首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four aldohexoses were individually subjected to the reagent mixture and temperature cited in the title; in each case, the 2,2-dimethoxypropane was present in only a small molar excess and the p-toluenesulfonic acid was used in trace amounts. D-Mannose (1) afforded the known 2,3:5,6-di-O-isopropylidene-D-mannofuranose (2) in significantly higher yield than when the reaction was conducted at room temperature. The other three aldoses, however, gave products markedly different from those formed under the milder conditions. 2-Acetamido-2-deoxy-D-mannose (3) gave a mixture of products from which methyl 2-acetamido-2-deoxy-2,3-N,O-isopropylidene-5,6-O-isopropylidene-α-D-mannofuranoside (4), 2-acetamido-2-deoxy-2,3-N,O-isopropylidene-5,6-O-isopropylidene-D-mannofuranose (5a), and methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-α-D-mannofuranoside (6a) were isolated. 2-Acetamido-2-deoxy-D-galactose (11) gave compounds identified as methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-β-D-galactofuranoside (12a) and methyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-β-D-galactopyranoside (13a). 2-Acetamido-2-deoxy-D-glucose (16) afforded methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-β-D-glucofuranoside (17a) and methyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-β-D-glucopyranoside (18a). Evidence in support of the structures assigned to these new derivatives is presented.  相似文献   

2.
2-Acetamido-2-deoxy-D-galactose (GalNAc) is a common monosaccharide found in biologically functional sugar chains, but its availability is often limited due to the lack of abundant natural sources. In order to produce GalNAc from abundantly available sugars, 2-acetamido-2-deoxy-D-glucose (GlcNAc) was converted to GalNAc by a one-pot reaction using three enzymes involved in the galacto-N-biose/lacto-N-biose I pathway of bifidobacteria. Starting the reaction with 600 mM GlcNAc, 170 mM GalNAc was produced at equilibrium in the presence of catalytic amounts of ATP and UDP-Glc under optimized conditions. GalNAc was separated from GlcNAc using water-eluting cation-exchange chromatography with a commonly available cation-exchange resin.  相似文献   

3.
The glycosylating activity of 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-D-galactopyrano)-[2′,1′:4,5]-2-oxazoline has been tested in reaction with partially protected saccharides having free primary or secondary hydroxyl groups or with hydroxy amino acids. 3-O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-galactopyranosyl)-N-benzyloxycarbonyl-L-serine benzyl ester (3), 6-O-(2-acetamido-2-deoxy-β-D-galactopyranosyl)-D-galactopyranose (5), p-nitrophenyl 2-acetamido-6-O-(2-acetamido-2-deoxy-β-D-galactopyranosyl)-2-deoxy-β-D-glucopyranoside (7), 6-O-(2-acetamido-2-deoxy-β-D-galactopyranosyl)-D-glucose (9), and 3-O-(2-acetamido-2-deoxy-β-D-galactopyranosyl)-D-glucose (11) were synthesized in high yield.  相似文献   

4.
Selective pivaloylation of 2-acetamido-2-deoxy-D-glucose, its methyl alpha- and beta-glycosides, and the methyl alpha-glycoside of N-acetyl-D-muramic acid under various conditions has been studied. The structures of the products were established by 1H-n.m.r. spectroscopy and acetylation. The orders of acylation, HO-6 greater than HO-3 greater than HO-1 greater than HO-4 for 2-acetamido-2-deoxy-D-glucose and HO-6 greater than HO-3 greater than HO-4 for its methyl glycosides, were established. Methyl 2-acetamido-2-deoxy-3,6-di-O-pivaloyl-alpha- and -beta-D-glucopyranosides and 2-acetamido-2-deoxy-1,3,4,6-tetra-O-pivaloyl-D-glucopyranose were hydrolysed by rabbit serum esterases.  相似文献   

5.
4-Deoxy-4-fluoro analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-galactose were synthesized and evaluated as inhibitors of hepatic glycosaminoglycan biosynthesis. 2-Acetamido-1,3,6-tri-O-acetyl-2,4-dideoxy-4-fluoro-D-glucopyranose (16) exhibited a reduction of [3H]GlcN and [35S]SO4 incorporation into hepatocyte cellular glycosaminoglycans to 12 and 18%, respectively, of the control cells, at 1.0 mM. Similarly, 2-acetamido-1,3,6-tri-O-acetyl-2,4-dideoxy-4-fluoro-D-galactopyranose (31) exhibited a reduction of [3H]GlcN and [35S]SO4 incorporation to 1 and 9%, respectively, of the control cells, at 1.0 mM. Unlike 16, 31 exhibited a reduction of [14C]Leu incorporation into cellular protein to 57% of control cells, at 1.0 mM.  相似文献   

6.
2-Acetamido-3,4-di-Oacetyl-2,6-dideoxy-6-S-acetyl-6-thio-d-glucopyranosyl chloride (III) was condensed with potassium thiolacetate, potassium ethylxanthate or thiourea to give three crystalline derivatives of 2-acetamido-2-deoxy-1,6-dithio-d-glucose. An attempt to prepare 2-acetamido-1,2,6-trideoxy-1,6-dimercapto-D-glucose (VII) from 2-acetamido-3,4-di-O-acetyl-1,2,6-trideoxy-1,6-di-S-acetyl-1,6-dithio-β-d-glucopyranose was described. 2-Acetamido-3,4-di-O-acetyl-1,2,6-trideoxy-1-mercapto-6-S-acetyl-6-thio-β-d-glucopyranose (VIII) was synthesized from the condensation product of III with thiourea.  相似文献   

7.
An N-carbamoyl-L-amino acid amidohydrolase (L-N-carbamoylase) from Sinorhizobium meliloti CECT 4114 was cloned and expressed in Escherichia coli. The recombinant enzyme catalyzed the hydrolysis of N-carbamoyl alpha-amino acid to the corresponding free amino acid, and its purification has shown it to be strictly L-specific. The enzyme showed broad substrate specificity, and it is the first L-N-carbamoylase that hydrolyses N-carbamoyl-L-tryptophan as well as N-carbamoyl L-amino acids with aliphatic substituents. The apparent Km values for N-carbamoyl-L-methionine and tryptophan were very similar (0.65 +/- 0.09 and 0.69 +/- 0.08 mM, respectively), although the rate constant was clearly higher for the L-methionine precursor (14.46 +/- 0.30 s(-1)) than the L-tryptophan one (0.15 +/- 0.01 s(-1)). The enzyme also hydrolyzed N-formyl-L-methionine (kcat/Km = 7.10 +/- 2.52 s(-1) x mM(-1)) and N-acetyl-L-methionine (kcat/Km = 12.16 +/- 1.93 s(-1) x mM(-1)), but the rate of hydrolysis was lower than for N-carbamoyl-L-methionine (kcat/Km = 21.09 +/- 2.85). This is the first L-N-carbamoylase involved in the 'hydantoinase process' that has hydrolyzed N-carbamoyl-L-cysteine, though less efficiently than N-carbamoyl-L-methionine. The enzyme did not hydrolyze ureidosuccinic acid or 3-ureidopropionic acid. The native form of the enzyme was a homodimer with a molecular mass of 90 kDa. The optimum conditions for the enzyme were 60 degrees C and pH 8.0. Enzyme activity required the presence of divalent metal ions such as Ni2+, Mn2+, Co2+ and Fe2+, and five amino acids putatively involved in the metal binding were found in the amino acid sequence.  相似文献   

8.
2-Acetamido-2-deoxy-β-D-glucopyranosyl isothiocyanate (I) was obtained by the action of thiophosgene on 2-acetamido-2-deoxy-β-D-glucopyranosylamine. Compound I irreversibly inhibits the human and boar N-acetyl-β-D-hexosaminidase; the dialysis does not restore the enzyme activity. N-Acetyl-D-glucosamine, the competitive inhibitor of N-acetyl-β-D-hexosaminidase, protects the enzyme from inactivation, that testifies to the binding of isothiocyanate I in the active site of the enzyme.  相似文献   

9.
The syntheses of three analogues of N4-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-L-asparagine are described. N-(2-Acetamido-2-deoxy-beta-D-glucopyranosyl)succinamide was synthesized by the reaction of pentafluorophenyl succinamate with 2-acetamido-2-deoxy-beta-D-glucopyranosylamine. 2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosylamine was synthesized, and the complete assignment of the 1H NMR spectrum is given. Reaction of the protected beta-D-glycosylamine with L-malic acid chloralid in the presence of a coupling agent (EEDQ) gave N4-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosyl)-L-malamic acid chloralid that was deprotected two ways: (1) using ammonia, which gave N4-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-L-2-hydroxysuccinamide, and (2) using hydrazine, which gave N4-(2-acetamido-2-deoxy-1-D-glucopyranosyl)-L-2-hydroxysuccinamic acid hydrazide.  相似文献   

10.
2-Acetamido-2-deoxy-D-glucono-1,4-lactone (1) and 2-acetamido-2-deoxy-D-gluconic acid (3) have been examined for inhibitory activity against 2-acetamido-2-deoxy-β-D-glucosidase from bull epididymis. Crystalline 1 and 3 were compared with the known, crystalline 2-acetamido-2-deoxy-D-glucono-1,5-lactone (2), and a correlation of the activities of these compounds with various factors is presented. The inhibition constant of the 1,5-lactone 2 is lower (0.45μM) than that (4.43μM) of the 1,4-lactone 1. The effect of time is the opposite; whereas the activity of solutions of 2 decreases with time, solutions of 1 show an increase in inhibitory power, but both reach an equilibrium after 5 h. The free acid 3 exhibits no inhibitory activity. 2-Acetamido-2-deoxy-5,6-O-isopropylidene-D-glucono- 1,4-lactone (4) and 2-acetamido-2-deoxy-4,6-O-isopropylidene-D-glucono-1,5-lactone (5), which are appropriately protected to prevent conversion into the other lactone isomer, were also tested; 4 has 1/1000th the activity of 5.  相似文献   

11.
2-Acetamido-1-N-(L-aspart-4-oyl)-2-deoxy-beta-D-glucopyranosyla mine (1) was used as a model glycopeptide to study the hydrazinolysis-N-reacetylation procedure. The major, initial product was the beta-acetohydrazide derivative of 2-acetamido-2-deoxy-D-glucose (2) which gave 2-acetamido-2-deoxy-D-glucose (5) after exposure to acidic conditions. Very mild conditions of hydrolysis of 2 gave a 75-80% overall yield of 5 from 1 after the hydrazinolysis-N-reacetylation procedure. Several other minor compounds were detected which were not converted into 5 upon mild acid hydrolysis, indicating that 20-25% of product cannot be recovered as 5 at the reducing end of oligosaccharides.  相似文献   

12.
2-Acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2-deoxy-α-d-glucopyranosyl phosphate, pure according to thin-layer and gas—liquid chromatography, optical rotation, and treatment with alkaline phosphatase and 2-acetamido-2-deoxy-β-d-glucosidase, was prepared by treatment of 2-methyl-[4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-1,2-dideoxy-α-d-glucopyrano]-[2,1-d]-2-oxazoline with dibenzyl phosphate, followed by the removal of the benzyl groups by catalytic hydrogenolysis, and O-deacetylation. In contrast, a sample prepared by the phosphoric acid procedure was shown to consist mainly of the β anomer. 2-Acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-α-d-glucopyranosyl phosphate was treated wit P1-diphenyl P2-dolichyl pyrophosphate to give a fully acetylated pyrophosphoric diester, which was O-deacetylated to give P1-2-acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2-deoxy-α-d-glucopyranosyl P2-dolichyl pyrophosphate. This compound could be separated from the β anomer by t.l.c., and its behavior under dilute acid and alkaline conditions was investigated.  相似文献   

13.
N-Acyl-D-glutamate amidohydrolase from Pseudomonas sp. strain 5f-1 was inducibly produced by D isomers of N-acetylglutamate, glutamate, aspartate, and asparagine. The enzyme has been purified to homogeneity by DEAE-cellulose, (NH4)2SO4 fractionation, and chromatofocusing followed by gel filtration on a Sephadex G-100 column. The enzyme was a monomer with molecular weight of 55,000. The enzyme activity was optimal at pH 6.5 to 7.5 and 45 degrees C. The isoelectric point and the pH stability were 8.8 and 9.0, respectively. N-Formyl, N-acetyl, N-butyryl, N-propionyl, N-chloroacetyl derivatives of D-glutamate and glycyl-D-glutamate were substrates for the enzyme. At pH 6.5 in 100 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffer at 30 degrees C, a Km of 6.67 mM and a Vmax of 662 mumol/min/mg of protein for N-acetyl-D-glutamate were obtained. None of the metal ions stimulated the enzyme activity. Na+, K+, Mg2+, and Ba2+ acted as stabilizers. Hg2+, Cu2+, Zn2+, Fe3+, and EDTA were strongly inhibitory.  相似文献   

14.
2-Acetamido-2-deoxy-d-glucose and 2-(benzyloxycarbonylamino)-2-deoxy-d-glucose were each treated with 2,2-dimethoxypropane in N,N-dimethylformamide containing a trace of p-toluenesulfonic acid. The new 5,6-O-isopropylidene derivatives 2-acetamido-2-deoxy-5,6-O-isopropylidene-d-glucofuranose, 2-acetamido-1,4-anhydro-2-deoxy-5,6-O-isopropylidene-d-arabino-hex-1-enitol, 2-acetamido-2-deoxy-3,4:-5,6-di-O-isopropylidene-aldehydo-d-glucose-dimethyl acetal, and 2-(benzyloxycarbonylamino)-2-deoxy-5,6-O-isopropylidene-d-glucofuranose were isolated. The formation of these furanoid acetals may be important in ascertaining the mechanism of this unique acetonation accompanied by glycosidation.  相似文献   

15.
A sensitive and selective HPLC method for the determination of the disaccharides of chondroitin sulfate in horse and dog plasma was validated. Chondroitin sulfate is degraded by chondroitinase ABC to three primary unsaturated disaccharides, (1) 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-D-galactose, (2) 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-4-O-sulfo-D-galactose, and (3) 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-6-O-sulfo-D-galactose, when treated with chondroitinase. Plasma samples (0.5 ml) were treated with 50 mU of chondroitinase ABC in 50 microl of 1 mM sodium phosphate buffer (pH 7.0) at 37 degrees C for 6 h. The samples were extracted with 25% trifluoroacetic acid in ethanol. The resultant samples were derivatized with 1% dansylhydrazine in ethanol at 40 degrees C for 3 h. The chromatographic conditions consisted of fluorescence detection (excitation at 350 nm and emission at 530 nm), mu-Bondapack NH(2) (300 x 3.9 mm), and mobile phase of acetonitrile:100 mM acetate buffer, pH 5.6 (76:24), pumped at 1.0 ml/min. The standard curves for each chondroitin disaccharide showed linearity over the selected concentration range (r > or = 0.99). The intraday percentage relative standard deviation was < or =9.5% and the interday precision was < or =6.9% or less. The relative intraday and interday error ranged from -7.3 to 6.6% for each chondroitin disaccharide in the plasma. The extraction recovery was found to be in the range of 90-96%. The validated method accurately quantitated the disaccharides of chondroitin sulfate after administration to dogs and horses.  相似文献   

16.
3-Acetamido-5-amino-3,5,6-trideoxy-d-glucono-1,5-lactam and 3-acetamido-5-amino-3,5-dideoxy-d-glucono-1,5-lactam were synthesized from corresponding 3-acetamido-3-deoxy-β-d-glucopyranosides in 63% and 35% overall yield, respectively. Acetylation followed by reduction led to the title 3-acetamido-3-deoxy derivatives of both deoxynojirimycin and 1,6-dideoxynojirimycin. The procedure developed is useful for a multi-gram scale.  相似文献   

17.
2-Acetamido-5-amino-2,5-dideoxy- -xylopyranosyl hydrogensulfite (11) has been synthesized from benzyl 2-(benzyloxycarbonylamino)-2-deoxy-5,6-O-isopro-pylidene-β- -glucofuranoside (1). O-Deisopropylidenation of 1 gave the triol 2, which was converted, via oxidative cleavage at C-5-C-6 and subsequent reduction, into the related benzyl β- -xylofuranoside derivative (3). Catalytic reduction of benzyl 2-(benzyloxycarbonylamino)-2-deoxy-5-O-tosyl-β- -xylofuranoside, derived from 3 by selective tosylation, and subsequent N-acetylation, afforded benzyl 2-acetamido-2-deoxy-5-O-tosyl-β- -xylofuranoside, which was treated with sodium azide to give the corresponding 5-azido derivative (6). (Tetrahydropyran-2-yl)ation of the product formed by hydrolysis of 6 gave 2-acetamido-5-azido-2,5-dideoxy-1,3- di-O-(tetrahydropyran-2-yl)- -xylofuranose (9). Treatment of 2-acetamido-5-amino-2,5-dideoxy-1,3-di-O-(tetrahydropyran-2-yl)- -xylofuranose, derived from 9 by reduction, with sulfur dioxide in water gave 11. Hydrogenation of 6 and subsequent acetylation yielded 3-acetamido-4,5-diacetoxy-1-acetyl-xylo-piperidine. Evidence in support of the structures assigned to the new derivatives is presented.  相似文献   

18.
K Sakai  K Oshima    M Moriguchi 《Applied microbiology》1991,57(9):2540-2543
N-Acyl-D-glutamate amidohydrolase from Pseudomonas sp. strain 5f-1 was inducibly produced by D isomers of N-acetylglutamate, glutamate, aspartate, and asparagine. The enzyme has been purified to homogeneity by DEAE-cellulose, (NH4)2SO4 fractionation, and chromatofocusing followed by gel filtration on a Sephadex G-100 column. The enzyme was a monomer with molecular weight of 55,000. The enzyme activity was optimal at pH 6.5 to 7.5 and 45 degrees C. The isoelectric point and the pH stability were 8.8 and 9.0, respectively. N-Formyl, N-acetyl, N-butyryl, N-propionyl, N-chloroacetyl derivatives of D-glutamate and glycyl-D-glutamate were substrates for the enzyme. At pH 6.5 in 100 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffer at 30 degrees C, a Km of 6.67 mM and a Vmax of 662 mumol/min/mg of protein for N-acetyl-D-glutamate were obtained. None of the metal ions stimulated the enzyme activity. Na+, K+, Mg2+, and Ba2+ acted as stabilizers. Hg2+, Cu2+, Zn2+, Fe3+, and EDTA were strongly inhibitory.  相似文献   

19.
Linear tetra(N-acetylglucosaminyl)triphosphate GlcNAc(alpha)-P-3GlcNAc (alpha)-P-3GlcNAc(alpha)-P-3GlcNAc(beta)-ONp, a fragment of the capsular antigen of E. coli K51, was synthesized by the step-by-step approach with the use of the H-phosphonate method, starting the chain from p-nitrophenyl 2-acetamido-4,6-di-O-benzoyl-2-deoxy-beta-D-glucopyranoside. The elongation cycle included the coupling of 2-acetamido-4,6-di-O-benzoyl-2-deoxy-3-O-p-methoxybenzyl-alpha-D-gluc opy ranosyl H-phosphonate with a hydroxyl component in the presence of Me3CCOCl followed by oxidation (I2) and de (methoxybenzylation) (Ce(NH4)2(NO3)6). 2-Acetamido-3,4,6-tri-O-benzoyl-2-deoxy-alpha-D-glucopyranosyl H-phosphonate was employed in the final step. After mild debenzoylation the title tetramer was isolated by anion-exchange chromatography. The data of 1H, 13C and 31P NMR spectra of the synthesized oligomers are discussed.  相似文献   

20.
Endo-beta-galactosidase was purified 4400-fold from a culture filtrate of Escherichia freundii with 45% recovery. The enzyme preparation was practically free of exoglycosidases, sulfatase, and proteases. This enzyme hydrolyzed several keratan sulfates, endoglycosidically releasing oligosaccharides of various molecular sizes. Among the digestion products of the corneal keratan sulfate, the structure of a disaccharride and a tetrasaccharride were shown to be 2-acetamido-2-deoxy-6-O-sulfo-beta-D-glucosyl-(1 leads to 3)-D-galactose and 2-acetamido-2-deoxy-6-O-sulfo-beta-D-glucosyl-(1 leads to 3)-6-O-sulfo-beta-D-galactosyl-(1 leads to 4)-2-acetamido-2-deoxy-6-O-sulfo-beta-D-glucosyl-(1 leads to 3)-D-galactose, respectively. These oligosaccharide structures indicate that this enzyme specifically hydrolyzes the galactosidic bonds in which nonsulfated galactose residues participate. The enzyme could also hydrolyze a small oligosaccharide such as lacto-N-neotetraitol as follows: Gal(beta 1 leads to 4)GlcNAc(beta 1 leads to 3)Gal(beta 1 leads to 4) sorbitol leads to Gal(beta 1 leads to 4)GlcNAc(beta 1 leads to 3)Gal + sorbitol AB active blood group substance could be hydrolyzed by this enzyme only after Smith degradation. After enzymatic digestion small oligosaccharides and resistant macromolecules were produced. These findings indicate that the enzyme should be useful in studying the precise structures of keratan sulfates, related glycoproteins, and oligosaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号