首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbohydrates are the main source of energy in ruminants. Their site, extent and kinetics of digestion highly impact the amount and profile of nutrients delivered to peripheral tissues, and the responses of the animal, i.e. ingestion, efficiency of production, N and methane excretion, quality of products and welfare. Development of multi-objective feed evaluation systems thus requires a more integrated quantitative knowledge on carbohydrate digestion and yield of terminal products, as well as on their metabolism by splanchnic tissues. The objective of this paper is to review (i) quantitative knowledge on fibre, starch and sugar digestion, volatile fatty acids (VFA) and glucose production and splanchnic metabolism and (ii) modelling approaches which aim at representing and/or predicting nutrient fluxes in the digestive tract, portal and hepatic drainage. It shows that the representation of carbohydrate digestion and VFA yield is relatively homogeneous among models. Although published quantitative comparisons of these models are scarce, they stress that prediction of fibre digestion and VFA yield and composition is still not good enough for use in feed formulation, whereas prediction of microbial N yield and ruminal starch digestion seems to be more satisfactory. Uncertainties on VFA stoichiometric coefficients and absorption rates may partly explain the poor predictions of VFA. Hardly any mechanistic models have been developed on portal-drained viscera (PDV) metabolism whereas a few exist for liver metabolism. A qualitative comparison of these models is presented. Most are focused on dairy cows and their level of aggregation in the representation of nutrient fluxes and metabolism highly differs depending on their objectives. Quantitative comparison of these models is still lacking. However, recent advances have been achieved with the empirical prediction of VFA and glucose production and fluxes through PDV and liver based on the current INRA feed evaluation system. These advances are presented. They illustrate that empirical prediction of ruminal VFA and intestinal glucose production can be evaluated by comparison with measured net portal net fluxes. We also illustrate the potential synergy between empirical and mechanistic modelling. It is concluded that concomitant empirical and mechanistic approach may likely help to progress towards development of multi-objective feed evaluation systems based on nutrient fluxes.  相似文献   

2.
A simulation rumen model has been developed to function under non-steady state conditions in order to allow prediction of nutrient availability in dairy cows managed under discontinuous feeding systems. The model simulates availability of glycogenic, aminogenic and lipogenic nutrients to lactating dairy cows fed discontinuously. The model structure considers input of up to three different feeds fed independently at any time during the day. Feeds are described by their nitrogen (N), carbohydrate and fatty acid fractions. The N containing feed fractions include ruminally undegraded crude protein (CP), ruminally insoluble but potentially degradable CP, ruminally soluble CP and ammonia N. The feed carbohydrate fractions include ruminally undegradable neutral detergent fibre (NDF), ruminally degradable NDF, ruminally insoluble starch, ruminally soluble starch and sugars. The fatty acids in the feeds are divided between long chain fatty acids and volatile fatty acids (VFA). Additionally four pools were defined representing absorption of amino acids, glucose, long chain fatty acids and volatile fatty acids. The rumen microbial population is represented as a single pool. Besides a flexible structure, new features to the extant model include adoption of the concept of chewing efficiency (or chewing effectiveness) during eating, variable fractional ruminal absorption rates of VFA and variable fractional ruminal degradation rates of NDF as a function of rumen liquid pH, as well as a variable rumen volume which directly affects rumen concentrations of metabolites. The model continuously (i.e., by minute) predicts release of soluble components from the feeds in the rumen, concentration and absorption of fermentation end products in the rumen, rumen pools of nutrients and microbial biomass dynamics, as well as passage of microbial biomass and non-fermented nutrients from the rumen, in response to various feeding strategies. Model evaluation covered a wide range of feeding strategies that included pasture and housed feeding systems. Overall, the mean square prediction error (MSPE) as a percentage of the observed mean was relatively low (<10%) with a high amount of the total variation explained by random variation (>65%). Deviation from unity varied between 23% (rumen dry matter content) and 25% (NDF), indicating some consistent over and/or under prediction. A more detailed evaluation was done based on studies available that reported diurnal behaviour of key model outputs such as rumen pools, rumen pH, and rumen VFA. The predictions broadly simulated the observed values quantitatively, relative to general diurnal patterns, and relative to differences between treatments in the predicted diurnal patterns. Results show that the model provides a tool to assess potential outcomes of changing feeding strategies which may be particularly valuable in assessing selection of feeds, amounts and times of the day to offer the feeds. The continuous nature of the simulated output also allows determination of the time(s) of the day that ruminal (and/or post-ruminal) delivery of nutrients may limit ruminal output of nutrients (and/or availability of nutrients) to support milk nutrient synthesis.  相似文献   

3.
Grass-based diets are of increasing social-economic importance in dairy cattle farming, but their low supply of glucogenic nutrients may limit the production of milk. Current evaluation systems that assess the energy supply and requirements are based on metabolisable energy (ME) or net energy (NE). These systems do not consider the characteristics of the energy delivering nutrients. In contrast, mechanistic models take into account the site of digestion, the type of nutrient absorbed and the type of nutrient required for production of milk constituents, and may therefore give a better prediction of supply and requirement of nutrients. The objective of the present study is to compare the ability of three energy evaluation systems, viz. the Dutch NE system, the agricultural and food research council (AFRC) ME system, and the feed into milk (FIM) ME system, and of a mechanistic model based on Dijkstra et al. [Simulation of digestion in cattle fed sugar cane: prediction of nutrient supply for milk production with locally available supplements. J. Agric. Sci., Cambridge 127, 247–60] and Mills et al. [A mechanistic model of whole-tract digestion and methanogenesis in the lactating dairy cow: model development, evaluation and application. J. Anim. Sci. 79, 1584–97] to predict the feed value of grass-based diets for milk production. The dataset for evaluation consists of 41 treatments of grass-based diets (at least 0.75 g ryegrass/g diet on DM basis). For each model, the predicted energy or nutrient supply, based on observed intake, was compared with predicted requirement based on observed performance. Assessment of the error of energy or nutrient supply relative to requirement is made by calculation of mean square prediction error (MSPE) and by concordance correlation coefficient (CCC). All energy evaluation systems predicted energy requirement to be lower (6–11%) than energy supply. The root MSPE (expressed as a proportion of the supply) was lowest for the mechanistic model (0.061), followed by the Dutch NE system (0.082), FIM ME system (0.097) and AFRC ME system (0.118). For the energy evaluation systems, the error due to overall bias of prediction dominated the MSPE, whereas for the mechanistic model, proportionally 0.76 of MSPE was due to random variation. CCC analysis confirmed the higher accuracy and precision of the mechanistic model compared with energy evaluation systems. The error of prediction was positively related to grass protein content for the Dutch NE system, and was also positively related to grass DMI level for all models. In conclusion, current energy evaluation systems overestimate energy supply relative to energy requirement on grass-based diets for dairy cattle. The mechanistic model predicted glucogenic nutrients to limit performance of dairy cattle on grass-based diets, and proved to be more accurate and precise than the energy systems. The mechanistic model could be improved by allowing glucose maintenance and utilization requirements parameters to be variable.  相似文献   

4.
Mitigating methane losses from cattle has economic as well as environmental benefits. The aim of this paper is to review the current approaches in relation to associated advantages and disadvantages and future options to reduce enteric methane emission from cattle. Current technologies can be broadly grouped into those that increase productivity of the animal (improved nutrition strategies) so that less methane is produced per unit of meat or milk, and those that directly modify the rumen fermentation so that less methane is produced in total. Data suggest that many of these practices are not appropriate for long term mitigation of methane emissions in ruminants because of their constraints. So it is necessity to develop long term strategies in suppressing methane production. An integrated research investigating animal, plant, microbe and nutrient level strategies would offer a long term solution of methane production. Genetic selection of animals, vaccination, probiotics, prebiotics and plant improvement are the most promising options of all the future approaches discussed. These approaches will reduce enteric methane production without any hazard to animal or environment.  相似文献   

5.
Evolutionary morphological and physiological differences between browsers and grazers contribute to species‐specific digestion efficiency of food resources. Rumen microbial community structure of browsers is supposedly adapted to characteristic nutrient composition of the diet source. If this assumption is correct, domesticated ruminants, or grazers, are poor model animals for assessing the nutritional value of food consumed by browsing game species. In this study, typical spring and summer foods of the European moose (Alces alces) were combined with rumen fluid collected from both dairy cows (Bos taurus) and from moose, with the aim of comparing fermentation efficiency and microbial community composition. The nutritional value of the food resources was characterized by chemical analysis and advanced in vitro measurements. The study also addressed whether or not feed evaluation based on in vitro techniques with cattle rumen fluid as inoculum could be a practical alternative when evaluating the nutritional value of plants consumed by wild browsers. Our results suggest that the fermentation characteristics of moose spring and summer food are partly host‐specific and related to the contribution of the bacterial phyla Firmicutes and Bacteriodetes to the rumen microbial community. Host‐specific adaptations of the ruminal microbial community structure could be explained from the evolutionary adaptations related to feeding habitats and morphophysiological differences between browsers and grazers. However, the observed overall differences in microbial community structure could not be related to ruminal digestion parameters measured in vitro. The in vitro evaluation of digestion efficiency reveals that equal amounts of methane were produced across all feed samples regardless of whether the ruminal fluid was from moose or dairy cow. The results of this study suggested that the nutritional value of browsers' spring and summer food can be predicted using rumen fluid from domesticated grazers as inoculum in in vitro assessments of extent of digestion when excluding samples of the white water lily root, but not of fermentation characteristics as indicated by the proportions of individual fermentation fatty acids to the total of volatile fatty acids.  相似文献   

6.
The rumen is a highly diverse ecosystem comprising different microbial groups including methanogens that consume a considerable part of the ruminant’s nutrient energy in methane production. The consequences of methanogenesis in the rumen may result in the low productivity and possibly will have a negative impact on the sustainability of the ruminant’s production. Since enteric fermentation emission is one of the major sources of methane and is influenced by a number of environmental factors, diet being the most significant one, a number of in vitro and in vivo trials have been conducted with different feed supplements (halogenated methane analogues, bacteriocins, propionate enhancers, acetogens, fats etc.) for mitigating methane emissions directly or indirectly, yet extensive research is required before reaching a realistic solution. Keeping this in view, the present article aimed to cover comprehensively the different aspects of rumen methanogenesis such as the phylogeny of methanogens, their microbial ecology, factors affecting methane emission, mitigation strategies and need for further study.  相似文献   

7.
In ruminants, high fermentation capacity is necessary to develop more efficient ruminant production systems. Greater level of production depends on the ability of the microbial ecosystem to convert organic matter into precursors of milk and meat. This has led to increased interest by animal nutritionists, biochemists and microbiologists in evaluating different strategies to manipulate the rumen biota to improve animal performance, production efficiency and animal health. One of such strategies is the use of natural feed additives such as single-celled fungi yeast. The main objectives of using yeasts as natural additives in ruminant diets include; (i) to prevent rumen microflora disorders, (ii) to improve and sustain higher production of milk and meat, (iii) to reduce rumen acidosis and bloat which adversely affect animal health and performance, (iv) to decrease the risk of ruminant-associated human pathogens and (v) to reduce the excretion of nitrogenous-based compounds, carbon dioxide and methane. Yeast, a natural feed additive, has the potential to enhance feed degradation by increasing the concentration of volatile fatty acids during fermentation processes. In addition, microbial growth in the rumen is enhanced in the presence of yeast leading to the delivery of a greater amount of microbial protein to the duodenum and high nitrogen retention. Single-celled fungi yeast has demonstrated its ability to increase fibre digestibility and lower faecal output of organic matter due to improved digestion of organic matter, which subsequently improves animal productivity. Yeast also has the ability to alter the fermentation process in the rumen in a way that reduces methane formation. Furthermore, yeast inclusion in ruminant diets has been reported to decrease toxins absorption such as mycotoxins and promote epithelial cell integrity. This review article provides information on the impact of single-celled fungi yeast as a feed supplement on ruminal microbiota and its function to improve the health and productive longevity of ruminants.  相似文献   

8.
This study evaluated fermentative biohydrogen production from sucrose supplemented with dairy cattle manure at different sucrose:manure ratios. Hydrogen yields found in this study (2.9-5.3 M hydrogen/M sucrose) at ambient temperature are higher than literature results obtained at mesophilic temperatures. This study demonstrated that dairy cattle manure could serve as a buffering agent to maintain recommended pH levels; as a nutrient source to provide the required nutrients for hydrogen production; as a seed to produce hydrogen from sucrose; and as a co-substrate to improve the hydrogen yield. Based on an analysis of the net energy gain, it is concluded that positive net energy gains can be realized with non-thermal pretreatment and/or by combining dark fermentation with anaerobic digestion or microbial fuel cells to extract additional energy from the aqueous products of dark fermentation.  相似文献   

9.
The objectives of the trial were to compare the effects of supplementing rare earth elements (REE) lanthanum (La), cerium (Ce) and praseodymium (Pr) on rumen fermentation, nutrient digestion, methane (CH4) production, nitrogen (N) balance and plasma biochemical parameters in beef cattle. Four Simmental male cattle, aged 12 months, with initial average liveweight of 333 ± 9 kg and fitted with rumen cannulas, were fed with a basal ration composed of concentrate mixture and maize silage. Animals received a basal ration without adding REE (Control) or three treatments, i.e. supplementing LaCl3, CeCl3 or PrCl3 at 204 mg/kg DM to the basal ration, respectively, which were allocated in a 4 × 4 Latin square design. Each experimental period lasted 15 d, consisting of 12 d for pre-treatment and three subsequent days for sampling. Results showed that all tested levels of REE tended to increase neutral detergent fibre digestibility (p = 0.064) and tended to decrease rumen CH4 production (p = 0.056). Supplementing LaCl3 and CeCl3 decreased total N excretion and urinary N excretion, increased N retention (< 0.05), tended to increase total urinary purine derivatives (PD) (= 0.053) and microbial N flow (= 0.095), whereas supplementing PrCl3 did not affect N retention, urinary PD and microbial N flow. No differences were found in the effects of nutrient digestibility, CH4 production and plasma biochemical parameters among LaCl3, CeCl3 and PrCl3. Further trials using graded levels of LaCl3, CeCl3 and PrCl3 in a wide range are needed to obtain more pronounced results for comparing effects of La, Ce and Pr on rumen fermentation and nutrient digestion in beef cattle.  相似文献   

10.
The effect of pH on rumen fermentation and microbial population was studied in a continuously cultured rumen ecosystem. A marked decrease in the production of volatile fatty acids and methane from alfalfa hay occurred when the cultures were maintained at pH values below 6.0. The decrease in acetate and methane production was greater than that of propionate production. The culture maintained at pH 6.7 contained the types of bacteria often found in high concentration in the rumen, whereas the culture maintained at pH 5.0 had a high percentage of bacteria which could not be identified with the major rumen bacteria found in rumens of animals fed alfalfa hay. Replacement of the bicarbonate-phosphate buffer used to maintain fermentor pH at 6.7 with phosphate alone did not greatly alter the fermentation products produced from a hay-concentrate substrate.  相似文献   

11.
Ruminant livestock have the ability to produce high-quality human food from feedstuffs of little or no value for humans. Balanced essential amino acid composition of meat and milk from ruminants makes those protein sources valuable adjuncts to human diets. It is anticipated that there will be increasing demand for ruminant proteins in the future. Increasing productivity per animal dilutes out the nutritional and environmental costs of maintenance and rearing dairy animals up to production. A number of nutritional strategies improve production per animal such as ration balancing in smallholder operations and small grain supplements to ruminants fed high-forage diets. Greenhouse gas emission intensity is reduced by increased productivity per animal; recent research has developed at least one effective inhibitor of methane production in the rumen. There is widespread over-feeding of protein to dairy cattle; milk and component yields can be maintained, and sometimes even increased, at lower protein intake. Group feeding dairy cows according to production and feeding diets higher in rumen-undegraded protein can improve milk and protein yield. Supplementing rumen-protected essential amino acids will also improve N efficiency in some cases. Better N utilization reduces urinary N, which is the most environmentally unstable form of excretory N. Employing nutritional models to more accurately meet animal requirements improves nutrient efficiency. Although smallholder enterprises, which are concentrated in tropical and semi-tropical regions of developing countries, are subject to different economic pressures, nutritional biology is similar at all production levels. Rather than milk volume, nutritional strategies should maximize milk component yield, which is proportional to market value as well as food value when milk nutrients are consumed directly by farmers and their families. Moving away from Holsteins toward smaller breeds such as Jerseys, Holstein-Jersey crosses or locally adapted breeds (e.g. Vechur) would also reduce lactose production and improve metabolic, environmental and economic efficiencies. Forages containing condensed tannins or polyphenol oxidase enzymes have reduced rumen protein degradation; ruminants capture this protein more efficiently for meat and milk. Although these forages generally have lower yields and persistence, genetic modification would allow insertion of these traits into more widely cultivated forages. Ruminants will retain their niches because of their ability to produce valuable human food from low value feedstuffs. Employing these emerging strategies will allow improved productive efficiency of ruminants in both developing and developed countries.  相似文献   

12.
Comparative metagenomics approach has been used in this study to discriminate colonization of methanogenic population in different breeds of cattle. We compared two Indian cattle breeds (Gir and Kankrej) and two exotic cattle (Holstein and Jersey) breeds. Using a defined dietary plan for selected Indian varieties, the diet dependent shifts in microbial community and abundance of the enzymes associated with methanogenesis were studied. This data has been compared with the available rumen metagenome data from Holstein and Jersey dairy cattle. The abundance of genes for methanogenesis in Holstein and Jersey cattle came from Methanobacteriales order whereas, majority of the enzymes for methanogenesis in Gir and Kankrej cattle came from Methanomicrobiales order. The study suggested that by using slow/less digestible feed, the propionate levels could be controlled in rumen; and in turn, this would also help in further reducing the hydrogenotrophic production of methane. The study proposes that with the designed diet plan the overall methanogenic microbial pool or the individual methanogens could be targeted for development of methane mitigation strategies.  相似文献   

13.
The rumen microbiota enable ruminants to degrade complex ligno-cellulosic compounds to produce high quality protein for human consumption. However, enteric fermentation by domestic ruminants generates negative by-products: greenhouse gases (methane) and environmental nitrogen pollution. The current lack of cultured isolates representative of the totality of rumen microbial species creates an information gap about the in vivo function of the rumen microbiota and limits our ability to apply predictive biology for improvement of feed for ruminants. In this work we took a whole ecosystem approach to understanding how the metabolism of the microbial population responds to introduction of its substrate. Fourier Transform Infra Red (FTIR) spectroscopy-based metabolite fingerprinting was used to discriminate differences in the plant-microbial interactome of the rumen when using three forage grass varieties (Lolium perenne L. cv AberDart, AberMagic and Premium) as substrates for microbial colonisation and fermentation. Specific examination of spectral regions associated with fatty acids, amides, sugars and alkanes indicated that although the three forages were apparently similar by traditional nutritional analysis, patterns of metabolite flux within the plant-microbial interactome were distinct and plant genotype dependent. Thus, the utilisation pattern of forage nutrients by the rumen microbiota can be influenced by subtleties determined by forage genotypes. These data suggest that our interactomic approach represents an important means to improve forages and ultimately the livestock environment.  相似文献   

14.
Herbivorous mammals and wood-eating insects are fairly effective in the digestion of plant polymers, such as lignocellulosics. In order to improve methane production from the lignocellulosic biomass, several kinds of anaerobic digestion processes derived from animal models have been devised. However, the rates of biodegradation occurring in the anaerobic bioreactors still remain lower than in animal guts. The effectiveness of the digestive systems of those animals results from the concerted action of the various enzymes (e.g. cellulases, xylanases, esterases, ligninases) produced in their guts as well as their integration with mechanical and chemical actions. Powerful pretreatment (prefermentation) operations are integrated to and support efficiently the microbial fermentation system, e.g. the rumination (i.e. mechanical) in ruminants and the secretion of endogenous cellulases (i.e. enzymatic) or the alkaline treatment (chemical) at mid-way in xylophagous insects. The oxygen gradients along the gastrointestinal tract may also stimulate the hydrolytic activities of some microbial populations. In addition, the solid retention time, the digesta flow and the removal of the end-products are well ordered to enable animals to thrive on a complex polymer such as lignocellulose. At the same time, technologies were developed to degrade lignocellulosic biomass, such as the rumen derived anaerobic digestion (RUDAD) process and the rumen simulating technique (RUSITEC), more elaborated and using rumen microbial consortia. Overall, they showed that the fermentation taking place in the rumen fermentation and even in the hindgut are biological processes that go beyond the limited environmental conditions generally found in anaerobic digesters. Hence, knowledge on herbivores' digestion mechanisms might be better exploited in the design and operation of anaerobic digesters. This literature review is a cross-analysis of the relevant information about the digestive strategies of herbivorous and wood-eating animals and the bioengineering techniques in lignocelluloses degradation. The aim is to highlight strategies of animals' digestion simulation for more effective anaerobic digestion of lignocellulosic compounds and other solid residues.  相似文献   

15.
Microbial transformations in the rumen ecosystem have a major impact on our ability to meet the challenge of reducing the environmental footprint of ruminant livestock agriculture, as well as enhancing product quality. Current understanding of the rumen microbial ecosystem is limited, and affects our ability to manipulate rumen output. The view of ruminal fermentation as the sum of activities of the dominant rumen microbiota is no longer adequate, with a more holistic approach required. This paper reviews rumen functionality in the context of the microbiota of the rumen ecosystem, addressing ruminal fermentation as the product of an ecosystem while highlighting the consequences of this for ruminant agriculture. Microbial diversity in the rumen ecosystem enhances the resistance of the network of metabolic pathways present, as well as increasing the potential number of new pathways available. The resulting stability of rumen function is further promoted by the existence of rumen microbiota within biofilms. These protected, structured communities offer potential advantages, but very little is currently known about how ruminal microorganisms interact on feed-surfaces and how these communities develop. The temporal and spatial development of biofilms is strongly linked to the availability of dietary nutrients, the dynamics of which must also be given consideration, particularly in fresh-forage-based production systems. Nutrient dynamics, however, impact not only on pathway inputs but also the turnover and output of the whole ecosystem. Knowledge of the optimal balance of metabolic processes and the corresponding microbial taxa required to provide a stable, balanced ecosystem will enable a more holistic understanding of the rumen. Future studies should aim to identify key ecosystem processes and components within the rumen, including microbial taxa, metabolites and plant-based traits amenable to breeding-based modification. As well as gaining valuable insights into the biology of the rumen ecosystem, this will deliver realistic and appropriate novel targets for beneficial manipulation of rumen function.  相似文献   

16.
近年来在奶牛试验中,对瘤胃微生物的研究引起了人们越来越多的兴趣。这些研究的目的多是将微生物组成变化与日粮组成、宿主生产性能(如饲料效率,产奶量,乳脂等)、健康(如瘤胃酸中毒和亚急性酸中毒)以及环境(如甲烷排放)联系起来,另外还有一些研究则强调了微生物在多种反刍动物瘤胃发育中的作用。关于奶牛瘤胃微生物的大部分发现都是基于扩增子测序,可以揭示瘤胃微生物的分类组成,以及在不同处理条件下瘤胃菌群的变化。尽管新兴的宏基因组学和宏转录组学能够深入探索瘤胃微生物的功能,但在数据分析和解释方面也带来了更多的挑战,如目前大多数论文都严重依赖于相关性和推测分析。综述了奶牛瘤胃微生物研究的进展和局限,包括瘤胃微生物与产奶效率、甲烷排放以及瘤胃发育的关系,以及奶牛瘤胃微生物未来的研究趋势。  相似文献   

17.
It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/ g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations.  相似文献   

18.
19.
Maintaining growth through intensification in the New Zealand dairy industry is a challenge for various reasons, in particular sustainably managing the large volumes of effluent. Dairy farm effluents have traditionally been treated using two-pond systems that are effective in the removal of carbon and suspended solids, however limited in their ability to remove nutrients. In the past these nutrient-rich two-pond treated effluents were disposed of in surface waters. Current environmental concerns associated with the direct discharge of these effluents to surface waters has prompted in developing technologies to either minimise the nutrient content of the effluent or apply effluents to land. Here, we discuss various approaches and methods of treatment that enable producers to sustainably manage farm effluents, including advanced pond treatment systems, stripping techniques to reduce nutrient concentration, land application strategies involving nutrient budgeting models to minimise environmental degradation and enhance fodder quality. We also discuss alternative uses of farm effluents to produce energy and animal feed.  相似文献   

20.
Rubber seed oil (RO) that is rich in polyunsaturated fatty acids (FA) can improve milk production and milk FA profiles of dairy cows; however, the responses of digestion and ruminal fermentation to RO supplementation in vivo are still unknown. This experiment was conducted to investigate the effect of RO and flaxseed oil (FO) supplementation on nutrients digestibility, rumen fermentation parameters and rumen FA profile of dairy cows. Forty-eight mid-lactation Holstein dairy cows were randomly assigned to one of four treatments for 8 weeks, including basal diet (CON) or the basal dietary supplemented with 4% RO, 4% FO or 2% RO plus 2% FO on a DM basis. Compared with CON, dietary oil supplementation improved the total tract apparent digestibility of DM, neutral detergent fibre and ether extracts ( P < 0.05). Oil treatment groups had no effects on ruminal digesta pH value, ammonia N and microbial crude protein ( P > 0.05), whereas oil groups significantly changed the volatile fatty acid (VFA) profile by increasing the proportion of propionate whilst decreasing total VFA concentration, the proportion of acetate and the ratio of acetate to propionate ( P < 0.05). However, there were no differences in VFA proportions between the three oil groups (P > 0.05). In addition, dietary oil supplementation increased the total unsaturated FA proportion in the rumen by enhancing the proportion of trans-11 C18:1 vaccenic acid (VA), cis-9, trans-11 conjugated linoleic acid (CLA) and α-linolenic acid (ALA) ( P < 0.05). These results indicate that dietary supplementation with RO and FO could improve nutrients digestibility, ruminal fermentation and ruminal FA profile by enhancing the VA, cis-9, trans-11 CLA and ALA composition of lactating dairy cows. These findings provide a theoretical basis for the application of RO in livestock production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号