共查询到20条相似文献,搜索用时 15 毫秒
1.
Signals from the Ras, Rac, and Rho GTPases converge on the Pak protein kinase in Rat-1 fibroblasts 下载免费PDF全文
Ras plays a key role in regulating cellular proliferation, differentiation, and transformation. Raf is the major effector of Ras in the Ras > Raf > Mek > extracellular signal-activated kinase (ERK) cascade. A second effector is phosphoinositide 3-OH kinase (PI 3-kinase), which, in turn, activates the small G protein Rac. Rac also has multiple effectors, one of which is the serine threonine kinase Pak (p65(Pak)). Here we show that Ras, but not Raf, activates Pak1 in cotransfection assays of Rat-1 cells but not NIH 3T3 cells. We tested agents that activate or block specific components downstream of Ras and demonstrate a Ras > PI 3-kinase > Rac/Cdc42 > Pak signal. Although these studies suggest that the signal from Ras through PI 3-kinase is sufficient to activate Pak, additional studies suggested that other effectors contribute to Pak activation. RasV12S35 and RasV12G37, two effector mutant proteins which fail to activate PI 3-kinase, did not activate Pak when tested alone but activated Pak when they were cotransfected. Similarly, RacV12H40, an effector mutant that does not bind Pak, and Rho both cooperated with Raf to activate Pak. A dominant negative Rho mutant also inhibited Ras activation of Pak. All combinations of Rac/Raf and Ras/Raf and Rho/Raf effector mutants that transform cells cooperatively stimulated ERK. Cooperation was Pak dependent, since all combinations were inhibited by kinase-deficient Pak mutants in both transformation assays and ERK activation assays. These data suggest that other Ras effectors can collaborate with PI 3-kinase and with each other to activate Pak. Furthermore, the strong correlation between Pak activation and cooperative transformation suggests that Pak activation is necessary, although not sufficient, for cooperative transformation of Rat-1 fibroblasts by Ras, Rac, and Rho. 相似文献
2.
James J Fiordalisi Stephen P Holly Ronald L Johnson Leslie V Parise Adrienne D Cox 《The Journal of biological chemistry》2002,277(13):10813-10823
Cytosolic GTP-bound Ras has been shown to act as a dominant negative (DN) inhibitor of Ras by sequestering Raf in non-productive cytosolic complexes. Nevertheless, this distinct class of DN mutants has been neither well characterized nor extensively used to analyze Ras signaling. In contrast, DN Ras17N, which functions by blocking Ras guanine nucleotide exchange factors, has been well characterized and is widely used. Cytosolic GTP-bound Ras mutants could be used to inhibit particular Ras effectors by introducing additional mutations (T35S, E37G or Y40C) that permit them to associate selectively with and inhibit Raf, RalGDS, or phosphoinositide 3-kinase, respectively. When the wild-type Ras effector binding region is used, cytosolic Ras should associate with all Ras effectors, even those that are not yet identified, making these DN Ras mutants effective inhibitors of multiple Ras functions. We generated cytosolic GTP-bound H-, N-, and K-Ras, and we assessed their ability to inhibit Ras-induced phenotypes. In fibroblasts, cytosolic H-, N-, and K-Ras inhibited Ras-induced Elk-1 activation and focus formation, induced a flattened cell morphology, and increased adhesion to fibronectin through modulation of a beta(1)-subunit-containing integrin, thereby demonstrating that DN activity is not limited to a subset of Ras isoforms. We also generated cytosolic GTP-bound Ras effector domain mutants (EDMs), each of which reduced the ability of cytosolic GTP-bound Ras proteins to inhibit Elk-1 activation and to induce cell flattening, implicating multiple pathways in these phenotypes. In contrast, Ras-induced focus formation, platelet-derived growth factor (PDGF)-, or Ras-induced phospho-Akt levels and cell adhesion to fibronectin were affected by T35S and Y40C EDMs, whereas PDGF- or Ras-induced phospho-Erk levels were affected only by the T35S EDM, implying that a more limited set of Ras-mediated pathways participate in these phenotypes. These data constitute the first extensive characterization of this functionally distinct class of DN Ras inhibitor proteins. 相似文献
3.
Dominant inhibitory Ras mutants selectively inhibit the activity of either cellular or oncogenic Ras. 总被引:4,自引:18,他引:4 下载免费PDF全文
Two dominant inhibitory Ras mutant proteins were analyzed by microinjection. One, [Asn-17]Ras, had a substitution in the putative Mg(2+)-binding site of Ha-Ras. The other, RAST, had a mutation in a yeast RAS protein that impaired its GTPase activity and increased its affinity for GAP. RAST also had a mutation that blocked its localization to the plasma membrane. In NIH 3T3 cells [Asn-17]Ras inhibited the function of normal Ras much more efficiently than that of oncogenic Ras. In contrast, RAST interfered with the transforming activity of oncogenic Ras more efficiently than that of normal Ras. These conclusions were based on two separate types of analysis. The inhibitory Ras mutant proteins were first microinjected into cells stably transformed either by oncogenic Ras or by high levels of expression of cellular Ras. Results obtained in stably transformed cells were then verified by coinjection of the inhibitory Ras mutant proteins together with transforming concentrations of either oncogenic or normal Ras protein. Whereas RAST was active in soluble form. [Asn-17]Ras required membrane localization for activity. Furthermore, mutations in the GAP/effector-binding domain reduced or eliminated the inhibitory activity of RAST but had no detectable effect on [Asn-17]Ras. These results are consistent with the possibility that [Asn-17]Ras functions by blocking the activation of endogenous Ras proteins, while RAST functions by blocking the ability of activated Ras to stimulate a downstream target within the cells. The properties of RAST suggest that interference with the GAP/effector-binding function of RAS represents a strategy for the preferential inactivation of oncogenic Ras in cells. 相似文献
4.
5.
6.
7.
The p21 (Cdc42/Rac) activated kinase Pak1 regulates cell morphology and polarity in most, if not all, eukaryotic cells. We and others have established that Pak's effects on these parameters are mediated by changes in the organization of cortical actin. Because cell motility requires polarized rearrangements of the actin/myosin cytoskeleton, we examined the role of Pak1 in regulating cell movement. We established clonal tetracycline-regulated NIH-3T3 cell lines that inducibly express either wild-type Pak1, a kinase-dead, or constitutively-active forms of this enzyme, and examined the morphology, F-actin organization, and motility of these cells. Expression of any of these forms of Pak1 induced dramatic changes in actin organization which were not inhibited by coexpression of a dominant-negative form of Rac1. Cells inducibly expressing wild-type or constitutively-active Pak1 had large, polarized lamellipodia at the leading edge, were more motile than their normal counterparts when plated on a fibronectin-coated surface, and displayed enhanced directional movement in response to an immobilized collagen gradient. In contrast, cells expressing a kinase-dead form of Pak1 projected multiple lamellipodia emerging from different parts of the cell simultaneously. These cells, though highly motile, displayed reduced persistence of movement when plated on a fibronectin-coated surface and had defects in directed motility toward immobilized collagen. Expression of constitutively activated Pak1 was accompanied by increased myosin light chain (MLC) phosphorylation, whereas expression of kinase-dead Pak1 had no effect on MLC. These results suggest that Pak1 affects the phosphorylation state of MLC, thus linking this kinase to a molecule that directly affects cell movement. 相似文献
8.
9.
10.
RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts. 总被引:23,自引:7,他引:23 下载免费PDF全文
Rap1 is a small Ras-related GTPase which when over-expressed is able to revert transformation by Ki-Ras. We have investigated the role of Rap1 in regulating 'normal' Ras function by studying the activation of the mitogen-activated protein (MAP) kinases ERK1 and ERK2 by two fundamentally different growth factors, epidermal growth factor (EGF) and 1-oleoyl-lyso-phosphatidic acid (LPA). Conditional expression of RasN17 (a dominant-negative mutant) in Rat-1 cells inhibited activation of MAP kinases by EGF and also LPA, the first time a defined G-protein-coupled receptor mitogen has been shown to require Ras to exert its effects. Conditional or constitutive expression of even low levels of RapV12 (a mutant insensitive to Rap-GAP) attenuated activation of MAP kinases by EGF and LPA, but did not interfere with growth factor-stimulated increases in Ras-GTP, indicating that signalling from receptors to Ras was not impaired. Inhibition of Ras-mediated signalling with either RasN17 or RapV12 attenuated DNA synthesis by EGF and LPA. We conclude that receptor tyrosine kinases and G-protein-coupled receptors use Ras as a common step in signalling to MAP kinases and that Rap-GTP (RapV12) at physiological levels interferes with downstream signalling from Ras to MAP kinases in vivo. 相似文献
11.
Y W Eom M H Yoo C H Woo K C Hwang W K Song Y J Yoo J S Chun J H Kim 《Biochemical and biophysical research communications》2001,285(3):825-829
Exposure of mammalian cells to ultraviolet (UV) light elicits a cellular response and also lead to apoptotic cell death. However, the role of Rac, a member of Rho family GTPases, in the UV-induced apoptosis has never been examined. In UV-irradiated Rat-2 fibroblasts, nuclear fragmentation began to be observed within 2 h and the total viability of Rat-2 cells were only about 15% at 6 h following by UV irradiation, whereas the total viability in Rat2-Rac(N17) cells stably expressing RacN17, a dominant negative Rac1 mutant, was almost close to 67%. Pretreatment with SB203580, a specific inhibitor of p38 kinase, likewise attenuated UV-induced cell death, but PD98059, a MEK inhibitor, did not. Thus, Rac1 and p38 kinase appear to be components in the apoptotic signaling pathway induced by UV irradiation in Rat-2 fibroblasts. In addition, our results show that p38 kinase stimulation by UV is dramatically inhibited by RacN17, suggesting that p38 kinase is situated downstream of Rac1 in the UV signaling to apoptosis. 相似文献
12.
Jeon J Lee H Park H Lee JH Choi S Hwang J Han IO Oh ES 《Biochemical and biophysical research communications》2007,364(4):1062-1066
Focal adhesion kinase (FAK) mediates signal transduction in response to multiple extracellular inputs, via tyrosine phosphorylation at specific residues. We recently reported that FAK Tyr-407 phosphorylation negatively regulates the enzymatic and biological activities of FAK, unlike phosphorylation of other tyrosine residues. In this study, we further investigated the effect of FAK Tyr-407 phosphorylation on cell transformation. We found that FAK Tyr-407 phosphorylation was lower in H-Ras transformed NIH3T3 and K-Ras transformed rat-2 fibroblasts than in the respective untransformed control cells. Consistently, FAK Tyr-407 phosphorylation was decreased in parallel with cell transformation in H-Ras-inducible NIH3T3 cells and increased during trichostatin A-induced detransformation of both K-Ras transformed rat-2 fibroblasts and H-Ras transformed NIH3T3 cells. In addition, overexpression of a phosphorylation-mimicking FAK Tyr-407 mutant inhibited morphological transformation of H-Ras-inducible NIH3T3 cells and inhibited invasion activity and anchorage-independent growth of H-Ras-transformed NIH3T3 cells. Taken together, these data strongly suggest that FAK Tyr-407 phosphorylation negatively regulates transformation of fibroblasts. 相似文献
13.
Tsygankova OM Prendergast GV Puttaswamy K Wang Y Feldman MD Wang H Brose MS Meinkoth JL 《Molecular and cellular biology》2007,27(19):6647-6658
Although abundant in well-differentiated rat thyroid cells, Rap1GAP expression was extinguished in a subset of human thyroid tumor-derived cell lines. Intriguingly, Rap1GAP was downregulated selectively in tumor cell lines that had acquired a mesenchymal morphology. Restoring Rap1GAP expression to these cells inhibited cell migration and invasion, effects that were correlated with the inhibition of Rap1 and Rac1 activity. The reexpression of Rap1GAP also inhibited DNA synthesis and anchorage-independent proliferation. Conversely, eliminating Rap1GAP expression in rat thyroid cells induced a transient increase in cell number. Strikingly, Rap1GAP expression was abolished by Ras transformation. The downregulation of Rap1GAP by Ras required the activation of the Raf/MEK/extracellular signal-regulated kinase cascade and was correlated with the induction of mesenchymal morphology and migratory behavior. Remarkably, the acute expression of oncogenic Ras was sufficient to downregulate Rap1GAP expression in rat thyroid cells, identifying Rap1GAP as a novel target of oncogenic Ras. Collectively, these data implicate Rap1GAP as a putative tumor/invasion suppressor in the thyroid. In support of that notion, Rap1GAP was highly expressed in normal human thyroid cells and downregulated in primary thyroid tumors. 相似文献
14.
The calcium-sensing receptor (CaR) is a G-protein-coupled receptor that is activated by extracellular calcium (Cao2+). Rat-1 fibroblasts have been shown to proliferate and increase ERK activity in response to elevation of [Ca2+]o, and these responses are dependent on functional CaR expression. In this report, we examined the role of cross-talk between the CaR and the epidermal growth factor receptor (EGFR) in mediating these responses in Rat-1 cells. This report shows that AG1478, a specific inhibitor of the EGFR kinase, significantly inhibits the increase in proliferation induced by elevated Cao2+. Furthermore, we show that AG1478 acts downstream or separately from G protein subunit activation of phospholipase C. AG1478 significantly inhibits Cao2+-stimulated ERK phosphorylation and in vitro kinase activity. A similar inhibition of ERK phosphorylation was observed in response to the inhibitor AG494. In addition, treatment with inhibitors of metalloproteases involved in shedding of membrane anchored EGF family ligands substantially inhibited the increase in ERK activation in response to elevated Cao2+. This is consistent with the known expression of TGFalpha by Rat-1 cells. These results indicate that EGFR transactivation is an important component of the CaR-mediated response to increased Cao2+ in Rat-1 fibroblasts and most likely involves CaR-mediated induction of regulated proteolysis and ligand shedding. 相似文献
15.
Phosphorylation of focal adhesion kinase at tyrosine 861 is crucial for Ras transformation of fibroblasts 总被引:4,自引:0,他引:4
Lim Y Han I Jeon J Park H Bahk YY Oh ES 《The Journal of biological chemistry》2004,279(28):29060-29065
Although elevated expression and increased tyrosine phosphorylation of focal adhesion kinase (FAK) are crucial for tumor progression, the mechanism by which FAK promotes oncogenic transformation is unclear. We have therefore determined the role of FAK phosphorylation at tyrosine 861 in the oncogenic transformation of NIH3T3 fibroblasts. FAK phosphorylation at tyrosine 861 was increased in both constitutively H-Ras-transformed and H-Ras-inducible NIH3T3 cells, in parallel with cell transformation. However, H-Ras-inducible cells transfected with the nonphosphorylatable mutant FAK Y861F showed decreased migration/invasion, focus forming activity and anchorage-independent growth, compared with either wild-type or kinase-defective FAK. In contrast to unaltered FAK/Src activity, the association of FAK and p130(CAS) was decreased in FAK Y861F-transfected cells, and FAK phosphorylation at tyrosine 861 enhanced this association in vitro. Consistently, FAK Y861F-transfected cells were defective in activation of c-Jun NH(2)-terminal kinase and in expression of matrix metalloproteinase-9 during transformation. Taken together, these results strongly suggest that FAK phosphorylation at tyrosine 861 is crucial for H-Ras-induced transformation through regulation of the association of FAK with p130(CAS). 相似文献
16.
17.
Y Lu L Raptis S Anderson M J Corbley Y C Zhou H Pross T Haliotis 《Biochimie et biologie cellulaire》1992,70(10-11):1249-1257
The positive association of the ras oncogene with human cancer and the recognition that malignancy may, in part, represent the imbalance between cell proliferation and differentiation have generated intense interest in the potential role of ras in cell differentiation. We investigated this possibility utilizing as a model system the differentiation of the mesenchymal cell line C3H 10T1/2 (10T1/2) to adipocytes, and a series of transfectants of 10T1/2 cells in which the level of the ras gene product (p21ras; Ras) can be effectively up- or down-modulated. In agreement with previous reports, we found that 10T1/2 cultures, propagated in the resting state for several weeks, spontaneously convert to fat cells at a very low frequency. Downmodulation of endogenous p21ras levels, as a consequence of expression of antisense ras, markedly increased the rapidity and frequency of adipose conversion (6- to 10-fold), which was equivalent in magnitude to that effected by the potent differentiating agent 5-azacytidine. Conversely, overexpression of ras completely inhibited cell differentiation. In addition, adipocytes derived from antisense-ras expressing lines were characterized by a decrease in hormone responsiveness, as well as an apparent deficiency in attaining the terminally differentiated state. These findings suggest that Ras may be a negative regulator of the decision-making step of fibroblast differentiation to adipocytes. In addition, Ras may play an essential positive role in the transduction of hormonal signals necessary for full adipocyte maturation during later progression along the differentiation pathway. 相似文献
18.
Ariella B Hanker Kevin D Healy Jean Nichols Channing J Der 《Journal of molecular signaling》2009,4(1):1-13
Background
While evidence suggested that the activity states of Protein kinase B (AKT/PKB) and endothelial nitric oxide synthase (eNOS) play an important role in the progression of the Growth Hormone (GH) signal cascade, the implication of the activation of AKT/PKB and eNOS in terms of their function in the signaling pathway was not clear.Results
Using a specific AKT/PKB inhibitor and a functional proteomic approach, we were able to detect the activities of multiple signal transduction pathway elements, the downstream targets of the AKT/PKB pathway and the modification of those responses by treatment with GH. Inhibiting the AKT/PKB activity reduced or eliminated the activation (phosphorylation) of eNOS. We demonstrated that the progression of the GH signal cascade is influenced by the activity status of AKT and eNOS, wherein the suppression of AKT activity appears to augment the activity of extracellular signal-regulated kinases 1 and 2 (Erk1/2) and to antagonize the deactivation (phosphorylation) of cyclin-dependent kinase 2 (CDC2/Cdk1) induced by GH. Phosphorylation of GSK3a/b (glycogen synthase kinase 3), the downstream target of AKT/PKB, was inhibited by the AKT/PKB inhibitor. GH did not increase phosphorylation of ribosomal S6 kinase 1 (RSK1) in normal cells but increases phosphorylation of RSK1 in cells pre-treated with the AKT and eNOS inhibitors.Conclusion
The MAP kinase and CDC2 kinase-dependent intracellular mechanisms are involved in or are the targets of the GH's action processes, and these activities are probably directly or indirectly modulated by AKT/PKB pathways. We propose that the AKT/PKB-eNOS module likely functions as a negative feedback mediator of GH actions. 相似文献19.
Stimulation of the hydrolysis of phosphatidylinositol 4,5-bisphosphate and phosphatidylcholine by endothelin, a complete mitogen for Rat-1 fibroblasts. 总被引:6,自引:0,他引:6 下载免费PDF全文
The mitogenic activity of endothelin and its ability to stimulate PtdIns(4,5)P2 and phosphatidylcholine turnover in Rat-1 fibroblasts was studied. Stimulated incorporation of [3H]thymidine occurred in the absence of any other added growth factors. The endothelins stimulated rapid generation of both Ins(1,4,5)P3 and choline. Endothelin-1 and endothelin-2 were equipotent in stimulating both responses, but endothelin-3 was less potent. Endothelin-1-stimulated Ins(1,4,5)P3 generation reached a maximum at 5 s and then declined; however, the response was long-lived, with a 4.5-fold elevation over basal still observed after 15 min. Endothelin-stimulated choline generation was observed with no increase in choline phosphate; indeed, the apparent level of this metabolite fell after 30 min of stimulation, presumably due to the observed stimulation of phosphatidylcholine synthesis. The endothelin-stimulated increase in choline generation was abolished in cells where protein kinase C was down-regulated. However, endothelin-stimulated choline generation was greater than that observed in response to a protein kinase C-activating phorbol ester, raising the possibility that the peptide activates phospholipase D by both protein kinase C-dependent and -independent mechanisms. 相似文献
20.
Biochemical transformation by temperature-sensitive mutants of herpes simplex virus type 1. 下载免费PDF全文
Biochemical transformation assays of herpes simplex virus type 1 temperature-sensitive (ts) mutants distinguished three groups of mutants with regard to their thymidine kinase (TK) transforming ability: those incapable of transferring the TK gene at either the permissive or restrictive temperatures (group I); those resembling the wild-type virus, and therefore able to transform at both the permissive and nonpermissive temperatures (group II); and those that failed to transform or exhibited very low transformation frequencies at the permissive temperature but were able to transform at the nonpermissive temperature (group III). Two mutants in group II exhibited greatly enhanced transformation efficiency at the permissive temperature. The ts lesions in the majority of the mutants tested map between 0.30 and 0.60 units on the viral genome. Mutants with TK-positive (TK+), but DNA-negative, phenotypes at the nonpermissive temperature produced no TK+ transformants at the permissive temperature and only unstable transformants at the nonpermissive temperature. This suggests that a function which is required for viral DNA synthesis is also required to obtain stable expression or to transfer the TK+ gene or both when transfer is mediated by the entire viral genome. 相似文献