首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of plastic traits requires phenotypic trade-offs and heritable traits, yet the latter requirement has received little attention, especially for predator-induced traits. Using a half-sib design, I examined the narrow-sense heritability of predator-induced behaviour, morphology, and life history in larval wood frogs (Rana sylvatica). Many of the traits had significant additive genetic variation in predator (caged Anax longipes) and no-predator environments. Whereas most traits had moderate to high heritability across environments, tail depth exhibited high heritability with predators but low heritability without predators. In addition, several traits had significant heritability for plasticity, suggesting a potential for selection to act on plasticity per se. Genetic correlations confirmed known phenotypic relationships across environments and identified novel relationships within each environment. This appears to be the first investigation of narrow-sense heritabilities for predator-induced traits and confirms that inducible traits previously shown to be under selection also have a genetic basis and should be capable of exhibiting evolutionary responses.  相似文献   

2.
The objective of the present study was to estimate heritabilities as well as genetic and phenotypic correlations for egg weight, specific gravity, shape index, shell ratio, egg shell strength, egg length, egg width and shell weight in Japanese quail eggs. External egg quality traits were measured on 5864 eggs of 934 female quails from a dam line selected for two generations. Within the Bayesian framework, using Gibbs Sampling algorithm, a multivariate animal model was applied to estimate heritabilities and genetic correlations for external egg quality traits. The heritability estimates for external egg quality traits were moderate to high and ranged from 0.29 to 0.81. The heritability estimates for egg and shell weight of 0.81 and 0.76 were fairly high. The genetic and phenotypic correlations between egg shell strength with specific gravity, shell ratio and shell weight ranging from 0.55 to 0.79 were relatively high. It can be concluded that it is possible to determine egg shell quality using the egg specific gravity values utilizing its high heritability and fairly high positive correlation with most of the egg shell quality traits. As a result, egg specific gravity may be the choice of selection criterion rather than other external egg traits for genetic improvement of egg shell quality in Japanese quails.  相似文献   

3.
K. R. Koots  J. P. Gibson 《Genetics》1996,143(3):1409-1416
A data set of 1572 heritability estimates and 1015 pairs of genetic and phenotypic correlation estimates, constructed from a survey of published beef cattle genetic parameter estimates, provided a rare opportunity to study realized sampling variances of genetic parameter estimates. The distribution of both heritability estimates and genetic correlation estimates, when plotted against estimated accuracy, was consistent with random error variance being some three times the sampling variance predicted from standard formulae. This result was consistent with the observation that the variance of estimates of heritabilities and genetic correlations between populations were about four times the predicted sampling variance, suggesting few real differences in genetic parameters between populations. Except where there was a strong biological or statistical expectation of a difference, there was little evidence for differences between genetic and phenotypic correlations for most trait combinations or for differences in genetic correlations between populations. These results suggest that, even for controlled populations, estimating genetic parameters specific to a given population is less useful than commonly believed. A serendipitous discovery was that, in the standard formula for theoretical standard error of a genetic correlation estimate, the heritabilities refer to the estimated values and not, as seems generally assumed, the true population values.  相似文献   

4.
The validity of the assumption, that laboratory estimates of heritabilities will tend to overestimate natural heritabilities, due to a reduction in environmental variability and thus the phenotypic variance of traits, is examined. One hundred sixty-five field estimates of narrow sense heritabilities derived from the literature are compared with 189 estimates from laboratory studies on wild, outbred animal populations derived from the data set of Mousseau and Roff. The results indicate that 84% of field heritabilities are significantly different from zero and that for morphological, behavioral, and life-history traits there are no significant differences between laboratory and field estimates of heritability. Unexpectedly, mean heritabilities for morphological and life-history traits are actually higher in the field than in the lab. Twenty-two cases were found for which both laboratory and natural heritabilities had been estimated on the same traits. For this subset of the data, laboratory heritabilities tended to be higher than field estimates, but the difference was not significant. Also, the correlation between lab and field estimates was high (r = 0.6, P < 0.001), and the regression slope did not differ significantly from one. The major implications of this study are that laboratory estimates of heritability should generally provide reasonable estimations of both the magnitude and the significance of heritabilities in nature.  相似文献   

5.
A number of studies have shown that in several animal species females prefer dominant males as mating partners, but fewer attempts have been made to measure possible indirect benefits of this choice. One reason for this may be that, even though dominance is a widely used concept, the definition of dominance still remains controversial Furthermore, defining and measuring the heritability of social behaviors is problematic because they are not individual traits but, by definition, involve interactions between at least two individuals. In this study we estimated heritabilities and coefficients of additive genetic variances (CVA) for male traits that are closely associated with dominance and female mating preferences in bank voles (Clethrionomys glareolus). The heritability values were estimated using father-offspring regression. All heritability estimates were relatively high ranging from 0.531 (urine marking) to 0.767 (preputial glands). The CVA-values indicated high levels of additive genetic variance especially in the characters most closely related to dominance: the weight of preputial glands and urine marking behavior. All phenotypic correlations among the traits measured were significantly positive and the genetic correlations were of similar magnitude as the corresponding phenotypic counterparts. Even though heritabilities may be lower in the natural environment than under controlled laboratory conditions, our results suggest that characters closely related to dominance may be at least partly genetically determined.  相似文献   

6.
Different components of heritability, including genetic variance (VG), are influenced by environmental conditions. Here, we assessed phenotypic responses of life‐history traits to two different developmental conditions, temperature and food limitation. The former represents an environment that defines seasonal polyphenism in our study organism, the tropical butterfly Bicyclus anynana, whereas the latter represents a more unpredictable environment. We quantified heritabilities using restricted maximum likelihood (REML) procedures within an “Information Theoretical” framework in a full‐sib design. Whereas development time, pupal mass, and resting metabolic rate showed no genotype‐by‐environment interaction for genetic variation, for thorax ratio and fat percentage the heritability increased under the cool temperature, dry season environment. Additionally, for fat percentage heritability estimates increased under food limitation. Hence, the traits most intimately related to polyphenism in B. anynana show the most environmental‐specific heritabilities as well as some indication of cross‐environmental genetic correlations. This may reflect a footprint of natural selection and our future research is aimed to uncover the genes and processes involved in this through studying season and condition‐dependent gene expression.  相似文献   

7.
Despite numerous adaptive scenarios concerning the evolution of plant life-history phenologies few studies have examined the heritable basis for and genetic correlations among these phenologies. Documentation of genetic variation for and covariation among reproductive phenologies is important because it is this variation/covariation that will determine the potential for response to evolutionary forces. To address this problem, I conducted a breeding experiment to determine narrow-sense heritabilities for and genetic correlations among the phenologies of life-history events and plant size in Chamaecristafasciculata, a temperate summer annual plant species. Paternal families showed no evidence of heritable variation for two estimates of plant size, six measures of reproductive phenology or two fitness components. Similarly, paternal estimates of genetic correlations among these traits were low or zero. In contrast, maternal estimates of heritability suggested the influence of maternal parent on one estimate of plant size and four phenological traits. Likewise, maternal effects influenced maternal estimates of genetic correlations. These maternal effects can arise from three sources: endosperm nuclear, cytoplasmic genetic and/or maternal phenotypic. The degree to which the phenology of one life-history trait acts as a constraint on the evolution of other phenological traits depends on the source of the maternal influence in this species.  相似文献   

8.
Genetic parameters and (co)variance components were estimated for weights at birth and at 30, 90 and 180 days of age for Draa goat maintained at Ouarzazate station over a period of 18 years (1988–2005). Records of 1498 kids, the progeny of 46 sires and 404 dams were used in the study. Analyses were carried out by restricted maximum likelihood. Six different animal models including or ignoring maternal genetic or permanent environmental effects were fitted for all traits. The Model 2 with only permanent environmental maternal effects seemed most suitable. Estimates of direct heritability from this model were 0.16 for birth weight and 0.07, 0.11 and 0.11 for weights at 30, 90 and 180 days, respectively. Maternal heritability estimates varied from 0.00 to 0.24 for all traits according to the model used (Models 4–6). Bivariate analysis by Model 2 was also used to estimate genetic correlations between traits. The estimates of genetic and phenotypic correlations among weights were positive and intermediate to high in value. Despite the low estimated heritabilities of body weight traits of Draa goat, there is a small genetic variability that may be exploited to improve growth performance.  相似文献   

9.
The genetic contribution to canine personality   总被引:3,自引:0,他引:3  
The domestic dog may be exceptionally well suited for behavioral genetic studies owing to its population history and the striking behavior differences among breeds. To explore to what extent and how behavioral traits are transmitted between generations, heritabilities and genetic correlations for behavioral traits were estimated in a cohort containing over 10,000 behaviorally tested German shepherd and Rottweiler dogs. In both breeds, the pattern of co-inheritance was found to be similar for the 16 examined behavioral traits. Furthermore, over 50% of the additive genetic variation of the behavioral traits could be explained by one underlying principal component, indicating a shared genetic component behind most of the examined behavioral traits. Only aggression appears to be inherited independently of the other traits. The results support a genetic basis for a broad personality trait previously named shyness-boldness dimension, and heritability was estimated to be 0.25 in the two breeds. Therefore, breeds of dogs appear to constitute a valuable resource for behavioral genetic research on the normal behavioral differences in broad personality traits.  相似文献   

10.
Knowledge of the genetic and environmental influences on a character is pivotal for understanding evolutionary changes in quantitative traits in natural populations. Dominance and aggression are ubiquitous traits that are selectively advantageous in many animal societies and have the potential to impact the evolutionary trajectory of animal populations. Here we provide age‐ and sex‐specific estimates of additive genetic and environmental components of variance for dominance rank and aggression rate in a free‐living, human‐habituated bird population subject to natural selection. We use a long‐term data set on individually marked greylag geese (Anser anser) and show that phenotypic variation in dominance‐related behaviours contains significant additive genetic variance, parental effects and permanent environment effects. The relative importance of these variance components varied between age and sex classes, whereby the most pronounced differences concerned nongenetic components. In particular, parental effects were larger in juveniles of both sexes than in adults. In paired adults, the partner's identity had a larger influence on male dominance rank and aggression rate than in females. In sex‐ and age‐specific estimates, heritabilities did not differ significantly between age and sex classes. Adult dominance rank was only weakly genetically correlated between the sexes, leading to considerably higher heritabilities in sex‐specific estimates than across sexes. We discuss these patterns in relation to selection acting on dominance rank and aggression in different life history stages and sexes and suggest that different adaptive optima could be a mechanism for maintaining genetic variation in dominance‐related traits in free‐living animal populations.  相似文献   

11.
Nonmetric traits of the cranium are often used to support hypotheses of the history and divergence of human populations. These studies rely on the assumption that nonmetric traits are heritable, yet few skeletal series exist with associated pedigree information that allow for the calculation of additive genetic variance, or heritability. In addition, traits for which heritabilities have been published represent dichotomous present/absent forms instead of the range of expression that can be observed for many nonmetric characters. In the present study I use a maximum-likelihood variance components analysis to calculate univariate narrow-sense heritability estimates on the skeletal series from Hallstatt, Austria, for 9 sutural bones, 27 multilevel traits, and dichotomized present/absent forms for 19 of these multilevel characters. Most of the trait heritabilities do not differ significantly from a model of h2 = 0, and they have large standard errors. In a heuristic comparison of multilevel versus dichotomous trait forms, most of the nonmetric characters showed no differences in heritability between the two methods used for parsing the phenotypic variation, although where differences were noted, the presence-absence version had higher heritabilities. These results have implications not only for the use of particular nonmetric traits in population studies but also for the practice of character dichotomization in data collection.  相似文献   

12.
Genetic variances, heritabilities, and genetic correlations of floral traits were measured in the monocarpic perennial Ipomopsis aggregata (Polemoniaceae). A paternal half-sib design was employed to generate seeds in each of four years, and seeds were planted back in the field near the parental site. The progeny were followed for up to eight years to estimate quantitative genetic parameters subject to natural levels of environmental variation over the entire life cycle. Narrow-sense heritabilities of 0.2–0.8 were detected for the morphometric traits of corolla length, corolla width, stigma position, and anther position. The proportion of time spent by the protandrous flowers in the pistillate phase (“proportion pistillate”) also exhibited detectable heritability of near 0.3. In contrast, heritability estimates for nectar reward traits were low and not significantly different from zero, due to high environmental variance between and within flowering years. The estimates of genetic parameters were combined with phenotypic selection gradients to predict evolutionary responses to selection mediated by the hummingbird pollinators. One trait, corolla width, showed the potential for a rapid response to ongoing selection through male function, as it experienced both direct selection, by influencing pollen export, and relatively high heritability. Predicted responses were lower for proportion pistillate and corolla length, even though these traits also experienced direct selection. Stigma position was expected to respond positively to indirect selection of proportion pistillate but negatively to selection of corolla length, with the net effect sensitive to variation in the selection estimates. Anther position also was not directly selected but could respond to indirect selection of genetically correlated traits.  相似文献   

13.
Data from natural populations have suggested a disconnection between trait heritability (variance standardized additive genetic variance, VA) and evolvability (mean standardized VA) and emphasized the importance of environmental variation as a determinant of trait heritability but not evolvability. However, these inferences are based on heterogeneous and often small datasets across species from different environments. We surveyed the relationship between evolvability and heritability in >100 traits in farmed cattle, taking advantage of large sample sizes and consistent genetic approaches. Heritability and evolvability estimates were positively correlated (r = 0.37/0.54 on untransformed/log scales) reflecting a substantial impact of VA on both measures. Furthermore, heritabilities and residual variances were uncorrelated. The differences between this and previously described patterns may reflect lower environmental variation experienced in farmed systems, but also low and heterogeneous quality of data from natural populations. Similar to studies on wild populations, heritabilities for life‐history and behavioral traits were lower than for other traits. Traits having extremely low heritabilities and evolvabilities (17% of the studied traits) were almost exclusively life‐history or behavioral traits, suggesting that evolutionary constraints stemming from lack of genetic variability are likely to be most common for classical “fitness” (cf. life‐history) rather than for “nonfitness” (cf. morphological) traits.  相似文献   

14.
There are no estimates of the heritability of phenotypic udder traits in suckler sheep, which produce meat lambs, and whether these are associated with resilience to mastitis. Mastitis is a common disease which damages the mammary gland and reduces productivity. The aims of this study were to investigate the feasibility of collecting udder phenotypes, their heritability and their association with mastitis in suckler ewes. Udder and teat conformation, teat lesions, intramammary masses (IMM) and litter size were recorded from 10 Texel flocks in Great Britain between 2012 and 2014; 968 records were collected. Pedigree data were obtained from an online pedigree recording system. Univariate quantitative genetic parameters were estimated using animal and sire models. Linear mixed models were used to analyse continuous traits and generalised linear mixed models were used to analyse binary traits. Continuous traits had higher heritabilities than binary with teat placement and teat length heritability (h2) highest at 0.35 (SD 0.04) and 0.42 (SD 0.04), respectively. Udder width, drop and separation heritabilities were lower and varied with udder volume. The heritabilities of IMM and teat lesions (sire model) were 0.18 (SD 0.12) and 0.17 (SD 0.11), respectively. All heritabilities were sufficiently high to be in a selection programme to increase resilience to mastitis in the population of Texel sheep. Further studies are required to investigate genetic relationships between traits and to determine whether udder traits predict IMM, and the potential benefits from including traits in a selection programme to increase resilience to chronic mastitis.  相似文献   

15.
Recent studies have shown that body size is a heritable trait phenotypically correlated with several fitness components in wild populations of the cactophilic fly Drosophila buzzatii. To obtain further information on size-related variation, heritabilities as well as genetic and phenotypic correlations among size-related traits of several body parts (head, thorax and wings) were estimated. The study was carried out on an Argentinean natural population in which size-related selection was previously detected. The genetic parameters were estimated using offspring-parent regressions (105 families) in the laboratory G2 generation of a sample of wild flies. The traits were also scored in Wild-Caught Flies (WCF). Laboratory-Reared Flies (LRF) were larger and less variable than WCF. Although heritability estimates were significant for all traits, heritabilities were higher for thorax-wing traits than for head traits. Phenotypic and genetic correlations were all positive. The highest genetic correlations were found between traits which are both functionally and developmentally related. Genetic and phenotypic correlations estimated in the lab show similar correlation patterns (r = 0.49; TP = 0.02, Mantel's test). However, phenotypic correlations were found to be typically larger in WCF than in LRF. The genetic correlation matrix estimated in the relatively homogeneous lab environment is not simply a constant multiplicative factor of the phenotypic correlation matrix estimated in WCF. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Footrot is a costly endemic disease of sheep. This study investigates the potential to decrease its prevalence through selective breeding for decreased lesion score. Pedigreed mule and Scottish Blackface (SBF) ewes were scored for lesions on each hoof on a 0 to 4 scale for up to 2 (SBF ewes) or 4 (mules) times over 2 years. One score was obtained for SBF lambs. An animal was deemed to have lesions (severe lesions) if at least one hoof had a score of at least 1 (2). The prevalence of lesions was 34% in lambs, 17% in SBF ewes and 51% in mules. The heritability of lesions (severe lesions) analysed as repeated measurements of the same trait in a threshold model was 0.19 (0.26) in SBF ewes and 0.12 (0.19) in mules. Estimates for the sum and maximum of scores as well as the number of feet affected were much lower, as were estimates for permanent animal effects (i.e. non-genetic effects associated with an animal). When successive scores on the same animal were analysed as correlated traits, heritability estimates for most traits tended to be higher, except for severe footrot in mules where estimates varied greatly over time. The phenotypic correlations between successive scores in SBF ewes were close to 0, genetic correlations were moderately positive (0.18 to 0.55). Correlations in mules were generally of a similar size, but some genetic correlations were higher (up to 0.92). There was a clear trend for heritabilities for lesions and severe lesions to increase with higher prevalence of lesions, even when analysed in a threshold model. Heritability estimates for traits that combine scores over several events in mules, identifying the more persistently affected animals, ranged from 0.12 to 0.23 with the highest estimates for the average number of feet that were (severely) affected in animals scored for a minimum at two events. The heritability of all lesion traits in lambs was estimated as 0. It is concluded that selection for lower lesions is possible in ewes but not lambs, and that a simple binary score at an animal level is at least as effective as a comprehensive score at hoof level. Given the low repeatability of lesion scores, repeated measures over time will improve effectiveness of selection. Selection across environments (flocks, seasons) with different prevalences of lesions scores will need to take account of variation in the heritability.  相似文献   

17.
The quantitative genetics of sustained energy budget in a wild mouse   总被引:1,自引:0,他引:1  
We explored how morphological and physiological traits associated with energy expenditure over long periods of cold exposure would be integrated in a potential response to natural selection in a wild mammal, Phyllotis danwini. In particular, we studied sustained energy expenditure (SusMR), the rate of expenditure fueled by concurrent energy intake, basal metabolic rate (BMR), and sustained metabolic scope (SusMS = SusMR/BMR), a measure of the reserve for sustained work. We included the masses of different central processing organs as an underlying factor that could have a mechanistic link with whole animal traits. Only the liver had heritability statistically different from zero (0.73). Physiological and morphological traits had high levels of specific environmental variance (average 70%) and postnatal common environmental variance (average 30%) which could explain the low heritabilities estimates. Our results, (1) are in accordance with previous studies in mammals that report low heritabilities for metabolic traits (SusMR, BMR, SusMS), (2) but not completely with previous ones that report high heritabilities for morphological traits (masses of central organs), and (3) provide important evidence of the relevance of postnatal common environmental variance to sustained energy expenditure.  相似文献   

18.
The genetic basis of fluctuating asymmetry (FA), a measure of random deviations from perfect bilateral symmetry, has been the subject of much recent work. In this paper we compare two perspectives on the quantitative genetic analysis of FA and directional asymmetry (DA). We call these two approaches the character-state model and the environmental responsiveness model. In the former approach, the right and left sides are viewed as separate traits whose genetic coupling is manifested by the genetic correlation. This model leads to the relationship, h2(DA) = h2[(1-rA)/(1-rp)), where h2 is the heritability of each component trait (assumed to be the same), rA and rp are the genetic and phenotypic correlations between traits, respectively. Simulation shows that, under this model, the heritability of FA is considerably less than that of DA, except when heritabilities are very close to zero. The environmental responsiveness model permits genetic variance in FA even when the genetic correlation between traits is + 1. Simulation shows that under this model the heritability of FA can be uncoupled from that of DA. The additive and nonadditive components of the component (right and left) traits, their DA and FA values are estimated using a diallel cross of seven inbred lines of the sand cricket, Gryllus firmus. Four leg measurements were made and both the individual DA and FA values and the compound measures DASUM and CFA estimated. The heritabilities of the compound measures are slightly larger than the individual estimates. Dominance variance is observed in the individual traits but predicted to be an even smaller component of the phenotypic variance than the additive genetic variance. The estimated values confirm this, although a previous study has demonstrated that dominance variance is present. Because the heritabilities of FA are generally larger than those of DA, which never exceed 0.02, the environmental responsiveness model is more consistent with the data than the character-state model. A review of other data suggests that both sources of variation might be found in some species.  相似文献   

19.
Lamb live weight is one of the key drivers of profitability on sheep farms. Previous studies in Ireland have estimated genetic parameters for live weight and carcass composition traits using a multi-breed population rather than on an individual breed basis. The objective of the present study was to undertake genetic analyses of three lamb live weight and two carcass composition traits pertaining to purebred Texel, Suffolk and Charollais lambs born in the Republic of Ireland between 2010 and 2017, inclusive. Traits (with lamb age range in parenthesis) considered in the analyses were: pre-weaning weight (20 to 65 days), weaning weight (66 to 120 days), post-weaning weight (121 to 180 days), muscle depth (121 to 180 days) and fat depth (121 to 180 days). After data edits, 137 402 records from 50 372 lambs across 416 flocks were analysed. Variance components were derived using animal linear mixed models separately for each breed. Fixed effects included for all traits were contemporary group, age at first lambing of the dam, parity of the dam, a gender by age of the lamb interaction and a birth type by rearing type of the lamb interaction. Random effects investigated in the pre-weaning and weaning weight analyses included animal direct additive genetic, dam maternal genetic, litter common environment, dam permanent environment and residual variances. The model of analysis for post-weaning, muscle and fat depth included an animal direct additive genetic and litter common environment effect only. Significant direct additive genetic variation existed in all cases. Direct heritability for pre-weaning weight ranged from 0.14 to 0.30 across the three breeds. Weaning weight had a direct heritability ranging from 0.17 to 0.27 and post-weaning weight had a direct heritability ranging from 0.15 to 0.27. Muscle and fat depth heritability estimates ranged from 0.21 to 0.31 and 0.15 to 0.20, respectively. Positive direct correlations were evident for all traits. Results revealed ample genetic variation among animals for the studied traits and significant differences between breeds to suggest that genetic evaluations could be conducted on a per-breed basis.  相似文献   

20.
The Drosophila wing has been used as a model to investigate the mechanisms responsible for size and shape changes in nature, since such changes might underlie morphological evolution. To improve the understanding of wing morphological variation and the interpretation of genetic parameters estimates, we have established 59 lines from a Drosophila simulans laboratory population through single pair random matings. The offspring of each line were reared at three different temperatures, and the wing morphology of 12 individuals was analyzed by adjusting an ellipse to the wings' contour. Temperature, sex and line significantly affected wing trait variation, which was mainly characterized by longer wings having the second, fourth and fifth longitudinal veins closer together at the wing tip. As for the genetic parameter estimates, while the cross-environment heritability of some traits, such as wing size (SI), decreased with an increasing difference between the temperatures at which parents and offspring were reared, wing shape (SH) heritability did not seem to change. Since we found indications that neither an increase in the phenotypic variation nor the occurrence of genotype-environment interactions could fully explain the low heritabilities of SI estimated by cross-environment regressions, we discuss the importance of other effects for explaining this discrepancy between the SI and SH heritability estimates. In addition, although the genetic matrix was not entirely represented in the phenotypic matrix, several correspondences were identified, suggesting that the observed patterns of wing morphology variation are genetically controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号