首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The dynamics of simple discrete-time epidemic models without disease-induced mortality are typically characterized by global transcritical bifurcation. We prove that in corresponding models with disease-induced mortality a tiny number of infectious individuals can drive an otherwise persistent population to extinction. Our model with disease-induced mortality supports multiple attractors. In addition, we use a Ricker recruitment function in an SIS model and obtained a three component discrete Hopf (Neimark-Sacker) cycle attractor coexisting with a fixed point attractor. The basin boundaries of the coexisting attractors are fractal in nature, and the example exhibits sensitive dependence of the long-term disease dynamics on initial conditions. Furthermore, we show that in contrast to corresponding models without disease-induced mortality, the disease-free state dynamics do not drive the disease dynamics.  相似文献   

2.
Multiple attractors in the response to a vaccination program   总被引:2,自引:0,他引:2  
Though it is well known that multiple attractors may co-exist in the SEIR (susceptible/exposed/infective/recovered) epidemic model with vital dynamics and seasonally forced oscillations in transmission, the epidemiological significance of multiple attractors has been a subject of debate. I show that the co-existence of attractors is relevant in using the model to study the dynamics of the introduction of a vaccination program into a stable epidemic cycle. Responses to the program may include more than one attractor. The exact timing of the introduction of the program relative to the original epidemic cycle is critical in determining which attractor appears in the response. Analysis of this simple model suggests that the role of multiple attractors in the response to vaccination should be examined in more realistic epidemiological models.  相似文献   

3.
Historical records of childhood disease incidence reveal complex dynamics. For measles, a simple model has indicated that epidemic patterns represent attractors of a nonlinear dynamic system and that transitions between different attractors are driven by slow changes in birth rates and vaccination levels. The same analysis can explain the main features of chickenpox dynamics, but fails for rubella and whooping cough. We show that an additional (perturbative) analysis of the model, together with knowledge of the population size in question, can account for all the observed incidence patterns by predicting how stochastically sustained transient dynamics should be manifested in these systems.  相似文献   

4.
We study the SIS and SIRI epidemic models discussing different approaches to compute the thresholds that determine the appearance of an epidemic disease. The stochastic SIS model is a well known mathematical model, studied in several contexts. Here, we present recursively derivations of the dynamic equations for all the moments and we derive the stationary states of the state variables using the moment closure method. We observe that the steady states give a good approximation of the quasi-stationary states of the SIS model. We present the relation between the SIS stochastic model and the contact process introducing creation and annihilation operators. For the spatial stochastic epidemic reinfection model SIRI, where susceptibles S can become infected I, then recover and remain only partial immune against reinfection R, we present the phase transition lines using the mean field and the pair approximation for the moments. We use a scaling argument that allow us to determine analytically an explicit formula for the phase transition lines in pair approximation.  相似文献   

5.
Stochastic differential equations that model an SIS epidemic with multiple pathogen strains are derived from a system of ordinary differential equations. The stochastic model assumes there is demographic variability. The dynamics of the deterministic model are summarized. Then the dynamics of the stochastic model are compared to the deterministic model. In the deterministic model, there can be either disease extinction, competitive exclusion, where only one strain persists, or coexistence, where more than one strain persists. In the stochastic model, all strains are eventually eliminated because the disease-free state is an absorbing state. However, if the population size and the initial number of infected individuals are sufficiently large, it may take a long time until all strains are eliminated. Numerical simulations of the stochastic model show that coexistence cases predicted by the deterministic model are an unlikely occurrence in the stochastic model even for short time periods. In the stochastic model, either disease extinction or competitive exclusion occur. The initial number of infected individuals, the basic reproduction numbers, and other epidemiological parameters are important determinants of the dominant strain in the stochastic epidemic model.  相似文献   

6.
Synthesis Coral reefs are widely thought to exhibit multiple attractors which have profound implications for people that depend on them. If reefs become ‘stuck’ within a self‐reinforcing state dominated by seaweed, it becomes disproportionately difficult and expensive for managers to shift the system back towards its natural, productive, coral state. The existence of multiple attractors is controversial. We assess various forms of evidence and conclude that there remains no incontrovertible proof of multiple attractors on reefs. However, the most compelling evidence, which combines ecological models and field data, is far more consistent with multiple attractors than the competing hypothesis of only a single, coral attractor. Managers should exercise caution and assume that degraded reefs can become stuck there. Testing for the existence of alternate attractors in ecosystems that possess slow dynamics and frequent pulse perturbation is exceptionally challenging. Coral reefs typify such conditions and the existence of alternate attractors is controversial. We analyse different forms of evidence and assess whether they support or challenge the existence of multiple attractors on Caribbean reefs, many of which have shown profound phase shifts in community structure from coral to algal dominance. Field studies alone provide no insight into multiple attractors because the non‐equilibrial nature of reef dynamics prevents equilibria from being observed. Statistical models risk failing to sample the parameter space in which multiple attractors occur, and have failed to account for the confounding effects of heterogeneous environments, anthropogenic drivers (e.g. fishing), and major disturbances (e.g. hurricanes). Simple and complex models all find multiple attractors over some – though not all – regions of a system driver (fishing). Tests of model predictions with field data closely match theory of alternate attractors but a forward‐leaning monotonic curve with only a single attractor can also be fitted to these data. Deeper consideration of the assumptions of this monotonic relationship reveal significant ecological problems which disappear under a model of multiple attractors. To date, there is no evidence against the existence of multiple attractors on Caribbean reefs and while there remains no definitive proof, the balance of evidence and ecological reasoning favours their existence. Theory predicts that Caribbean reefs do not exhibit alternate attractors in their natural state but that disease‐induced loss of two key functional groups has generated bistability. Whether alternate attractors becomes a persistent element of reef dynamics or a brief moment in their geological history will depend, in part, on the ability of functional groups to recover and the impacts of climate change and ocean acidification on coral growth and mortality.  相似文献   

7.
The SIR epidemic model for disease dynamics considers recovered individuals to be permanently immune, while the SIS epidemic model considers recovered individuals to be immediately resusceptible. We study the case of temporary immunity in an SIR-based model with delayed coupling between the susceptible and removed classes, which results in a coupled set of delay differential equations. We find conditions for which the endemic steady state becomes unstable to periodic outbreaks. We then use analytical and numerical bifurcation analysis to describe how the severity and period of the outbreaks depend on the model parameters.   相似文献   

8.
Infection age is often an important factor in epidemic dynamics. In order to realistically analyze the spreading mechanism and dynamical behavior of epidemic diseases, in this paper, a generalized disease transmission model of SIS type with age-dependent infection and birth and death on a heterogeneous network is discussed. The model allows the infection and recovery rates to vary and depend on the age of infection, the time since an individual becomes infected. We address uniform persistence and find that the model has the sharp threshold property, that is, for the basic reproduction number less than one, the disease-free equilibrium is globally asymptotically stable, while for the basic reproduction number is above one, a Lyapunov functional is used to show that the endemic equilibrium is globally stable. Finally, some numerical simulations are carried out to illustrate and complement the main results. The disease dynamics rely not only on the network structure, but also on an age-dependent factor (for some key functions concerned in the model).  相似文献   

9.
Genetic analysis of pathogen genomes is a powerful approach to investigating the population dynamics and epidemic history of infectious diseases. However, the theoretical underpinnings of the most widely used, coalescent methods have been questioned, casting doubt on their interpretation. The aim of this study is to develop robust population genetic inference for compartmental models in epidemiology. Using a general approach based on the theory of metapopulations, we derive coalescent models under susceptible–infectious (SI), susceptible–infectious–susceptible (SIS) and susceptible–infectious–recovered (SIR) dynamics. We show that exponential and logistic growth models are equivalent to SI and SIS models, respectively, when co-infection is negligible. Implementing SI, SIS and SIR models in BEAST, we conduct a meta-analysis of hepatitis C epidemics, and show that we can directly estimate the basic reproductive number (R0) and prevalence under SIR dynamics. We find that differences in genetic diversity between epidemics can be explained by differences in underlying epidemiology (age of the epidemic and local population density) and viral subtype. Model comparison reveals SIR dynamics in three globally restricted epidemics, but most are better fit by the simpler SI dynamics. In summary, metapopulation models provide a general and practical framework for integrating epidemiology and population genetics for the purposes of joint inference.  相似文献   

10.
Epidemiological effects of seasonal oscillations in birth rates   总被引:3,自引:0,他引:3  
Seasonal oscillations in birth rates are ubiquitous in human populations. These oscillations might play an important role in infectious disease dynamics because they induce seasonal variation in the number of susceptible individuals that enter populations. We incorporate seasonality of birth rate into the standard, deterministic susceptible-infectious-recovered (SIR) and susceptible-exposed-infectious-recovered (SEIR) epidemic models and identify parameter regions in which birth seasonality can be expected to have observable epidemiological effects. The SIR and SEIR models yield similar results if the infectious period in the SIR model is compared with the "infected period" (the sum of the latent and infectious periods) in the SEIR model. For extremely transmissible pathogens, large amplitude birth seasonality can induce resonant oscillations in disease incidence, bifurcations to stable multi-year epidemic cycles, and hysteresis. Typical childhood infectious diseases are not sufficiently transmissible for their asymptotic dynamics to be likely to exhibit such behaviour. However, we show that fold and period-doubling bifurcations generically occur within regions of parameter space where transients are phase-locked onto cycles resembling the limit cycles beyond the bifurcations, and that these phase-locking regions extend to arbitrarily small amplitude of seasonality of birth rates. Consequently, significant epidemiological effects of birth seasonality may occur in practice in the form of transient dynamics that are sustained by demographic stochasticity.  相似文献   

11.
Parasite–host interactions can drive periodic population dynamics when parasites overexploit host populations. The timing of host seasonal activity, or host phenology, determines the frequency and demographic impact of parasite–host interactions, which may govern whether parasites sufficiently overexploit hosts to drive population cycles. We describe a mathematical model of a monocyclic, obligate‐killer parasite system with seasonal host activity to investigate the consequences of host phenology on host–parasite dynamics. The results suggest that parasites can reach the densities necessary to destabilize host dynamics and drive cycling as they adapt, but only in some phenological scenarios such as environments with short seasons and synchronous host emergence. Furthermore, only parasite lineages that are sufficiently adapted to phenological scenarios with short seasons and synchronous host emergence can achieve the densities necessary to overexploit hosts and produce population cycles. Host‐parasite cycles also generate an eco‐evolutionary feedback that slows parasite adaptation to the phenological environment as rare advantageous phenotypes can be driven extinct due to a population bottleneck depending on when they are introduced in the cycle. The results demonstrate that seasonal environments can drive population cycling in a restricted set of phenological patterns and provide further evidence that the rate of adaptive evolution depends on underlying ecological dynamics.  相似文献   

12.
In this paper we study an attractor network with units that compete locally for activation and we prove that a reduced version of it has fixpoint dynamics. An analysis, complemented by simulation experiments, of the local characteristics of the network's attractors with respect to a parameter controlling the intensity of the local competition is performed. We find that the attractors are hierarchically clustered when the parameter of the local competition is changed.  相似文献   

13.
We study the role of asynchronous and synchronous dispersals on discrete-time two-patch dispersal-linked population models, where the pre-dispersal local patch dynamics are of mixed compensatory and overcompensatory types. Single-species dispersal-linked models behave as single-species single-patch models whenever all pre-dispersal local patch dynamics are compensatory and dispersal is synchronous. However, the dynamics of the corresponding two-patch population model connected by asynchronous dispersal depends on the dispersal rates. The species goes extinct on at least one patch when the asynchronous dispersal rates are high, while it persists when the rates are low. We use numerical simulations to show that in both synchronous and asynchronous mixed compensatory and overcompensatory systems, symmetric and asymmetric dispersals can control and impede the onset of cyclic population oscillations via period-doubling reversal bifurcations. Also, we show that in mixed systems both asynchronous and synchronous dispersals are capable of altering the pre-dispersal local patch dynamics from overcompensatory to compensatory dynamics. Dispersal-linked population models with 'unstructured' overcompensatory pre-dispersal local dynamics connected by synchronous dispersal can generate multiple attractors with fractal basin boundaries. However, mixed compensatory and overcompensatory systems appear to exhibit single attractors and not coexisting (multiple) attractors.  相似文献   

14.
We study the role of asynchronous and synchronous dispersals on discrete-time two-patch dispersal-linked population models, where the pre-dispersal local patch dynamics are of mixed compensatory and overcompensatory types. Single-species dispersal-linked models behave as single-species single-patch models whenever all pre-dispersal local patch dynamics are compensatory and dispersal is synchronous. However, the dynamics of the corresponding two-patch population model connected by asynchronous dispersal depends on the dispersal rates. The species goes extinct on at least one patch when the asynchronous dispersal rates are high, while it persists when the rates are low. We use numerical simulations to show that in both synchronous and asynchronous mixed compensatory and overcompensatory systems, symmetric and asymmetric dispersals can control and impede the onset of cyclic population oscillations via period-doubling reversal bifurcations. Also, we show that in mixed systems both asynchronous and synchronous dispersals are capable of altering the pre-dispersal local patch dynamics from overcompensatory to compensatory dynamics. Dispersal-linked population models with ‘unstructured’ overcompensatory pre-dispersal local dynamics connected by synchronous dispersal can generate multiple attractors with fractal basin boundaries. However, mixed compensatory and overcompensatory systems appear to exhibit single attractors and not coexisting (multiple) attractors.  相似文献   

15.
The dynamics of deterministic and stochastic discrete-time epidemic models are analyzed and compared. The discrete-time stochastic models are Markov chains, approximations to the continuous-time models. Models of SIS and SIR type with constant population size and general force of infection are analyzed, then a more general SIS model with variable population size is analyzed. In the deterministic models, the value of the basic reproductive number R0 determines persistence or extinction of the disease. If R0 < 1, the disease is eliminated, whereas if R0 > 1, the disease persists in the population. Since all stochastic models considered in this paper have finite state spaces with at least one absorbing state, ultimate disease extinction is certain regardless of the value of R0. However, in some cases, the time until disease extinction may be very long. In these cases, if the probability distribution is conditioned on non-extinction, then when R0 > 1, there exists a quasi-stationary probability distribution whose mean agrees with deterministic endemic equilibrium. The expected duration of the epidemic is investigated numerically.  相似文献   

16.
We illustrate that an autonomous ordinary differential equation model for malaria transmission can exhibit period-doubling bifurcations leading to chaos when ecological aspects of malaria transmission are incorporated into the model. In particular, when demography, feeding, and reproductive patterns of the mosquitoes that transmit the malaria-causing parasite are explicitly accounted for, the resulting model exhibits subcritical bifurcations, period-doubling bifurcations, and chaos. Vectorial and disease reproduction numbers that regulate the size of the vector population at equilibrium and the endemicity of the malaria disease, respectively, are identified and used to simulate the model to show the different bifurcations and chaotic dynamics. A subcritical bifurcation is observed when the disease reproduction number is less than unity. This highlights the fact that malaria control efforts need to be long lasting and sustained to drive the infectious populations to levels below the associated saddle-node bifurcation point at which control is feasible. As the disease reproduction number increases beyond unity, period-doubling cascades that develop into chaos closely followed by period-halving sequences are observed. The appearance of chaos suggests that characterization of the physiological status of disease vectors can provide a pathway toward understanding the complex phenomena that are known to characterize the dynamics of malaria and other indirectly transmitted infections of humans. To the best of our knowledge, there is no known unforced continuous time deterministic host-vector transmission malaria model that has been shown to exhibit chaotic dynamics. Our results suggest that malaria data may need to be critically examined for complex dynamics.  相似文献   

17.
A modelling approach is used for studying the effects of population vaccination on the epidemic dynamics of a set of n cities interconnected by a complex transportation network. The model is based on a sophisticated mover-stayer formulation of inter-city population migration, upon which is included the classical SIS dynamics of disease transmission which operates within each city. Our analysis studies the stability properties of the Disease-Free Equilibrium (DFE) of the full n-city system in terms of the reproductive number R (0). Should vaccination reduce R (0) below unity, the disease will be eradicated in all n-cities. We determine the precise conditions for which this occurs, and show that disease eradication by vaccination depend on the transportation structure of the migration network in a very direct manner. Several concrete examples are presented and discussed, and some counter-intuitive results found.  相似文献   

18.
Infectious diseases are practically represented by models with multiple states and complex transition rules corresponding to, for example, birth, death, infection, recovery, disease progression, and quarantine. In addition, networks underlying infection events are often much more complex than described by meanfield equations or regular lattices. In models with simple transition rules such as the SIS and SIR models, heterogeneous contact rates are known to decrease epidemic thresholds. We analyse steady states of various multi-state disease propagation models with heterogeneous contact rates. In many models, heterogeneity simply decreases epidemic thresholds. However, in models with competing pathogens and mutation, coexistence of different pathogens for small infection rates requires network-independent conditions in addition to heterogeneity in contact rates. Furthermore, models without spontaneous neighbor-independent state transitions, such as cyclically competing species, do not show heterogeneity effects.  相似文献   

19.
Epidemic transmission is one of the critical density-dependent mechanisms that affect species viability and dynamics. In a predator-prey system, epidemic transmission can strongly affect the success probability of hunting, especially for social animals. Predators, therefore, will suffer from the positive density-dependence, i.e., Allee effect, due to epidemic transmission in the population. The rate of species contacting the epidemic, especially for those endangered or invasive, has largely increased due to the habitat destruction caused by anthropogenic disturbance. Using ordinary differential equations and cellular automata, we here explored the epidemic transmission in a predator-prey system. Results show that a moderate Allee effect will destabilize the dynamics, but it is not true for the extreme Allee effect (weak or strong). The predator-prey dynamics amazingly stabilize by the extreme Allee effect. Predators suffer the most from the epidemic disease at moderate transmission probability. Counter-intuitively, habitat destruction will benefit the control of the epidemic disease. The demographic stochasticity dramatically influences the spatial distribution of the system. The spatial distribution changes from oil-bubble-like (due to local interaction) to aggregated spatially scattered points (due to local interaction and demographic stochasticity). It indicates the possibility of using human disturbance in habitat as a potential epidemic-control method in conservation.  相似文献   

20.
Spatially-separated populations often exhibit positively correlated fluctuations in abundance and other population variables, a phenomenon known as spatial synchrony. Generation and maintenance of synchrony requires forces that rapidly restore synchrony in the face of desynchronizing forces such as demographic and environmental stochasticity. One such force is dispersal, which couples local populations together, thereby synchronizing them. Theory predicts that average spatial synchrony can be a nonlinear function of dispersal rate, but the form of the dispersal rate-synchrony relationship has never been quantified for any system. Theory also predicts that in the presence of demographic and environmental stochasticity, realized levels of synchrony can exhibit high variability around the average, so that ecologically-identical metapopulations might exhibit very different levels of synchrony. We quantified the dispersal rate-synchrony relationship using a model system of protist predator-prey cycles in pairs of laboratory microcosms linked by different rates of dispersal. Paired predator-prey cycles initially were anti-synchronous, and were subject to demographic stochasticity and spatially-uncorrelated temperature fluctuations, challenging the ability of dispersal to rapidly synchronize them. Mean synchrony of prey cycles was a nonlinear, saturating function of dispersal rate. Even extremely low rates of dispersal (<0.4% per prey generation) were capable of rapidly bringing initially anti-synchronous cycles into synchrony. Consistent with theory, ecologically-identical replicates exhibited very different levels of prey synchrony, especially at low to intermediate dispersal rates. Our results suggest that even the very low rates of dispersal observed in many natural systems are sufficient to generate and maintain synchrony of cyclic population dynamics, at least when environments are not too spatially heterogeneous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号