidial differentiation. A rosette-like cluster of 18 cells forms the first row. Each stage following the rosette clusters occurs in a separate staggered row. Developing ommatidia have a central cluster of retinula cells, whose organization changes at each stage. Four cone cells enclose the retinula cells in each cluster and extend to the surface. In the seventh row, rhabdome formation begins and the retinula cells recede, leaving only cone cells visible at the retinal surface. This change initiates the two-tiered organization of the adult ommatidium. In 70% embryos, asymmetries in the position of the R8 axon around R7 create an equatorial line separating the dorsal and ventral halves of the retina. Possible mechanisms for the formation of these asymmetries are discussed. Postembryonic growth of the retina continues in stage VI juvenile animals along the ventral edge of the retina.  相似文献   

13.
The regular organization of the ommatidial lattice in the Drosophila eye originates in the precise regulation of the proneural gene atonal (ato), which is responsible for the specification of the ommatidial founder cells R8. Here we show that Rough eye (Roi), a dominant mutation manifested by severe roughening of the adult eye surface, causes defects in ommatidial assembly and ommatidial spacing. The ommatidial spacing defect can be ascribed to the irregular distribution of R8 cells caused by a disruption of the patterning of ato expression. Disruptions in the recruitment of other photoreceptors and excess Hedgehog production in differentiating cells may further contribute to the defects in ommatidial assembly. Our molecular characterization of the Roi locus demonstrates that it is a gain-of-function mutation of the bHLH gene amos that results from a chromosomal inversion. We show that Roi can rescue the retinal developmental defect of ato1 mutants and speculate that amos substitutes for some of ato's function in the eye or activates a residual function of the ato1 allele.  相似文献   

14.
To further understand the function of morphogenetic hormones in honeybee eye differentiation, the alterations in ommatidial patterning induced by pyriproxyfen, a juvenile hormone (JH) analogue, were studied by scanning and transmission electron microscopy. Prepupae of prospective honeybee workers were treated with pyriproxyfen and the effects on ommatidial differentiation were described at the end of the pupal development. The results show that the entire ommatidia, i.e., the dioptric as well as the receptor systems, were affected by the JH analogue. The wave of ommatidial differentiation, which progresses from the posterior to the anterior region of the pupal eyes, was arrested. In treated pupae, the rhabdomeres only differentiated at the apical axis of the retinula, the secondary and tertiary pigment cells did not develop their cytoplasm protrusions, and the cone cell quartet did not pattern correctly. Simultaneously, an intense vacuolization was observed in cells forming ommatidia. In a previous study we showed that pyriproxyfen exerts an inhibition on pupal ecdysteroid secretion. In this sense, the arrested ommatidial differentiation in pyriproxyfen-treated pupae could be due to a secondary effect resulting from an alteration in pupal ecdysteroid titers.  相似文献   

15.
Anisotropism of the Non-Smooth Surface of Butterfly Wing   总被引:1,自引:0,他引:1  
Twenty-nine species of butterflies were collected for observation and determination of the wing surfaces using a ScanningElectron Microscope(SEM).Butterfly wing surface displays structural anisotropism in micro-,submicro- and nano-scales.Thescales on butterfly wing surface arrange like overlapping roof tiles.There are submicrometric vertical gibbosities,horizontallinks,and nano-protuberances on the scales.First-incline-then-drip method and first-drip-then-incline method were used tomeasure the Sliding Angle(SA)of droplet on butterfly wing surface by an optical Contact Angle(CA)measuring system.Relatively smaller sliding angles indicate that the butterfly wing surface has fine self-cleaning property.Significantly differentSAs in various directions indicate the anisotropic self-cleaning property of butterfly wing surface.The SAs on the butterfly wingsurface without scales are remarkably larger than those with scales,which proves the crucial role of scales in determining theself-cleaning property.Butterfly wing surface is a template for design and fabrication ofbiomimetic materials and self-cleaningsubstrates.This work may offer insights into how to design directional self-cleaning coatings and anisotropic wetting surface.  相似文献   

16.
According to Freeman (Development, 124 (1997) 261), reiterative use of Spitz signals emanating from already differentiated ommatidial cells triggers the differentiation of around ten different types of cells. Here we show evidence that the choice of cell fate by newly recruited ommatidial cells strictly depends on their developmental potential. Using forced expression of a constitutively active form of Ras1, three developmental potentials (rough, seven-up, and prospero expression) were visualized as relatively narrow bands corresponding to regions where rough-, seven-up- or prospero-expressing ommatidial cells would normally form. Ras1-dependent expression of ommatidial marker genes was regulated by a combinatorial expression of eye prepattern genes such as lozenge, dachshund, eyes absent, and cubitus interruptus, indicating that developmental potential formation is governed by region-specific prepattern gene expression.  相似文献   

17.
Establishment of planar polarity in the Drosophila compound eye requires precise 90 degrees rotation of the ommatidial clusters during development. We found that the morphogenetic furrow controls the stop of ommatidial rotation at 90 degrees by emitting signals to posterior ommatidial clusters. One such signal, Scabrous, is synthesized in the furrow cells and transported in vesicles to ommatidial row 6-8. Scabrous vesicles are transported through actin-based cellular extensions but not transcytosis. Scabrous functions nonautonomously to control the stop of ommatidial rotation by suppressing nemo activity in the second 45 degrees rotation. We propose that the morphogenetic furrow regulates precise ommatidial rotation by transporting Scabrous and perhaps other factors through actin-based cellular extensions.  相似文献   

18.
Retinae of blowflies (Lucilia sp.) were exposed to light for 12 h and then investigated by routine electron microscopy. Residual bodies and multi-vesicular bodies containing electron-dense structures were found in the photoreceptor cells. These structures appeared indistinguishable from material inside the pigment granules of secondary pigment cells. The residual bodies were found in interdigitations between photoreceptor and pigment cells and were often in close contact with mitochondria. Lamellar bodies and pigment granules were also found in the extracellular space between photoreceptor and pigment cells. In a second set of experiments, a membrane-impermeable reagent [sulfosuccinimidyl-6-(biotinamido) hexanoate] that should covalently biotinylate the surface of the photosensory membrane was introduced into the ommatidial cavity. The marker was detected, 4 h after application, inside the ommatidial cavity, on the rhabdomeric microvilli, and on residual bodies inside the photoreceptor cells, by streptavidin-gold binding on ultrathin sections. After 6 h of exposure to the reagent, pigment granules of the adjacent pigment cells were also labeled. The results suggest that the photosensory membrane is taken up and degraded together with the marker. Residual bodies resulting from this degradative process may thus be transported into the pigment cells; eventually material originating from photosensory membrane degradation may then be involved in pigment granule synthesis.  相似文献   

19.
BACKGROUND: The Drosophila eye is composed of about 800 ommatidia, each of which becomes dorsoventrally polarised in a process requiring signalling through the Notch, JAK/STAT and Wingless pathways. These three pathways are thought to act by setting up a gradient of a signalling molecule (or molecules) often referred to as the 'second signal'. Thus far, no candidate for a second signal has been identified. RESULTS: The four-jointed locus encodes a type II transmembrane protein that is expressed in a dorsoventral gradient in the developing eye disc. We have analysed the function and regulation of four-jointed during eye patterning. Loss-of-function clones or ectopic expression of four-jointed resulted in strong non-autonomous defects in ommatidial polarity on the dorsoventral axis. Ectopic expression experiments indicated that localised four-jointed expression was required at the time during development when ommatidial polarity was being determined. In contrast, complete removal of four-jointed function resulted in only a mild ommatidial polarity defect. Finally, we found that four-jointed expression was regulated by the Notch, JAK/STAT and Wingless pathways, consistent with it mediating their effects on ommatidial polarity. CONCLUSIONS: The clonal phenotypes, time of requirement and regulation of four-jointed are consistent with it acting in ommatidial polarity determination as a second signal downstream of Notch, JAK/STAT and Wingless. Interestingly, it appears to act redundantly with unknown factors in this process, providing an explanation for the previous failure to identify a second signal.  相似文献   

20.
Pattern formation and ommatidial differentiation in the crayfish retina were analyzed using confocal, light and electron microscopy. Optic primordia first appear in the embryo as round elevations covered by a surface epithelial layer. Retinal differentiation begins with a wave of mitotic activity that moves across this epithelium from lateral to medial. Ommatidial cell clusters are visible at the surface along a transition zone, which lies at the interface of the medial undifferentiated retina and the lateral patterned retina. This zone is 8–10 cells wide and composed of small uniform cell profiles. Lateral to the transition zone the initial ommatidial cell clusters form staggered rows across the surface. Each first row cluster contains eight retinula cells surrounded by four cone, two corneagenous and two distal pigment cells. Ommatidial clusters in the first nine rows show significant changes in their organization, which are visible at the surface of the retina. In row 10 the retinula cells recede from the surface and the cone cells close in above them creating a constant cell pattern at the surface. Rhabdome development begins distally and extends downward as the retinula cluster recedes from the surface. Movement of the retinula cells inward and enlargement of the cone and corneagenous cells at the surface creates a two-tiered organization characteristic of each ommatidium. Comparison of retinal pattern formation and differentiation in the crayfish with retinal morphogenesis in Drosophila and other insects show several similarities between the two arthropod groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号