首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Test-day records for average flow rate (AFR) from the routine dairy recording from Bavarian Fleckvieh cows were analysed. Two data sets with observations on approximately 20 000 cows each were sampled from the total data set. For the estimation of variance parameters, a two-step approach was applied. In a first step multiple-trait restricted maximum likelihood (REML) analyses were carried out. For each of the first three lactations, six time periods with up to 33 days were defined. An algorithm for iterative summing of expanded part matrices was applied in order to combine the estimates. In a second step covariance functions (CF) for additive-genetic variances and non-genetic animal variances were derived using second-order Legendre polynomials plus an exponential term. Estimates of test-day heritability for AFR ranged from 0.21 to 0.40, and were largest in lactation 1. For lactations 1 and 3, heritabilities decreased considerably towards the end of lactation. Genetic correlation estimates within lactation decreased as the distance between days in milk (DIM) increased. Genetic correlations between corresponding DIM in the three lactations were generally large, ranging from 0.80 to 0.99. The largest estimates were found between DIM from lactations 2 and 3. Results from this study suggest that including AFR data from second and third lactations in genetic evaluation systems could the improve accuracy of genetic selection.  相似文献   

2.
Health traits are of paramount importance for economic dairy production. Improvement in liability to diseases has been made with better management practices, but genetic aspects of health traits have received less attention. Dairy producers in Canada have been recording eight health traits (mastitis (MAST), lameness (LAME), cystic ovarian disease (COD), left displaced abomasum (LDA), ketosis (KET), metritis (MET), milk fever (MF) and retained placenta (RP)) since April 2007. Genetic analyses of these traits were carried out in this study for the Holstein breed. Edits on herd distributions of recorded diseases were applied to the data to ensure a sufficient quality of recording. Traits were analysed either individually (MAST, LAME, COD) or were grouped according to biological similarities (LDA and KET, and MET, MF and RP) and analysed with multiple-trait models. Data included 46 104 cases of any of the above diseases. Incidence ranged from 2.3% for MF to 9.7% for MAST. MET and KET also had an incidence below 4.0%. Variance components were estimated using four different sire threshold models. The differences between models resulted from the inclusion of days at risk (DAR) and a cow effect, in addition to herd, parity and sire effects. Models were compared using mean squared error statistic. Mean squared error favoured, in general, the sire and cow within sire model with regression on DAR included. Heritabilities on the liability scale were between 0.02 (MET) and 0.21 (LDA). There was a moderate, positive genetic correlation between LDA and KET (0.58), and between MET and RP (0.79).  相似文献   

3.
A Bayesian analysis of longitudinal mastitis records obtained in the course of lactation was undertaken. Data were 3341 test-day binary records from 329 first lactation Holstein cows scored for mastitis at 14 and 30 days of lactation and every 30 days thereafter. First, the conditional probability of a sequence for a given cow was the product of the probabilities at each test-day. The probability of infection at time t for a cow was a normal integral, with its argument being a function of "fixed" and "random" effects and of time. Models for the latent normal variable included effects of: (1) year-month of test + a five-parameter linear regression function ("fixed", within age-season of calving) + genetic value of the cow + environmental effect peculiar to all records of the same cow + residual. (2) As in (1), but with five parameter random genetic regressions for each cow. (3) A hierarchical structure, where each of three parameters of the regression function for each cow followed a mixed effects linear model. Model 1 posterior mean of heritability was 0.05. Model 2 heritabilities were: 0.27, 0.05, 0.03 and 0.07 at days 14, 60, 120 and 305, respectively. Model 3 heritabilities were 0.57, 0.16, 0.06 and 0.18 at days 14, 60, 120 and 305, respectively. Bayes factors were: 0.011 (Model 1/Model 2), 0.017 (Model 1/Model 3) and 1.535 (Model 2/Model 3). The probability of mastitis for an "average" cow, using Model 2, was: 0.06, 0.05, 0.06 and 0.07 at days 14, 60, 120 and 305, respectively. Relaxing the conditional independence assumption via an autoregressive process (Model 2) improved the results slightly.  相似文献   

4.
Milk production, fertility, longevity and health records, were extracted from databases of two milk recording organisations in the United Kingdom for the first three lactations of the Holstein–Friesian breed. These included data related to health events (mastitis and lameness), voluntarily recorded on a proportion of farms. The data were analysed to calculate disease incidence levels and to estimate genetic parameters for health traits and their relationships with production and other functional traits. The resulting dataset consisted of 124 793 lactations from 75 137 animals of 1586 sires, recorded in 2434 herds. Incidence of health events increased with parity. The overall incidence of mastitis (MAS) and lameness (LAM), defined as binary traits, were 17% and 16%, respectively. Heritability estimates for MAS and LAM were 0.04 and 0.02, respectively, obtained from repeatability linear sire models. Heritability estimates of mastitis and lameness as count traits were slightly higher, 0.05 and 0.03, respectively. Genetic correlations were obtained by bivariate analyses of all pair-wise combinations between milk 305-day yield (MY), protein 305-day yield (PY), fat 305-day yield (FY), lactation average loge transformed lactation average somatic cell count (SCS), calving interval (CI), days to first service (DFS), non-return at 56 days (NR56), number of inseminations (NINS), mastitis (MAS), number of mastitis episodes (NMAS), lameness (LAM), number of lameness episodes (NLAM) and lifespan score (LS). As expected, MAS was correlated most strongly with SCS (0.69), which supports the use of SCS as an indicator trait for mastitis. Genetic correlations between MAS and yield and fertility traits were of similar magnitude ranging from 0.27 to 0.33. Genetic correlations between MAS with LAM and LS were 0.38 and −0.59, respectively. Not all genetic correlations between LAM and other traits were significant because of fewer numbers of lameness records. LAM had significant genetic correlations with MY (0.38), PY (0.28), CI (0.35), NINS (0.38) and LS (−0.53). The heritability estimates of mastitis and lameness were low; therefore, genetic gain through direct selection alone would be slow, yet still positive and cumulative. Direct selection against mastitis and lameness as additional traits should reduce incidence of both diseases, and simultaneously improve fertility and longevity. However, both health traits had antagonistic relationships with production traits, thus genetic gain in production would be slower.  相似文献   

5.
Longer-lived cows tend to be more profitable and the stayability trait is a selection criterion correlated to longevity. An alternative to the traditional approach to evaluate stayability is its definition based on consecutive calvings, whose main advantage is the more accurate evaluation of young bulls. However, no study using this alternative approach has been conducted for Zebu breeds. Therefore, the objective of this study was to compare linear random regression models to fit stayability to consecutive calvings of Guzerá, Nelore and Tabapuã cows and to estimate genetic parameters for this trait in the respective breeds. Data up to the eighth calving were used. The models included the fixed effects of age at first calving and year-season of birth of the cow and the random effects of contemporary group, additive genetic, permanent environmental and residual. Random regressions were modeled by orthogonal Legendre polynomials of order 1 to 4 (2 to 5 coefficients) for contemporary group, additive genetic and permanent environmental effects. Using Deviance Information Criterion as the selection criterion, the model with 4 regression coefficients for each effect was the most adequate for the Nelore and Tabapuã breeds and the model with 5 coefficients is recommended for the Guzerá breed. For Guzerá, heritabilities ranged from 0.05 to 0.08, showing a quadratic trend with a peak between the fourth and sixth calving. For the Nelore and Tabapuã breeds, the estimates ranged from 0.03 to 0.07 and from 0.03 to 0.08, respectively, and increased with increasing calving number. The additive genetic correlations exhibited a similar trend among breeds and were higher for stayability between closer calvings. Even between more distant calvings (second v. eighth), stayability showed a moderate to high genetic correlation, which was 0.77, 0.57 and 0.79 for the Guzerá, Nelore and Tabapuã breeds, respectively. For Guzerá, when the models with 4 or 5 regression coefficients were compared, the rank correlations between predicted breeding values for the intercept were always higher than 0.99, indicating the possibility of practical application of the least parameterized model. In conclusion, the model with 4 random regression coefficients is recommended for the genetic evaluation of stayability to consecutive calvings in Zebu cattle.  相似文献   

6.
The objective of this study was to estimate heritabilities for and genetic correlations among different pathogen-specific mastitis traits. The traits were unspecific mastitis, which is all mastitis treatments regardless of the causative pathogen as well as mastitis caused by Streptococcus dysgalactiae, Escherichia coli, coagulase-negative staphylococci (CNS), Staphylococcus aureus and Streptococcus uberis. Also groups of pathogens were investigated, Gram-negative v. Gram-positive and contagious v. environmental pathogens. Data from 168 158 Danish Holstein cows calving first time between 1998 and 2006 were used in the analyses. Variances and covariances were estimated using uni- and bivariate threshold models via Gibbs sampling. Posterior means of heritabilities of pathogen-specific mastitis were lower than the heritability of unspecific mastitis, ranging from 0.035 to 0.076 for S. aureus and S. uberis, respectively. The heritabilities of groups of pathogen ranged from 0.053 to 0.087. Genetic correlations among the pathogen-specific mastitis traits ranged from 0.45 to 0.77. These estimates tended to be lowest for bacteria eliciting very different immune responses, which can be considered as the overall pleiotropic effect of genes affecting resistance to a specific pathogen, and highest for bacteria sharing characteristics regarding immune response. The genetic correlations between the groups of pathogens were high, 0.73 and 0.83. Results showed that the pathogen-specific traits used in this study should be considered as different traits. Genetic evaluation for pathogen-specific mastitis resistance may be beneficial despite lower heritabilities than unspecific mastitis because a pathogen-specific mastitis trait is a direct measure of an udder infection, and because the cost of a mastitis case caused by different pathogens has been shown to differ greatly. Sampling bias may be present because there were not pathogen information on all mastitis treatments and because some farms do not record pathogen information. Therefore, improved recording of pathogen information and mastitis treatments in general is critical for a successful genetic evaluation of udder health. Also, economic values have to be specified for each pathogen-specific trait separately.  相似文献   

7.
Genetic parameters for test-day milk flow (TDMF) of 2175 first lactations of Holstein cows were estimated using multiple-trait and repeatability models. The models included the direct additive genetic effect as a random effect and contemporary group (defined as the year and month of test) and age of cow at calving (linear and quadratic effect) as fixed effects. For the repeatability model, in addition to the effects cited, the permanent environmental effect of the animal was also included as a random effect. Variance components were estimated using the restricted maximum likelihood method in single- and multiple-trait and repeatability analyses. The heritability estimates for TDMF ranged from 0.23 (TDMF 6) to 0.32 (TDMF 2 and TDMF 4) in single-trait analysis and from 0.28 (TDMF 7 and TDMF 10) to 0.37 (TDMF 4) in multiple-trait analysis. In general, higher heritabilities were observed at the beginning of lactation until the fourth month. Heritability estimated with the repeatability model was 0.27 and the coefficient of repeatability for first lactation TDMF was 0.66. The genetic correlations were positive and ranged from 0.72 (TDMF 1 and 10) to 0.97 (TDMF 4 and 5). The results indicate that milk flow should respond satisfactorily to selection, promoting rapid genetic gains because the estimated heritabilities were moderate to high. Higher genetic gains might be obtained if selection was performed in the TDMF 4. Both the repeatability model and the multiple-trait model are adequate for the genetic evaluation of animals in terms of milk flow, but the latter provides more accurate estimates of breeding values.  相似文献   

8.
In 2010, a routine genetic evaluation on occurrence of clinical mastitis in three main dairy cattle breeds – Montbéliarde (MO), Normande (NO) and Holstein (HO) – was implemented in France. Records were clinical mastitis events reported by farmers to milk recording technicians and the analyzed trait was the binary variable describing the occurrence of a mastitis case within the first 150 days of the first three lactations. Genetic parameters of clinical mastitis were estimated for the three breeds. Low heritability estimates were found: between 2% and 4% depending on the breed. Despite its low heritability, the trait exhibits genetic variation so efficient genetic improvement is possible. Genetic correlations with other traits were estimated, showing large correlations (often>0.50, in absolute value) between clinical mastitis and somatic cell score (SCS), longevity and some udder traits. Correlation with milk yield was moderate and unfavorable (ρ=0.26 to 0.30). High milking speed was genetically associated with less mastitis in MO (ρ=−0.14) but with more mastitis in HO (ρ=0.18). A two-step approach was implemented for routine evaluation: first, a univariate evaluation based on a linear animal model with permanent environment effect led to pre-adjusted records (defined as records corrected for all non-genetic effects) and associated weights. These data were then combined with similar pre-adjusted records for others traits in a multiple trait BLUP animal model. The combined breeding values for clinical mastitis obtained are the official (published) ones. Mastitis estimated breeding values (EBV) were then combined with SCSs EBV into an udder health index, which receives a weight of 14.5% to 18.5% in the French total merit index (ISU) of the three breeds. Interbull genetic correlations for mastitis occurrence were very high (ρ=0.94) with Nordic countries, where much stricter recording systems exist reflecting a satisfactory quality of phenotypes as reported by the farmers. They were lower (around 0.80) with countries supplying SCS as a proxy for the international evaluation on clinical mastitis.  相似文献   

9.
Bivariate analyses of functional longevity in dairy cattle measured as survival to next lactation (SURV) with milk yield and fertility traits were carried out. A sequential threshold-linear censored model was implemented for the analyses of SURV. Records on 96 642 lactations from 41 170 cows were used to estimate genetic parameters, using animal models, for longevity, 305 d-standardized milk production (MY305), days open (DO) and number of inseminations to conception (INS) in the Spanish Holstein population; 31% and 30% of lactations were censored for DO and INS, respectively. Heritability estimates for SURV and MY305 were 0.11 and 0.27 respectively; while heritability estimates for fertility traits were lower (0.07 for DO and 0.03 for INS). Antagonist genetic correlations were estimated between SURV and fertility (-0.78 and -0.54 for DO and INS, respectively) or production (-0.53 for MY305), suggesting reduced functional longevity with impaired fertility and increased milk production. Longer days open seems to affect survival more than increased INS. Also, high productive cows were more problematic, less functional and more liable to being culled. The results suggest that the sequential threshold model is a method that might be considered at evaluating genetic relationship between discrete-time survival and other traits, due to its flexibility.  相似文献   

10.
A multi-trait animal model was used to estimate genetic parameters among lactation somatic cell score (SCS) and udder-type traits in South African Jersey cattle, through restricted maximum likelihood (REML) procedures. Data comprised records on 18 321 Jersey cows in 470 herds, collected through the National Milk Recording Scheme from 1996 to 2002. Average SCS in the first three lactations (SCS1, SCS2 and SCS3) were considered as different traits and the udder-type traits were fore udder attachment (FUA), rear udder height (RUH), rear udder width (RUW), udder cleft (UC), udder depth (UD), fore teat placement (FTP), rear teat placement (RTP) and fore teat length (FTL). Heritability estimates for the respective lactation SCS were 0.07 ± 0.01, 0.11 ± 0.01 and 0.11 ± 0.02. Udder-type traits had heritability estimates ranging from 0.14 ± 0.01 for UD to 0.30 ± 0.02 for FTL. Genetic correlations between SCS and udder-type traits ranged from -0.003 ± 0.07 between FUA and SCS3 to -0.50 ± 0.07 between UD and SCS3. Slow genetic progress is expected when selection is applied independently on SCS and udder-type traits, due to the generally low heritabilities. Tightly attached shallow udders with narrowly placed rear teats are associated with low SCS in the Jersey population.  相似文献   

11.
A genetic analysis of longitudinal binary clinical mastitis (CM) data recorded on about 90 000 first-lactation Swedish Holstein cows was carried out using linear random regression models (RRM). This method for genetic evaluation of CM has theoretical advantages compared to the method of linear cross-sectional models (CSM), which is currently being used. The aim of this study was to investigate the feasibility and suitability of estimating genetic parameters and predicting breeding values for CM with a linear sire RRM. For validation purposes, the estimates and predictions from the RRM were compared to those from linear sire longitudinal multivariate models (LMVM) and CSM. For each cow, the period from 10 days before to 241 days after calving was divided into four 1-week intervals followed by eight 4-week intervals. Within each interval, presence or absence of CM was scored as '1' or '0'. The linear RRM used to explain the trajectory of CM over time included a set of explanatory variables plus a third-order Legendre polynomial function of time for the sire effect. The time-dependent heritabilities and genetic correlations from the chosen RRM corresponded fairly well with estimates obtained from the linear LMVM for the separate intervals. Some discrepancy between the two methods was observed, with the more unstable results being obtained from the linear LMVM. Both methods indicated clearly that CM was not genetically the same trait throughout lactation. The correlations between predicted sire breeding values from the RRM, summarized over different time periods, and from linear CSM were rather high. They were, however, less than unity (0.74 to 0.96), which indicated some re-ranking of sires. Sire curves based on the time-specific breeding values from the RRM illustrated differences in intercept and slope among the best and the worst sires. To conclude, a linear sire RRM seemed to work well for genetic evaluation purposes, but was sensitive for estimation of genetic parameters.  相似文献   

12.
Genetic analysis for mastitis resistance was studied from two data sets. Firstly, risk factors for different mastitis traits, i.e. culling due to clinical or chronic mastitis and subclinical mastitis predicted from somatic cell count (SCC), were explored using data from 957 first lactation Lacaune ewes of an experimental INRA flock composed of two divergent lines for milk yield. Secondly, genetic parameters for SCC were estimated from 5 272 first lactation Lacaune ewes recorded among 38 flocks, using an animal model. In the experimental flock, the frequency of culling due to clinical mastitis (5%) was lower than that of subclinical mastitis (10%) predicted from SCC. Predicted subclinical mastitis was unfavourably associated with the milk yield level. Such an antagonism was not detected for clinical mastitis, which could result, to some extent, from its low frequency or from the limited amount of data. In practice, however, selection for mastitis resistance could be limited in a first approach to selection against subclinical mastitis using SCC. The heritability estimate of SCC was 0.15 for the lactation mean trait and varied from 0.04 to 0.12 from the first to the fifth test-day. The genetic correlation between lactation SCC and milk yield was slightly positive (0.15) but showed a strong evolution during lactation, i.e. from favourable (-0.48) to antagonistic (0.27). On a lactation basis, our results suggest that selection for mastitis resistance based on SCC is feasible. Patterns for genetic parameters within first lactation, however, require further confirmation and investigation.  相似文献   

13.
The aim of this study was to estimate the genetic parameters for preweaning traits and their relationship with reproductive, productive and morphological traits in alpacas. The data were collected from 2001 to 2015 in the Pacomarca experimental farm. The data set contained data from 4330 females and 3788 males corresponding to 6396 and 1722 animals for Huacaya and Suri variants, respectively. The number of records for Huacaya and Suri variants were 5494 and 1461 for birth weight (BW), 5429 and 1431 for birth withers height (BH), 3320 and 896 for both weaning weight (WW) and average daily gain (DG) from birth to weaning, 3317 and 896 for weaning withers height (WH), and 5514 and 1474 for survival to weaning. The reproductive traits analyzed were age at first calving and calving interval. The fiber traits were fiber diameter (FD), standard deviation of FD (SD), comfort factor and coefficient of variation of FD and the morphological traits studied were density, crimp in Huacaya and lock structure in Suri, head, coverage and balance. Regarding preweaning traits, model of analysis included additive, maternal and residual random effects for all traits, with sex, coat color, number of calving, month–year and contemporary group as systematic effects, and age at weaning as linear covariate for WW and WH. The most relevant direct heritabilities for Huacaya and Suri were 0.50 and 0.34 for WW, 0.36 and 0.66 for WH, 0.45 and 0.20 for DG, respectively. Maternal heritabilities were 0.25 and 0.38 for BW, 0.18 and 0.32 for BH, 0.29 and 0.39 for WW, 0.19 and 0.26 for WH, 0.27 and 0.36 for DG, respectively. Direct genetic correlations within preweaning traits were high and favorable and lower between direct and maternal genetic effects. The genetic correlations of preweaning traits with fiber traits were moderate and unfavorable. With morphological traits they were high and positive for Suri but not for Huacaya and favorable for direct genetic effect but unfavorable for maternal genetic effect with reproductive traits. If the selection objective was meat production, the selection would have to be based on the direct genetic effect for WW but not on the maternal genetic effect that has been shown to have less relevance. Other weaning traits such as WH or DG would be indirectly selected.  相似文献   

14.
Early lactation parameters are difficult to estimate from commercial dairy records due to the small number of records available before the peak of production. A biological model of lactation was used with weekly milk records from a single Holstein herd to estimate these early lactation parameters and the secretion rate of milk from the average cell throughout lactation. A genetic analysis of the lactation curve parameters, calculated curve characteristics and secretion rate traits was undertaken. Early lactation traits were found to have little genetic variation and effectively zero heritability. Secretion rate traits for milk, protein, lactose and water were all moderately heritable and highly genetically correlated (>0.87) but fat secretion rate had lower genetic correlations with the other secretion rates. A similar pattern of correlations was seen between total lactation yield traits for fat, protein, lactose and water. The genetic correlations between the lactation curve traits and the secretion rate traits were calculated. Total milk yield, peak yield and maximum secretion potential were all highly correlated with milk, lactose and water secretion rates but less so with fat and protein secretion rates. In particular, fat secretion rate had a moderate to low genetic correlation with these lactation curve traits. Persistency of lactation was highly correlated with fat and protein secretion rates, more persistent lactations being associated with lower rates of secretion of these milk components. Similar levels of heritability were found, where trait genetic parameters were directly equivalent to those derived from the same dataset by random regression methods. However, by using a biological model of lactation to analyse lactation traits new insights into the biology of lactation are possible and ways to select cows on a range of lactation traits may be achieved.  相似文献   

15.
The objective of this study was to evaluate the genetic relationship between postweaning weight gain (PWG), heifer pregnancy (HP), scrotal circumference (SC) at 18 months of age, stayability at 6 years of age (STAY) and finishing visual score at 18 months of age (PREC), and to determine the potential of these traits as selection criteria for the genetic improvement of growth and reproduction in Nellore cattle. The HP was defined as the observation that a heifer conceived and remained pregnant, which was assessed by rectal palpation at 60 days. The STAY was defined as whether or not a cow calved every year up to the age of 6 years, given that she was provided the opportunity to breed. The Bayesian linear-threshold analysis via the Gibbs sampler was used to estimate the variance and covariance components applying a multitrait model. Posterior mean estimates of direct heritability were 0.15 ± 0.00, 0.42 ± 0.02, 0.49 ± 0.01, 0.11 ± 0.01 and 0.19 ± 0.00 for PWG, HP, SC, STAY and PREC, respectively. The genetic correlations between traits ranged from 0.17 to 0.62. The traits studied generally have potential for use as selection criteria in genetic breeding programs. The genetic correlations between all traits show that selection for one of these traits does not imply the loss of the others.  相似文献   

16.
In order to achieve improvements in production efficiency in livestock, herds of high sexual precocity and good fertility are needed. These traits increase the availability of animals in herd, either for sale or selection, allowing both greater selective intensity and greater genetic progress. This study aimed at estimating genetic parameters for reproductive traits measured directly in females in order to verify whether they could be used as selection criteria for genetic improvement in Nellore cows, as well as estimating the genetic relationship among these traits and scrotal circumference (SC), the traditional selection criterion for sexual precocity in cattle. In addition to SC, stayability (STAY), number of calvings at 53 months (NC53) and heifers rebreeding (HR) were studied. The (co)variances and genetic parameters were estimated using Bayesian inference. STAY, NC53 and HR were analyzed assuming a threshold model, whereas SC was analyzed with a linear model. Heritability estimated for NC53 was 0.22, and this trait was strongly and positively correlated with STAY, meaning selection for NC53 would improve productive longevity of Nellore cows. Correlations estimated between HR and STAY (≈0.97) and between HR and NC53 (≈0.99) allow an improvement on HR rates if selection was applied to traits related to longevity. Genetic correlations among SC and female reproductive traits were positive but weak, suggesting the need to use reproductive traits directly measured in females in order to obtain greater improvements in sexual precocity and longevity.  相似文献   

17.
This study investigated the profile of locomotion score and lameness before the first calving and throughout the first (n=237) and second (n=66) lactation of 303 Holstein cows raised on a commercial farm. Weekly heritability estimates of locomotion score and lameness, and their genetic and phenotypic correlations with milk yield, body condition score, BW and reproduction traits were derived. Daughter future locomotion score and lameness predictions from their sires’ breeding values for conformation traits were also calculated. First-lactation cows were monitored weekly from 6 weeks before calving to the end of lactation. Second-lactation cows were monitored weekly throughout lactation. Cows were locomotion scored on a scale from one (sound) to five (severely lame); a score greater than or equal to two defined presence of lameness. Cows’ weekly body condition score and BW was also recorded. These records were matched to corresponding milk yield records, where the latter were 7-day averages on the week of inspection. The total number of repeated records amounted to 12 221. Data were also matched to the farm’s reproduction database, from which five traits were derived. Statistical analyses were based on uni- and bivariate random regression models. The profile analysis showed that locomotion and lameness problems in first lactation were fewer before and immediately after calving, and increased as lactation progressed. The profile of the two traits remained relatively constant across the second lactation. Highest heritability estimates were observed in the weeks before first calving (0.66 for locomotion score and 0.54 for lameness). Statistically significant genetic correlations were found for first lactation weekly locomotion score and lameness with body condition score, ranging from −0.31 to −0.65 and from −0.44 to −0.76, respectively, suggesting that cows genetically pre-disposed for high body condition score have fewer locomotion and lameness issues. Negative (favourable) phenotypic correlations between first lactation weekly locomotion score/lameness and milk yield averaged −0.27 and −0.17, respectively, and were attributed to management factors. Also a phenotypic correlation between lameness and conception rate of −0.19 indicated that lame cows were associated with lower success at conceiving. First-lactation daughter locomotion score and/or lameness predictions from sires’ estimated breeding values for conformation traits revealed a significant linear effect of rear leg side view, rear leg rear view, overall conformation, body condition score and locomotion, and a quadratic effect of foot angle.  相似文献   

18.
In sheep, the traditional chemical control of gastrointestinal nematode (GIN) parasites with anthelmintics has led to the widespread development of anthelmintic resistance. The selection of sheep with enhanced resistance to GIN parasites has been suggested as an alternative strategy to develop sustainable control of parasite infections. Most of the estimations of the genetic parameters for sheep resistance to GIN parasites have been obtained from young animals belonging to meat- and/or wool-specialised breeds. We present here the estimated genetic parameters for four parasite resistance traits studied in a commercial population of adult Spanish Churra dairy ewes. These involved two faecal egg counts (FECs) (LFEC0 and LFEC1) and two serum indicator traits, the anti-Teladorsagia circumcincta fourth stage larvae IgA (IgA) and the pepsinogen (Peps) levels. In addition, this study has allowed us to identify the environmental factors influencing parasite resistance in naturally infected Spanish Churra sheep and to quantify the genetic component of this complex phenotype. The heritabilities estimated for the two FECs analysed (0.12 for LFEC0 and 0.09 for LFEC1) were lower than those obtained for the examined serum indicators (0.19 for IgA and 0.21 for Peps). The genetic correlations between the traits ranged from 0.43 (Peps-IgA) to 0.82 (LFEC0-LFEC1) and were higher than their phenotypic counterparts, which ranged between 0.07 and 0.10. The heritabilities estimated for the studied traits were lower than previously reported in lambs. This may be due to the differences in the immune mechanisms controlling the infection in young (antibody reactions) and adult (hypersensitivity reactions) animals/sheep. In summary, this study demonstrates the presence of heritable variation in parasite resistance indicator traits in the Churra population studied, which suggests that genetic improvement is feasible for this complex trait in this population. However, further studies in which the experimental variables are controlled as much as possible are needed to identify the best trait that could be measured routinely in adult sheep as an indicator of parasite resistance.  相似文献   

19.
Application of test-day models for the genetic evaluation of dairy populations requires the solution of large mixed model equations. The size of the (co)variance matrices required with such models can be reduced through the use of its first eigenvectors. Here, the first two eigenvectors of (co)variance matrices estimated for dairy traits in first lactation were used as covariables to jointly estimate genetic parameters of the first three lactations. These eigenvectors appear to be similar across traits and have a biological interpretation, one being related to the level of production and the other to persistency. Furthermore, they explain more than 95% of the total genetic variation. Variances and heritabilities obtained with this model were consistent with previous studies. High correlations were found among production levels in different lactations. Persistency measures were less correlated. Genetic correlations between second and third lactations were close to one, indicating that these can be considered as the same trait. Genetic correlations within lactation were high except between extreme parts of the lactation. This study shows that the use of eigenvectors can reduce the rank of (co)variance matrices for the test-day model and can provide consistent genetic parameters.  相似文献   

20.
Profitability of beef production can be increased by genetically improving carcass traits. To construct breeding value evaluations for carcass traits, breed-specific genetic parameters were estimated for carcass weight, carcass conformation and carcass fat in five beef cattle breeds in Finland (Hereford, Aberdeen Angus, Simmental, Charolais and Limousin). Conformation and fat were visually scored using the EUROP carcass classification. Each breed was separately analyzed using a multitrait animal model. A total of 6879–19 539 animals per breed had phenotypes. For the five breeds, heritabilities were moderate for carcass weight (h2=0.39 to 0.48, s.e.=0.02 to 0.04) and slightly lower for conformation (h2=0.30 to 0.44, s.e.=0.02 to 0.04) and carcass fat (h2=0.29 to 0.44, s.e.=0.02 to 0.04). The genetic correlation between carcass weight and conformation was favorable in all breeds (rG=0.37 to 0.53, s.e.=0.04 to 0.05), heavy carcasses being genetically more conformed. The phenotypic correlation between carcass weight and carcass fat was moderately positive in all breeds (rP=0.21 to 0.32), implying that increasing carcass weight was related to increasing fat levels. The respective genetic correlation was the strongest in Hereford (rG=0.28, s.e.=0.05) and Angus (rG=0.15, s.e.=0.05), the two small body-sized British breeds with the lowest conformation and the highest fat level. The correlation was weaker in the other breeds (rG=0.08 to 0.14). For Hereford, Angus and Simmental, more conformed carcasses were phenotypically fatter (rP=0.11 to 0.15), but the respective genetic correlations were close to zero (rG=0.05 to 0.04). In contrast, in the two large body-sized and muscular French breeds, the genetic correlation between conformation and fat was negative and the phenotypic correlation was close to zero or negative (Charolais: rG=0.18, s.e.=0.06, rP=0.02; Limousin: rG=0.56, s.e.=0.04, rP=0.13). The results indicate genetic variation for the genetic improvement of the carcass traits, favorable correlations for the simultaneous improvement of carcass weight and conformation in all breeds, and breed differences in the correlations of carcass fat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号