首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scientific expertise was developed during a 3-year study to evaluate a large number of bovine female clones (n=37; from 4 to 36 months of age) and their products through a multidisciplinary approach and compare them to non-cloned breed, age and sex-matched contemporary control animals (n=38) maintained under the same conditions at the same experimental farm of INRA. In clone and control groups, most parameters measured for health and development of the animals as well as evaluation of milk and meat products were within the normal range for the breed. The strict comparison between cloned animals and controls allowed us to detect slight significant differences between the two groups. Cloned heifers reached puberty significantly later (+62 days) and at higher body weight (+56kg) than controls. There were slight differences in antigen-specific induced proliferation of lymphocytes after vaccination with ovalbumin before 10 months of age, but responses were normal responses in older animals. There were differences in the fatty acid (FA) composition of milk and muscle arising from two families of clones, suggesting a possible deviation in lipid metabolism as assessed by higher Delta-9 desaturase activity indices in both milk and muscle from clones compared to controls. Nutritional evaluation of milk and meat using the rat model did not reveal any difference between products derived from clones versus controls.  相似文献   

2.
Agricultural application of cloned livestock produced by nuclear transfer requires public and governmental understanding of food-safety issues. To determine whether physiological effects occurred in animals fed products derived from cloned cattle, we conducted long-term (14 week) trials feeding Crj:CD(SD)IGS rats meat and milk from cloned cattle. Diets containing meat and milk were equal in nutritional value to the basal diet (AIN93G). Urinalysis was performed at Weeks 4, 8 and 12; at the end of the feeding period, blood sampling and autopsies were conducted. During the feeding periods, there were no significant differences in general condition, death loss, growth, battery of functional observational tests and estrous cycles among groups given diets containing meat and milk powder from non-clone, embryonic clone and somatic clone cattle. Furthermore, no significant changes attributed to consumption of clone meat or milk were detected in urinalysis, hematological and blood chemical, gross pathological or histological examinations. Therefore, we concluded that the physiologic conditions of the rats were not affected by consumption of meat and milk from bovine clones.  相似文献   

3.
To investigate female gamete developmental competence and variability in cloned cattle, we performed ovum pick-up and in vitro fertilization in four sets of cloned heifers (n = 10, two sets of triplets and two sets of twins), and four groups of non-genetically related control animals (n = 13). A total of 304 OPU were performed and 1798 oocytes were recovered. Mean oocyte production per female per OPU (+/-S.D.) was similar for clone or control animals (5.7+/-2.9 versus 6.1+/-4.5, respectively), however, in two sets of clones variance for the number of oocytes recovered differed significantly (7.1 versus 23.9 and 7.3 versus 26.7, respectively P<0.001) between clone groups and their respective controls, cloned animals being more homogenous. After in vitro maturation, fertilization with semen from the same bull, and culture, the proportion of oocytes from cloned animals that developed into blastocysts was 35.0+/-29.2% and was not significantly different from controls (29.4+/-30.9). The CV for oocyte recovery, and blastocyst rates was lower in all groups of cloned animals than in controls. Nevertheless, within each set of clones, CV values indicated some degree of variability between animals, thus confirming that cloned cattle are not the exact phenotypic copy of each other. Despite the large number of oocytes analyzed, results should be interpreted with caution due to the limited number of cloned animals.  相似文献   

4.
Background: The composition and nutritional value of meat and milk derived from cloned animals and their progeny has not been demonstrated to be different from normal animals, but possible food consumption risks that might arise from unidentified hazards remain. In this study, we investigated the effects of somatic cell nuclear transfer cloned‐cattle meat diet on the behavioral and reproductive characteristics of F1 rats derived from dams that were also fed on cloned‐cattle meat. Methods and results: F1 rats were divided into five diet groups with their dams: commercial pellets (control), pellets containing 5% (N‐5) and 10% (N‐10) of normal‐cattle meat, and diets containing 5% (C‐5) and 10% (C‐10) of cloned‐cattle meat. In most cases, the cloned‐cattle meat diet did not affect body weight and food consumption in both male and female F1 rats during 11 weeks, except for significantly higher body weight in both N‐5 and N‐10 (3–5 weeks, p<0.05 or p<0.01) and significantly higher food consumption in the both normal‐ and cloned‐cattle meat groups (7–9 weeks, p<0.05 or p<0.01), as compared with the controls, respectively. We detected no signs of test substance‐related toxicities on organ weights and behavioral characteristics (sensory reflex, motor function, and spatial learning and memory tests). Reproductive functions did not significantly differ among all examined rats (mating, fertility, and implantation). Conclusions: These behavioral and reproductive toxicity results suggest that there are no obvious food safety concerns related to cloned‐cattle meat in these parameters. Birth Defects Res (Part B) 92:224–230, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

5.
Cloning technology is an emerging biotechnological tool that could provide commercial opportunities for livestock agriculture. However, the process is very inefficient and the molecular events underlying the technology are poorly understood. The resulting uncertainties are causing concerns regarding the safety of food products derived from cloned livestock. There are similar concerns for livestock produced by biotechnologies which enable the purposeful introduction of genetic modifications. To increase the knowledge about food products from animals generated by these modern biotechnologies, we assessed compositional differences associated with milk and cheese derived from cloned and transgenic cows. Based on gross composition, fatty acid and amino acid profiles and mineral and vitamin contents, milk produced by clones and conventional cattle were essentially similar and consistent with reference values from dairy cows farmed in the same region under similar conditions. Whereas colostrum produced by transgenic cows with additional casein genes had similar IgG secretion levels and kinetics to control cows, milk from the transgenic cows had a distinct yellow appearance, in contrast to the white color of milk from control cows. Processing of milk into cheese resulted in differences in the gross composition and amino acid profiles; 'transgenic' cheese had lower fat and higher salt contents and small but characteristic differences in the amino acid profile compared to control cheese.  相似文献   

6.
The Food and Drug Administration's (FDA's) Center for Veterinary Medicine issued a voluntary request to producers of livestock clones not to introduce food from clones or their progeny into commerce until the agency had assessed whether production of cattle, swine, sheep, or goats by somatic cell nuclear transfer (SCNT) posed any unique risks to the animal(s) involved in the process, humans, or other animals by consuming food from those animals, compared with any other assisted reproductive technology (ART) currently in use. Following a comprehensive review, no anomalies were observed in animals produced by cloning that have not also been observed in animals produced by other ARTs and natural mating. Further systematic review on the health of, and composition of meat and milk from, cattle, swine, and goat clones and the progeny of cattle and sheep did not result in the identification of any food-consumption hazards. The agency therefore concluded that food from cattle, swine, and goat clones was as safe to eat as food from animals of those species derived by conventional means. The agency also concluded that food from the progeny of the clone of any species normally consumed for food is as safe to eat as those animals. The article also describes the methodology used by the agency to analyze data and draw these conclusions, the plans the agency has proposed to manage any identified risks, and the risk communication approaches the agency has used.  相似文献   

7.
Performance of dairy cattle clones and evaluation of their milk composition   总被引:2,自引:0,他引:2  
Genetic and phenotypic performance of U.S. Holstein embryo-split and nuclear-transfer clones was documented for yield and fitness traits. For cows, mean genetic superiority based on pedigree was 186 kg of milk, 9 kg of fat, and 7 kg of protein for embryo-split clones and 165, 10, and 8 kg, respectively, for nuclear-transfer clones compared with the population for the same birth year; pedigree advantage for male clones generally was slightly greater. Estimates of genetic merit that considered a clone's own performance as well as pedigree merit were slightly lower for embryo-split cows than for their full siblings for yield but not for milk composition (fat and protein percentages), mastitis resistance (somatic cell score), longevity (productive life), or cow fertility (daughter pregnancy rate); no corresponding genetic differences were found for nuclear-transfer cows or for cloned bulls regardless of clone type. For bulls, estimated genetic merit based on daughter yield was more similar for clone pairs with apparent identical genotype than for pairs from the same biotechnology but nonidentical as confirmed by blood typing. Yield deviations were lower for clones than for their full siblings. Milk composition (total solids, fat, fatty acid profile, lactose, and protein) also was compared for nuclear-transfer clones (Brown Swiss, Holstein, and Holstein-Jersey cross) with non-cloned cows and literature values; no differences were found for gross chemical composition of milk. No obvious differences were evident between cloned and non-cloned animals or for the milk that they produced.  相似文献   

8.
9.
The development of transgenic cloned animals offers new opportunities for agriculture, biomedicine and environmental science. Expressing recombinant proteins in dairy animals to alter their milk composition is considered beneficial for human health. However, relatively little is known about the expression profile of the proteins in milk derived from transgenic cloned animals. In this study, we compared the proteome and nutrient composition of the colostrum and mature milk from three lines of transgenic cloned (TC) cattle that specifically express human α-lactalbumin (TC-LA), lactoferrin (TC-LF) or lysozyme (TC-LZ) in the mammary gland with those from cloned non-transgenic (C) and conventionally bred normal animals (N). Protein expression profile identification was performed, 37 proteins were specifically expressed in the TC animals and 70 protein spots that were classified as 22 proteins with significantly altered expression levels in the TC and C groups compared to N group. Assessment of the relationship of the transgene effect and normal variability in the milk protein profiles in each group indicated that the variation in the endogenous protein profiles of the three TC groups was within the limit of natural variability. More than 50 parameters for the colostrum and mature milk were compared between each TC group and the N controls. The data revealed essentially similar profiles for all groups. This comprehensive study demonstrated that in TC cattle the mean values for the measured milk parameters were all within the normal range, suggesting that the expression of a transgene does not affect the composition of milk.  相似文献   

10.
体细胞克隆技术是将已分化的体细胞移到去核的成熟卵母细胞中,通过体外激活和培养,再移植入受体母畜子宫内,繁殖出具有相同基因型后代的一种技术。该技术可以大幅提升繁殖效率,并提供高质、充足和营养丰富的动物食品。近年来,美国、日本和欧洲等国家相继宣布体细胞克隆动物食品可以上市。然而,目前体细胞克隆效率相当低下,即使是出生的克隆动物也往往伴随发育畸形或高死亡率等现象,在对克隆动物发育异常知之甚少的情况下,宣布克隆动物产品上市是否为时过早?以下综述了克隆牛肉、奶及其产品安全。  相似文献   

11.
Xiao R  Park K  Lee H  Kim J  Park C 《Journal of virology》2008,82(1):582-587
The aim of this study was to identify the endogenous retrovirus (ERV) sequences in a bovine genome. We subjected bovine genomic DNA to PCR with degenerate or ovine ERV (OERV) family-specific primers that aimed to amplify the retroviral pro/pol region. Sequence analysis of 113 clones obtained by PCR revealed that 69 were of retroviral origin. On the basis of the OERV classification system, these clones from degenerate PCR could be divided into the beta3, gamma4, and gamma9 families. PCR with OERV family-specific primers revealed an additional ERV that was classified into the bovine endogenous retrovirus (BERV) gamma7 family. In conclusion, here we report the results of a genome scale study of the BERV. Our study shows that the ERV family expansion in cattle may be somewhat limited, while more diverse family members of ERVs have been reported from other artiodactyls, such as pigs and sheep.  相似文献   

12.
When confronted by pressure from activists and Congress, the US Food and Drug Administration (FDA) has not always adopted policies and made decisions about individual products that accord with the scientific evidence. An example was the unnecessarily and markedly prolonged review of the veterinary drug bovine somatotropin (bST), or bovine growth hormone, during the 1980s. The FDA now faces a similar situation surrounding the question of whether meat and milk from cloned animals and their offspring are safe for human consumption. Having made a preliminary decision in the affirmative - based on an exhaustive analysis of scientific articles, health records, blood samples and studies of the composition of meat and milk - the agency has been beleaguered by criticisms. It remains to be seen whether, ultimately, science will trump anti-technology, anti-consumer activism.  相似文献   

13.
The cloning syndrome is a continuum with the consequences of abnormal reprogramming manifest throughout gestation, the neo-natal period, and into adulthood in the cloned generation, but it does not appear to be transmitted to subsequent offspring following sexual reproduction. Most in vivo studies on bovine somatic cell cloning have focused on development during pregnancy and the neo-natal period. In this paper, we report on the viability and health of cloned cattle in adulthood. From our studies at AgResearch, we find that between weaning and 4 years of age, the annual mortality rate in cattle cloned from somatic cells is at least 8%. Although the reasons for death are variable and some potentially preventable, the main mortality factor in this period is euthanasia due to musculoskeletal abnormalities. This includes animals with severely contracted flexor tendons and those displaying chronic lameness, particularly in milking cows. In contrast, no deaths beyond weaning have so far been encountered with the offspring of clones where the oldest animals are 3 years of age. In surviving cloned cattle, blood profiles and other indicators of general physiological function such as growth rate, reproduction, rearing of offspring, and milk production are all within the normal phenotypic ranges.  相似文献   

14.
This paper presents information on the evolution of sets of cloned heifers of Holstein breed in comparison to that of control heifers derived from artificial insemination (AI) in the same farm, as well as data on a set of cloned bulls and their semen characteristics. Preliminary observations on a group of calves sired by a cloned bull and offspring of cloned females are reported. Mean birth weight in the clone group (50 females) was statistically higher than that of 68 contemporary female controls obtained by AI (49.27 +/- 10.98 vs. 40.57 +/- 5.55 kg, respectively, p < 0.05). Growth rate was within normal values for Holstein heifers (from 0.7 to 0.8 kg/day) and daily gain was not influenced by the high or low birth weight of clones. Within animals of the same clone, variability of daily gain was reduced compared to their control counterparts. Semen production from three cloned bulls was within the parameters expected for young bull of the same age. A direct comparison of morphological analysis was made between the frozen thawed semen of the donor bull and of his three clones collected at the same age. The overall semen picture appeared within acceptable limits and the clones presented similar percentages of sperm abnormalities (80% of morphologically normal spermatozoa) as the donor. These preliminary results suggest no deleterious effect of cloning on the semen picture of cloned sires. Frozen semen from one clone bull was used for an AI trial, resulting in 65% pregnancies, 25 live calves were naturally delivered. Concerning the offspring of both female and male clones, the phenotypical and clinical observation of the calves in the first week of age did not reveal any clinical abnormality, suggesting that the deviations observed in clones are not transmitted to the progeny.  相似文献   

15.
Agricultural utilization of cloned livestock produced by nuclear transfer and their products for food will require public and governmental acceptance. A series of studies of properties of meat derived from cloned cattle was carried out to collect data for the safety assessment of cloned cattle products. Meat samples obtained from embryonic cloned, somatic cloned and non-cloned cattle were analyzed for chemical composition, as well as amino acids and fatty acids. Digestibility, allergenicity, and mutagenicity of meat were also examined. There were no significant differences in these properties among embryonic cloned, somatic cloned and non-cloned cattle. The analyses and tests revealed that there were no significant biological differences in meat from a non-cloned, an embryonic cloned, or a somatic cloned animal. A 14-week feeding trial in rats showed there were no abnormalities in body growth, general condition, locomotor activity, reflexes, sexual cycle, urinalysis, hematology, blood biochemistry, and histology. This study showed for the first time that the biological/biochemical properties of meat of cloned cattle are similar to those of non-cloned cattle.  相似文献   

16.
Cattle are the world’s largest consumers of plant biomass. Digestion of this biomass by ruminants generates high methane emissions that affect global warming. In the last decades, the specialisation of cattle breeds and livestock systems towards either milk or meat has increased the milk production of dairy cows and the carcass weight of slaughtered cattle. At the animal level and farm level, improved animal performance decreases feed use and greenhouse gas emissions per kg of milk or carcass weight, mainly through a dilution of maintenance requirements per unit of product. However, increasing milk production per dairy cow reduces meat production from the dairy sector, as there are fewer dairy cows. More beef cows are then required if one wants to maintain the same meat production level at country scale. Meat produced from the dairy herd has a better feed efficiency (less feed required per kg of carcass weight) and emits less methane than the meat produced by the cow-calf systems, because the intake of lactating cows is largely for milk production and marginally for meat, whereas the intake of beef cows is entirely for meat. Consequently, the benefits of breed specialisation assessed at the animal level and farm level may not hold when milk and meat productions are considered together. Any change in the milk-to-meat production ratio at the country level affects the numbers of beef cows required to produce meat. At the world scale, a broad diversity in feed efficiencies of cattle products is observed. Where both productions of milk per dairy cow and meat per head of cattle are low, the relationship between milk and meat efficiencies is positive. Improved management practices (feed, reproduction, health) increase the feed efficiency of both products. Where milk and meat productivities are high, a trade-off between feed efficiencies of milk and meat can be observed in relation to the share of meat produced in either the dairy sector or the beef sector. As a result, in developing countries, increasing productivities of both dairy and beef cattle herds will increase milk and meat efficiencies, reduce land use and decrease methane emissions. In other regions of the world, increasing meat production from young animals produced by dairy cows is probably a better option to reduce feed use for an unchanged milk-to-meat production ratio.  相似文献   

17.
Daily milk, fat and protein yield and amount of somatic cells in cow milk are very important factors that influence milk performance traits. An association between polymorphisms in the kappa casein (CSN3) gene and milk production, composition and technical properties has been previously reported; however, this type of information is not available for the bovine β-carotene oxygenase 2 (BCO2) gene--the BCO2 gene has relationship with milk color and meat fat color, which is dependent on content of β-carotene. We analyzed these two genes and their relationship with milk performance traits (daily milk, fat and protein yield, somatic cell count, SCC) in one cattle population, Czech Fleckvieh (N = 152). All animals were milked twice a day and kept in the same environmental conditions. The Fleckvieh is a typical Czech cattle breed farming for milk and meat production. It is the most common breed in the Czech Republic. DNA was isolated from milk or from hairs. Genes were analyzed using PCR-RFLP, frequencies of alleles and genotypes were calculated and association analysis was performed using a GLM Procedure in SAS. Statistical analysis established that the CSN3 gene has no statistically significant influence on daily milk, fat and protein yield and SCC. Compared to other references this result can be explained by, e.g., small group of animals and different cattle breed. The BCO2 gene (genotypes AA and AG) shows a statistically significant relationship (P = 0.05) with daily milk, protein yield and SCC.  相似文献   

18.
The molecular diversity of rumen methanogens in feedlot cattle and the composition of the methanogen populations in these animals from two geographic locations were investigated using 16S rRNA gene libraries prepared from pooled PCR products from 10 animals in Ontario (127 clones) and 10 animals from Prince Edward Island (114 clones). A total of 241 clones were examined, with Methanobrevibacter ruminantium accounting for more than one-third (85 clones) of the clones identified. From these 241 clones, 23 different 16S rRNA phylotypes were identified. Feedlot cattle from Ontario, which were fed a corn-based diet, revealed 11 phylotypes (38 clones) not found in feedlot cattle from Prince Edward Island, whereas the Prince Edward Island cattle, which were fed potato by-products as a finishing diet, had 7 phylotypes (42 clones) not found in cattle from Ontario. Five sequences, representing the remaining 161 clones (67% of the clones), were common in both herds. Of the 23 different sequences, 10 sequences (136 clones) were 89.8 to 100% similar to those from cultivated methanogens belonging to the orders Methanobacteriales, Methanomicrobiales, and Methanosarcinales, and the remaining 13 sequences (105 clones) were 74.1 to 75.8% similar to those from Thermoplasma volcanium and Thermoplasma acidophilum. Overall, nine possible new species were identified from the two clone libraries, including two new species belonging to the order Methanobacteriales and a new genus/species within the order Methanosarcinales. From the present survey, it is difficult to conclude whether the geographical isolation between these two herds or differences between the two finishing diets directly influenced community structure in the rumen. Further studies are warranted to properly assess the differences between these two finishing diets.  相似文献   

19.
Cloning technologies, including embryo splitting and nuclear transfer, were introduced into dairy cattle breeding in the early 1980s. With the recent worldwide attention on the cloning of sheep ("Dolly") and cows ("Gene"), the potential food safety concerns for food products derived from cloned animals needs to be addressed. There has been no study of the composition of milk produced by cloned cows. In this preliminary study, we evaluated the composition of milk from 15 lactating non-embryonic cell cloned cows and six non-cloned lactating cows over a single season. The cloned cows came from five unique genetic lines and three distinct breeds. Milk samples were analyzed for total solids, fat, fatty acid profile, lactose, protein and compared to non-cloned and literature values. Gross chemical composition of milk from cloned cows was similar to that of the non-cloned cows and literature values. Our results lead us to conclude that there are no obvious differences in milk composition produced from cloned cows compared to non-cloned cows.  相似文献   

20.
Genome-wide epigenetic alterations in cloned bovine fetuses   总被引:10,自引:0,他引:10  
To gain a better understanding of global methylation differences associated with development of nuclear transfer (NT)-generated cattle, we analyzed the genome-wide methylation status of spontaneously aborted cloned fetuses, cloned fetuses, and adult clones that were derived from transgenic and nontransgenic cumulus, genital ridge, and body cell lines. Cloned fetuses were recovered from ongoing normal pregnancies and were morphologically normal. Fetuses generated by artificial insemination (AI) were used as controls. In vitro fertilization (IVF) fetuses were compared with AI controls to assess effects of in vitro culture on the 5-methylcytosine content of fetal genomes. All of the fetuses were female. Skin biopsies were obtained from cloned and AI-generated adult cows. All of the adult clones were phenotypically normal and lactating and had no history of health or reproductive disorders. Genome-wide cytosine methylation levels were monitored by reverse-phase HPLC, and results indicated reduced levels of methylated cytosine in NT-generated fetuses. In contrast, no differences were observed between adult, lactating clones and similarly aged lactating cows produced by AI. These data imply that survivability of cloned cattle may be closely related to the global DNA methylation status. This is the first report to indicate that global methylation losses may contribute to the developmental failure of cloned bovine fetuses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号