首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High dietary threonine extraction by the digestive tract suggests that threonine contributes to maintain gut physiology. In the present study, we evaluated the impact of a low (6.5 g of threonine/kg diet; LT group) or a control well-balanced threonine diet (9.3 g of threonine/kg diet; C group) given to piglets for 2 weeks on ileal permeability and Na+-dependant glucose absorption capacity in Ussing chambers. The paracellular permeability was significantly increased in the ileum of LT compared to C piglets (P=.017). The Na+-dependent glucose absorption capacity showed a nonsignificant increase in the LT piglets. In addition, we analysed ileal gene expression profiles in the LT and C groups using porcine multitissue cDNA microarrays. Compared to the C piglets, the expression of 324 genes was significantly modified in the ileum of the LT piglets: 214 genes were overexpressed (145 annotated) and 110 were down-expressed (79 annotated). Among them, some are involved in immune and defense responses, energy metabolism and protein synthesis. Furthermore, microarray analysis highlights changes in the expression of the gene encoding for the sodium/glucose cotransporter (SGLT1) and of genes involved in the regulation of paracellular permeability (ZO-1, cingulin and myosin light chain kinase). In conclusion, our results indicate that a moderate threonine deficiency affects intestinal functionality.  相似文献   

2.
A moderate threonine deficiency may affect differently tissue protein metabolism. In this study, we compared protein metabolism in the small and large intestines, the liver, and the carcass of piglets (Sus scrofa) pair-fed either a control well-balanced diet (C: 9.3 g threonine/kg diet) or a low threonine diet (LT: 6.5 g threonine/kg diet) for 2 weeks. In the small intestine, the LT diet did not modify protein deposition, fractional protein synthesis rate (KS) and AA protein composition. Ubiquitin mRNA level, a component of the ubiquitin-dependent proteolytic pathway, was significantly decreased in the jejunum of the LT piglets. Protein deposition measured in the carcass and the colon, and KS measured in the semitendinosus muscle and the colon, did not differ between LT and C piglets. Nevertheless, in these compartments, threonine content was reduced indicating deposition of proteins less rich in threonine. In the liver, protein retention was reduced, KS was increased and AA protein composition was modified in the LT compared to the C piglets. In conclusion compared to the other compartments, small intestinal protein metabolism seems to be less sensitive to a moderate dietary threonine deficiency. This indicates that dietary threonine extraction by the small intestine may reduce threonine availability for the other tissues when young piglets were fed a diet marginally deficient in threonine.  相似文献   

3.
Histological intestinal villus alterations were studied in piglets fed a raw pigeon pea meal (PM) diet including a powder mixture of amorphous charcoal carbon and wood vinegar compound solution (CWVC). Twenty-eight male castrated piglets were divided into seven dietary groups of four piglets each. The control group was fed raw PM supplemented to the basal diet (178 g/kg crude protein, 4.23 kcal/g gross energy) at 0 g/kg (CONT), 200 g/kg (PM200) and 400 g/kg (PM400). The treatment groups were fed CWVC in both PM200 and PM400 diet groups at levels of 10 g/kg and 30 g/kg (PM200 + CWVC10, PM200 + CWVC30, PM400 + CWVC10 and PM400 + CWVC30). With increasing dietary PM levels, daily feed intake tended to increase. In contrast, daily body-weight gain tended to decrease, significantly in the PM400 group (P < 0.05), resulting in a significant decrease of feed efficiency in PM groups (P < 0.05). Body-weight gain and feed efficiency were higher in the CWVC groups compared with the PM groups. The duodenum and ileum were longer (P < 0.05) in the PM400 group than in CONT, but were similar to CONT in CWVC groups. The liver was heavier (P < 0.05), whereas the weights of the heart, kidney and stomach were decreased in the CWVC groups than in other groups. Most values for the intestinal villus height, cell area and cell mitosis number were lower in PM groups than those in CONT (P < 0.05) for each intestinal segment; however, these values were higher in CWVC groups than in PM groups (P < 0.05). The epithelial cells on the duodenal villus surface of the PM200 group showed cell morphology almost similar to CONT. However, the PM400 group had a smooth villus surface due to the presence of flat cells. The epithelial cells of the CWVC groups were protuberated, resulting in a much rougher surface than CONT. The current growth performance and histological intestinal alterations in piglets fed PM and PM + CWVC diets demonstrate that the intestinal features might be atrophied by feeding PM, resulting in decreased growth performance. CWVC might prevent the harmful effects of PM dietary toxins on intestinal function, resulting in a normal growth performance.  相似文献   

4.
Piglets, separated from their dam at 12 days of age and fed a milk substitute hourly, were used as a model for suckling. Animals were fitted with a terminal ileal T-cannula and a jugular vein catheter. At 28 days of age, half of the pigs had a dietary change to a cereal-based weaner diet fed as slurry, and the others remained on milk substitute. Animals were labelled by oral administration of 15N-labelled yeast for 10 days (days 15 to 25). Blood samples were taken twice a day to monitor 15N enrichment of the blood plasma. Diets included polyethylenglycol (PEG 4000) to allow calculation of apparent ileal digestibility of nitrogen and individual amino acids. Ileal bacterial nitrogen was calculated from D-alanine content of the digesta. Furthermore, small intestinal (SI) villus height and crypt depth were measured. Feed intake was increased by the dietary change. The total nitrogen flow was 3.2 ± 0.4 g/day and 5.9 ± 0.4 for the milk and weaner diet, respectively. Endogenous nitrogen flow at the terminal ileum was similar for both groups (milk diet 2.4 ± 0.4 v. weaner diet 2.2 ± 0.3 g/day), whereas the bacterial nitrogen content (0.08 ± 0.01 g/day milk diet v. 0.15 ± 0.01 g/day weaner diet, P < 0.01) and exogenous nitrogen flow (0.94 ± 0.16 g/day milk diet v. 3.29 ± 0.12 g/day weaner diet, P < 0.001) increased significantly in the weaner-diet group. The ileal apparent digestibility coefficient of protein was 0.81 ± 0.06 and 0.68 ± 0.01 for the milk replacer and the weaner diet, respectively. Morphology measurements made along the SI at 25%, 50% and 75% were similar between piglets fed milk replacer and those fed a cereal-based weaner diet. The only statistical effect (P < 0.01) of dietary change was an increase in crypt depth in the weaner-diet group. In conclusion, pigs, following a dietary change analogous to weaning, lack the capacity to fully digest a standard weaner diet. This may result in an increased nutrient content entering the large intestine and an altered microbiota. In the absence of a period of anorexia, often associated with traditional weaning, we saw no evidence of villous atrophy, but report here a significant crypt hyperplasia, especially at the 75% level, as a result of dietary change.  相似文献   

5.
Lee DN  Kuo TY  Chen MC  Tang TY  Liu FH  Weng CF 《Life sciences》2006,78(6):649-654
Early-weaned piglets often have abnormalities in intestinal morphology and function. Epidermal growth factor (EGF) is critical in the development and in the repair of the gastrointestinal tract in pigs. This study investigated the effects of dietary EGF supplementation on growth performance and small intestinal morphology of early-weaned piglets. The functional domain of porcine EGF (pEGF) was cloned after RT-PCR amplification. The recombinant protein was expression by the Pichia pastoris expression system and the construct pPIC9K-pEGF was transformed into host GS115. The secretary recombinant protein in the supernatants was analyzed by SDS-PAGE. The gel indicated that the extra band at 6 kDa in the transformant, which corresponds to the standard hEGF, were both reactive to anti-pEGF antibody by Western blotting. The expression level of pEGF in the culture supernatant was 870 microg/mL. An animal feeding test was conducted to identify the effects of pEGF supplementation on growth performance and the development of digestive tracts of 14-day weaned piglets. The dietary treatment was a corn-soybean meal basal diet either with or without 1.5 mg/kg recombinant pEGF from the transformant fermentative supernatant. Dietary treatments enhanced the daily gain during 0-7 days postweaning (p < 0.05), but did not affect the performance throughout the entire test period. Dietary supplemental pEGF significantly increased serum IgA levels on day 18 postweaning, and increased the mucosa IgA levels and crypt depth at jejunum on day 28 postweaning (p < 0.05). The experimental results showed that the recombinant pEGF could be secreted by P. pastoris. The trophic effects of pEGF on growth performance, immune response, and small intestine development were determined by feeding recombinant pEGF to early-weaned piglets.  相似文献   

6.
In previous experiments, we found that the threonine requirement of neonatal piglets fed parenterally was 40% of that when fed intragastrically; we hypothesized that much of the oral supply of threonine is being used for mucin production. To investigate this hypothesis, intragastrically fed 2-day-old piglets were fed one of three treatments for 8 days: 1) a threonine-adequate diet (IG-A; 0.6 g threonine.kg(-1).day(-1) fed intragastrically); 2) a threonine-deficient diet (IG-D; 0.1 g threonine.kg(-1).day(-1) fed intragastrically); or 3) a threonine-deficient diet with adequate threonine delivered parenterally (IV-A; 0.5 g threonine.kg(-1).day(-1) fed parenterally plus 0.1 g threonine.kg(-1).day(-1) fed intragastrically). IG-D piglets experienced higher nitrogen excretion, higher plasma urea, and lower plasma threonine concentrations versus both of the other groups (P < 0.05), indicating profound threonine deficiency. Mucosal mass and total crude mucin content were lower in the colons of IG-D pigs (P < 0.05). Histopathological analysis showed lower numbers of acidic mucin-producing goblet cells in the duodenum and ileum of IG-D pigs. In IG-D pigs, acidic mucin subtypes were lower in the small intestine but higher in the colon, which corresponded with persistent diarrhea. The parenteral supply of threonine was adequate to maintain most outcome parameters, although IV-A pigs did have smaller colonic goblet cells with more acidic mucins compared with IG-A pigs. Overall, our results suggest that adequate dietary threonine was critical in the production of mucus and that a parenteral threonine supply can ameliorate most of the symptoms of oral threonine deficiency.  相似文献   

7.
The consequences of feeding a protein-free (PF) diet, as compared to casein, on gut characteristics were studied in slightly energy-restricted rats fed similar amounts of feed for 10 d. The weight and pH of fresh digesta in the stomach were lower (P = 0.045 and P = 0.016). However, the weight of fresh digesta in the other segments and gut tissue weight were not significantly affected by the diet (P > 0.05). Small intestinal crypt depth, width and area were reduced by 13, 23 and 37%, respectively (P = 0.011, P = 0.004 and P = 0.001), and villus width tended to be smaller (P = 0.057), with the PF diet. Villus height to crypt depth ratio was also lower with the PF diet in the duodenum and ileum, respectively (P < 0.05). Finally, the specific activities of alkaline phosphatase and aminopeptidase N were reduced by 36 to 38% at different sites of the small intestine in the rats fed the PF diet (P < 0.05). In conclusion, chronic consumption of a protein-free diet altered the intestinal villus-crypt architecture and enzyme activities in rats.  相似文献   

8.
The objective of the study was to determine the coefficients of ileal apparent digestibility (CIAD) of sorghum protein and amino acids (AA) in weaned piglets and growing pigs. Digestibility coefficients were estimated using the regression and difference methods for the weaned piglets; and the direct and difference methods for the growing pigs. To test the hypothesis that CP and AA digestibility of sorghum is lower in weaned piglets than in growing pigs, two experiments were conducted. In experiment one, 20 weaned piglets were fitted with a 'T' cannula at 21 days of age and were fed for 2 weeks one of five dietary treatments: a reference or control diet providing 200 g of CP/kg from casein (C) as the sole protein source, and four casein-sorghum (C-S) diets kept isoproteic to C by the appropriate adjustment of C and maize starch proportions; the amount of sorghum (S) in these diets was 135, 307, 460 and 614 g/kg. In experiment 2, fifteen castrated pigs weighing 57.8 ± 2.8 kg were used and randomly allotted to one of three dietary treatments: a reference casein-maize starch diet containing C as the sole protein source, a C-S diet, both diets containing 160 g of CP/kg, and a fortified S diet containing 68 g of CP/kg. In piglets the CIAD for CP and AA decreased linearly (P < 0.05) as the amount of S in the diet increased. The average ileal digestibility of AA from C was 0.858 ± 0.111, and decreased to 0.663 ± 0.191 at the higher S level. The CIAD estimated using the regression or difference methods were similar for leucine, cysteine, glutamic acid, serine, alanine and tyrosine, and different for the other AA. In growing pigs the CIAD of protein and AA (except alanine and cysteine) were similar (P > 0.05) for the C and the C-S diets, but higher (P < 0.05) than those for the S diet. The CIAD for S obtained by the difference method were higher (P < 0.05) than those obtained using the direct method, except for lysine, isoleucine, valine, methionine, threonine and cysteine. The results indicate that except for lysine and cysteine, growing pigs' ability to digest AA and protein is superior than weaned piglets.  相似文献   

9.
Two experiments were conducted to investigate the effects of dietary supplementation of bacteriophage cocktail, probiotics and a combination of these two supplements on performance and gut health of weanling pigs. In Experiment 1, 150 weaned piglets were randomly allotted to three treatments on the basis of BW. The dietary treatments included a basal diet supplemented with 0 (control), 1.0 and 1.5 g/kg bacteriophage cocktail. Pigs fed 1.0 and 1.5 g/kg bacteriophage product had greater (P<0.05) average daily gain (ADG), apparent total tract digestibility of dry matter from day 22 to 35, ileal Lactobacillus spp., villus height (duodenum and jejunum), and fewer coliforms (ileum) and Clostridium spp. (ileum). In Experiment 2, 200 weaned piglets were randomly allotted to four treatments. Dietary treatments included basal diet, basal diet supplemented with 3.0 g/kg fermented probiotic product (P), 1.0 g/kg bacteriophage cocktail (B) and combination of 1.0 g/kg bacteriophage cocktail and 3.0 g/kg fermented probiotic product. Pigs fed bacteriophage cocktail diets had greater (P<0.05) overall ADG, gain to feed ratio (G:F), fecal score from day 8 to day 21, and pigs fed bacteriophage cocktail diets had fewer coliforms (ileum) Clostridium spp. (ileum and cecum). Probiotics significantly increased G:F, colonization of Lactobacillus spp. in ileum. At day 35, bacteriophage treatment group showed greater (P<0.05) villus height of the duodenum, but a deeper crypt in duodenum. The present results indicate that the bacteriophage cocktail had a potential to enhance the performance and gut health of weanling pigs, however their combination with probiotics did not show an interaction.  相似文献   

10.
He Q  Ren P  Kong X  Xu W  Tang H  Yin Y  Wang Y 《Molecular bioSystems》2011,7(7):2147-2155
Intrauterine growth restriction (IUGR) is not only an underlying factor for stunted postnatal growth and newborn deaths, but also associated with disease prevalence, such as hypertension and diabetes, in both adult humans and animals. To investigate the metabolic status of IUGR, the differences in serum and jejunal tissue metabonome were examined in IUGR and normal weight 21 day old piglets. IUGR piglets had a significantly lower birth weight (785 ± 42 g vs. 1451 ± 124 g), weaned weight (3053 ± 375 g vs. 6489 ± 545 g) and average daily gain (108 ± 16 g vs. 240 ± 21 g) than normal weight piglets (p < 0.05). IUGR piglets also had a shorter villus height and smaller villus height to crypt depth ratio (p < 0.05) in jejunum. An NMR-based metabonomic study found that serum levels of glycoprotein, albumin and threonine were higher in IUGR than in normal weight piglets, while serum levels of HDL, lipids, unsaturated lipids, glycerophosphorylcholine, myo-inositol, citrate, glutamine and tyrosine were lower in IUGR piglets (p < 0.05). In addition, marked changes in jejunal metabolites, including elevated levels of lipids and unsaturated lipids, and decreased levels of valine, alanine, glutamine, glutamate, choline, glycerophosphorylcholine, trimethylamine-N-oxide, scyllo-inositol, lactate, creatine, glucose, galactose, phenylalanine, tyrosine, glutathione, inosine and taurine were observed in IUGR piglets (p < 0.05). These novel findings indicate that IUGR piglets have a distinctive metabolic status compared to normal weight piglets, including changes in lipogenesis, lipid oxidation, energy supply and utilization, amino acid and protein metabolism, and antioxidant ability; these changes could contribute to impaired growth and jejunal function.  相似文献   

11.
The objective of this study is to investigate the expression and distribution of heat shock protein 70 (Hsp70) in the intestine of intrauterine growth retardation (IUGR) piglets. Samples from the duodenum, prejejunum, distal jejunum, ileum, and colon of IUGR and normal-body-weight (NBW) piglets were collected at birth. The results indicated that the body and intestine weight of IUGR piglets were significantly lower than NBW piglets. The villus height and villus/crypt ratio in jejunum and ileum of IUGR piglets were significantly reduced compared to NBW piglets. These results indicated that IUGR causes abnormal gastrointestinal morphologies and gastrointestinal dysfunction. The mRNA of hsp70 was increased in prejejunum (P < 0.05), distal jejunum (P < 0.05), and colon in IUGR piglets. However, the hsp70 mRNA in ileum of piglets with IUGR was decreased. Similar to hsp70 mRNA, the protein levels of Hsp70 in prejejunum (P < 0.05), distal jejunum, and colon (P < 0.05) in IUGR piglets were higher than those in NBW piglets. These results indicated that the expression of Hsp70 in the intestinal piglets was upregulated by IUGR, and different intestinal sites had different responses to stress. Meanwhile, the localization of Hsp70 in the epithelial cells of the whole villi and intestinal gland rather than in the lamina propria and myenteron suggested that Hsp70 has a cytoprotective role in epithelial cell function and structure.  相似文献   

12.
This study determined effects of dietary supplementation with l-arginine (Arg) or N-carbamylglutamate (NCG) on intestinal health and growth in early-weaned pigs. Eighty-four Landrace × Yorkshire pigs (average body weight of 5.56 ± 0.07 kg; weaned at 21 days of age) were fed for 7 days one of the three isonitrogenous diets: (1) a corn- and soybean meal-based diet (CSM), (2) CSM + 0.08% NCG (0.08%), and (3) CSM + 0.6% Arg. There were four pens of pigs per diet (7 pigs/pen). At the end of a 7-day feeding period, six piglets were randomly selected from each treatment for tissue collections. Compared with the control group, Arg or NCG supplementation increased (P < 0.05): (1) Arg concentrations in plasma, (2) small-intestinal growth, (3) villus height in duodenum, jejunum and ileum, (4) crypt depth in jejunum and ileum, (5) goblet cell counts in intestinal mucosae, and (6) whole-body weight gain in pigs. Real-time polymerase chain reaction and western blotting analyses revealed that both mRNA and protein levels for heat shock protein-70 (HSP70) were higher (P < 0.05) in the intestinal mucosae of Arg- or NCG-supplemented pigs than in the control group. Furthermore, the incidence of diarrhea in the NCG group was 18% lower (P < 0.01) than that in the control group. Collectively, these results indicate that dietary supplementation with 0.6% Arg or 0.08% NCG enhances intestinal HSP70 gene expression, intestinal growth and integrity, and the availability of dietary nutrients for whole-body weight gain in postweaning pigs fed a CSM-based diet. Thus, Arg or NCG is a functional ingredient in the weaning diet to improve nutrition, health, and growth performance of these neonates.  相似文献   

13.
The study was conducted to evaluate the effects of dietary butyrate loaded clinoptilolite (CLI-B) on growth performance, pancreatic digestive enzymes, intestinal development and histomorphology, as well as antioxidant capacity of serum and intestinal mucosal in chickens. Two hundred forty 1-day-old commercial Arbor Acres broilers were randomly assigned to 4 groups: CON group (fed basal diets), SB group (fed basal diet with 0.05% sodium butyrate), CLI group (fed basal diet with 1% clinoptilolite), and CLI-B group (fed basal diet with 1% CLI-B). The results showed that supplementation of CLI-B significantly decreased (P < 0.05) feed conservation ratio at both 21 and 42 days of age, improved the pancreatic digestive enzymes activities (P < 0.05), increased the villus length and villus/crypt ratio (P < 0.05), and decreased the crypt depth of intestine (P < 0.05) as compared to the other experimental groups. Furthermore, the CLI-B environment improved the antioxidant capacity by increasing the antioxidant enzyme activities (P < 0.05) in intestine mucosal, and decreasing the NO content and iNOS activity (P < 0.05) in serum. In addition, CLI-B supplementation had improved the development of intestine and antioxidant capacity of broilers than supplementation with either clinoptilolite or butyrate sodium alone. In conclusion, 1% CLI-B supplementation improved the health status, intestine development and antioxidant capacity in broiler chickens, thus appearing as an important feed additive for the poultry industry.  相似文献   

14.
Lactobacillus rhamnosus GG (LGG) is a probiotic for humans and is normally not found in pigs; however, it has been shown to protect the human-derived intestinal Caco-2 cells against the damage induced by an important intestinal pathogen, enterotoxigenic Escherichia coli F4 (ETEC). An experiment was conducted to test whether the dietary addition of LGG improves the growth and health of weaned pigs when orally challenged by E. coli F4. Thirty-six pigs were weaned at 21 days and assigned to a standard weaning diet with or without 1010 CFU LGG (ATCC 53103) per day. The pigs, individually penned, were orally challenged with 1.5 ml of a 1010 CFU E. coli F4 suspension on day 7 and slaughtered on day 12 or 14. With the addition of LGG, the average daily gain and the average daily feed intake were reduced after the challenge with ETEC and for the entire trial (P < 0.05). The average faecal score tended to worsen from day 11 to the end of the trial and the concentration of ETEC in the faeces tended to increase (P = 0.07) with the LGG supplementation. The counts of lactic acid bacteria, enterobacteria and yeasts in the colonic digesta were not affected. The pH values in ileal, colonic and caecal digesta, and the small intestine size were also unchanged. Regardless of the site of measurement (duodenum, jejunum or ileum), a trend of decreased villus height was seen with LGG (P = 0.10). Crypt depth and villus to crypt ratio were unchanged by the diet. A gradual increase of total seric IgA was seen after 1 week and after the challenge, in the control (P < 0.05), but not in the treated group. After the challenge, the LGG reduced the total IgA in the blood serum (P < 0.05), v. the control. The total IgA in the saliva and in the jejunum secretion were not affected by the diet. The F4-specific IgA activity was not affected by the diet at all the samplings. Our result shows that, the administration of LGG do not prevent or reduce the detrimental effect of the E. coli F4 infection on the growth performance and health status of weaned piglet.  相似文献   

15.
The effects of copper/zinc-loaded montmorillonite (Cu/Zn-Mt) on growth performance, mineral retention, intestinal morphology, mucosa antioxidant capacity, and cytokine contents in weaned piglets were investigated in the present study. One hundred eight piglets weaned at 21?±?1 days of age (Duroc × Landrace× Yorkshire; average initial weight of 6.36 kg) were allotted to three treatments for 2 weeks. The three treatments were as follows: (1) control group: basal diet; (2) Cu/Zn-Mt group: basal diet?+?39 mg/kg Cu and 75 mg/kg Zn as Cu/Zn-Mt; (3) Cu?+?Zn?+?Mt group: basal diet?+?mixture of CuSO4, ZnSO4, and Mt (equal amount of Cu, Zn, and Mt to the Cu/Zn-Mt group). Each treatment had six pens of six piglets. The results showed that as compared with the control group and the Cu?+?Zn?+?Mt group, Cu/Zn-Mt supplementation increased (P?<?0.05) the average daily gain and the gain/feed ratio; Cu/Zn-Mt supplementation increased (P?<?0.05) the Cu and Zn concentrations in serum, jejunum, and ileum mucosa, villus height, the ratio of villus height to crypt depth, and the activities of SOD, GSH-Px, and IL-10 levels, and decreased the malondialdehyde concentrations in the jejunum and ileum, and intestinal IL-1β, IL-6, and TNF-α levels. Moreover, supplementation with the mixture of CuSO4, ZnSO4, and Mt had no effect on the growth performance, but increased the mucosa Cu and Zn concentrations, intestinal morphology, antioxidant capacity, and immune function in the duodenum, while it had no effect on the above indexes in the jejunum and ileum. The results indicated that Mt could be used as a controlled carrier for Cu and Zn, which made Cu/Zn-Mt have better biological activities in the intestine than the mixture of Cu, Zn, and Mt.  相似文献   

16.
【目的】在饲喂低蛋白质日粮条件下,探究断奶仔猪生长相关激素、回肠和盲肠微生物组成及其代谢产物的变化。【方法】选取体重相近杜长大断奶仔猪54头,随机平均分为3组,每组18头,分别饲喂含20%(NP组)、17%(MP组)和14%(LP组)粗蛋白日粮,平衡日粮中的赖氨酸、蛋氨酸、苏氨酸和色氨酸,于试验第10、25和45天每组屠宰6头,采血测定血常规和生长相关激素;于第45天采集回肠和盲肠食糜,分析微生物及其代谢产物。【结果】与NP组相比,第25和45天时MP和LP组尿素氮水平显著降低(P0.05),第25天时LP组甘油三脂含量、第45天时LP组胆固醇含量显著增加(P0.05)。各时间点血液胰高血糖素、胰岛素、生长激素、T3和T4在3组之间差异均不显著。门水平上,回肠和盲肠中的微生物均以厚壁菌门占主导地位,但各组间差异不显著;随日粮蛋白质含量降低,乳酸杆菌属呈上升趋势,严格梭菌属呈下降趋势,但差异不显著。降低日粮蛋白质含量显著减少了回肠和盲肠中氨氮的产量(P0.05)。【结论】断奶仔猪日粮蛋白质降低3或6个百分点不影响机体生长相关激素的分泌,但能降低血液尿素氮和肠道内氨氮的浓度,对肠道有益菌乳酸杆菌属的相对丰度有一定的提高作用。这说明低蛋白质日粮能提高断奶仔猪对饲料氮源的利用率,且有利于肠道健康。  相似文献   

17.
Wu S  Zhang F  Huang Z  Liu H  Xie C  Zhang J  Thacker PA  Qiao S 《Peptides》2012,35(2):225-230
This study was conducted to determine the effects of the antimicrobial peptide cecropin on performance and intestinal health in piglets. Newly weaned barrows were randomly assigned to one of three treatments (n=8), including a corn-soybean basal diet or similar diets supplemented with antibiotics (100 mg/kg kitasamycin plus 800 mg/kg colistin sulfate) or 400 mg/kg cecropin AD. On day 13, all piglets were orally challenged with 10(9)CFU/mL of Escherichia coli K88. On day 19, all piglets were euthanized and sampled. Before challenge, piglets fed antibiotics had greater weight gain, feed efficiency, nitrogen and energy retention than the control (P<0.05). E. coli challenge decreased weight gain, feed intake and feed efficiency for the control piglets (P<0.05) but not for the antibiotic or cecropin AD treated piglets. The incidence of diarrhea post-challenge in the antibiotic and cecropin AD treatments decreased compared with the control piglets. The total viable counts of cecal E. coli were lower while the Lactobacilli counts were higher in the antibiotic and cecropin AD treatments compared with the control (P<0.05). Cecropin AD treatment decreased total aerobes while increasing total anaerobes in the ileum (P<0.05). A higher villus height to crypt depth ratio in the jejunum and ileum as well as a deeper crypt depth in the jejunum and higher villus height in the ileum were observed in piglets fed antibiotics or cecropin AD compared with control piglets (P<0.05). Piglets fed the control diet had lower levels of secretory IgA in their jejunum and lower serum IgA, IgG, interleukin-1β and interleukin-6 compared with the other treatments (P<0.05). Overall, these data suggest that cecropin AD enhances pig performance through increasing immune status and nitrogen and energy retention as well as reducing intestinal pathogens in weaned piglets.  相似文献   

18.
The small intestine is an important digestive organ and plays a vital role in the life of a pig. We tested the hypothesis that the length of the small intestine is related to growth performance and intestinal functions of piglets. A total of 60 piglets (Duroc × Landrace × Yorkshire), weaned at day 21, were fed an identical diet during a 28-day trial. At the end of the study, all piglets were sacrificed, dissected and grouped according to small intestine lengths (SILs), either short small intestine (SSI), middle small intestine (MSI) or long small intestine (LSI), respectively. Positive relationships between SIL and BW, average daily gain (ADG), average daily feed intake (ADFI) and gain-to-feed ratios (G : F) were observed. Final BW, ADG, ADFI and G : F significantly increased (P < 0.05) in MSI and LSI piglets compared with SSI piglets. Short small intestine and MSI had greater jejunal mucosa sucrase and alkaline phosphatase activities (P < 0.05) than LSI piglets. The mRNA level of solute carrier family 2 member 2 (Slc2a2) in the jejunal mucosa of SSI piglets was the greatest. The MSI piglets had a greater (P < 0.05) ileal villus height than other piglets and greater (P < 0.05) villus height-to-crypt depth ratios than LSI piglets. However, the LSI piglets had a greater (P < 0.05) ileal crypt depth than SSI piglets. No significant differences in duodenal, jejunal, caecal and colonic morphologies were detected among the groups. Moreover, luminal acetate, propionate, butyrate and total short-chain fatty acid contents were greater (P < 0.05) in SSI and MSI piglets than those in LSI piglets. In addition, there was greater serum glucose concentration in MSI piglets than other piglets. Serum albumin concentration in SSI piglets was the lowest. In conclusion, these results indicate that SIL was significantly positively associated with growth performance, and in terms of intestinal morphology and mucosal digestive enzyme activity, the piglets with a medium length of small intestine have better digestion and absorption properties.  相似文献   

19.
We have shown that first-pass intestinal metabolism is necessary for approximately 50% of whole body arginine synthesis from its major precursor proline in neonatal piglets. Furthermore, the intestine is not the site of increased arginine synthesis observed during dietary arginine deficiency. Primed constant intravenous (iv) and intraportal (ip) infusions of L-[U-14C]proline, and iv infusion of either L-[guanido-14C]arginine or L-[4,5-3H]arginine were used to measure first-pass hepatic arginine synthesis in piglets enterally fed either deficient (0.20 g.kg(-1).day(-1)) or generous (1.80 g.kg(-1).day(-1)) quantities of arginine for 5 days. Conversion of arginine to other urea cycle intermediates and arginine recycling were also calculated for both dietary treatments. Arginine synthesis (g.kg(-1).day(-1)) from proline was greater in piglets (P < 0.05) fed the deficient arginine diet in both the presence (generous: 0.07; deficient: 0.17; pooled SE = 0.01) and absence (generous: 0.06; deficient: 0.20; pooled SE = 0.01) of first-pass hepatic metabolism. There was no net arginine synthesis from proline during first-pass hepatic metabolism regardless of arginine intake. Arginine conversion to urea, citrulline, and ornithine was significantly greater (P < 0.05) in piglets fed the generous arginine diet. Calculated arginine fluxes were significantly lower (P = 0.01) for [4,5-3H]arginine than for [guanido-14C]arginine, and the discrepancy between the values was greater in piglets fed the deficient arginine diet (35% vs. 20%). Collectively, these findings show that first-pass hepatic metabolism is not a site of net arginine synthesis and that piglets conserve dietary arginine in times of deficiency by decreasing hydrolysis and increasing recycling.  相似文献   

20.
A 21-day study was conducted to determine whether isoleucine might limit the performance of piglets fed low-crude protein (CP), amino acid (AA)-supplemented diets and to investigate the potential benefits of low-CP diets on gastrointestinal health in weaned pigs. Ninety-six piglets (initial BW = 6.44 ± 0.14 kg), housed four per pen, were randomly assigned to one of four diets, resulting in six replicate pens per diet. Dietary treatments were as follows: (1) 210 g/kg CP diet, (2) 190 g/kg CP diet deficient in isoleucine, (3) 190 g/kg CP diet supplemented with crystalline isoleucine up to the level in the 210 g/kg CP diet and (4) 170 g/kg CP diet supplemented with isoleucine and valine on the ideal protein ratio basis (60% and 70% relative to lysine, respectively). Pigs were allowed to adapt to the new environment for 4 days before the experiment commenced. Overall, pigs fed the 210 g/kg CP diet had higher (P < 0.05) average daily gain and lower (P < 0.05) feed : gain ratio compared with those fed the other diets. The faecal consistency score of pigs fed the 210 g/kg CP diet was higher (P < 0.05) than those fed the other diets. Pigs fed the 170 g/kg diet had lower (P=0.02) small intestine weight than those fed the 210 g/kg CP diet. Pigs fed the 210 g/kg CP diet had deeper (P < 0.05) crypt in the duodenum and ileum and higher (P < 0.05) ammonia N concentration in caecal digesta than those fed the other diets. There were no effects of diet on microbial population and volatile fatty acid concentration in the caecal digesta except for propionic acid whose concentration was higher (P < 0.05) for pigs fed the 170 g/kg diet than those fed the 190+isoleucine and the 210 g/kg CP diets. The results indicate that the low-CP, AA-supplemented diet reduced crypt hypertrophy, ammonia N concentration in the caecal digesta, small intestine weight and the performance of piglets. Also, the results of the current study were inconclusive with respect to whether isoleucine may limit the performance of pigs fed a low-CP, AA-supplemented diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号