首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cano R  Ruiz R  Shen C  Tabares L  Betz WJ 《Cell calcium》2012,52(3-4):321-326
The neuromuscular junction (NMJ) is the original model synapse, and while others have emerged, especially as models of plasticity involving coincidence detectors, the NMJ continues to provide useful new information. It remains, for example, one of the best understood synapses in terms of the relationship between structure and function. In particular, the advent of new tools for fluorescence imaging has allowed the processes of vesicle exocytosis, endocytosis, and receptor activation to be spatially mapped in considerable detail. Here, we will focus on the spatial properties of transmitter release at the presynaptic motor terminal at the mouse NMJ. The preparation offers several experimental advantages, such as easy accessibility, a nearly planar, unobstructed view of several hundred square microns of synaptic membrane, as well as a highly stereotyped, consistent structure of a fully differentiated adult mammalian synapse.  相似文献   

3.
4.
Presynaptic nerve terminals contain a great number ofsynaptic vesicles filled with neurotransmitter. The transmission of information in synapses is mediated by release of transmitter from vesicles: exocytosis, after their fusion with presynaptic membrane. At the functioning synapses, the continuous recycling of synaptic vesicles occurs (vesicle cycle), which provides multiple reuse of vesicular membrane material during synaptic activity. Vesicle cycle consists of large number of steps, including vesicle fusion--exocytosis, formation of new vesicles--endocytosis, vesicle sorting, filling of vesicles with transmitter, intraterminal vesicle transport driving the vesicles to different vesicle pools and preparing to next exocytic event. At this paper, I presented the latest literature and our data regarding the steps and mechanisms of vesicle cycle at synapses. Special attention was paid to neuromuscular synapse as the most thoroughly investigated and as my favorite preparation.  相似文献   

5.
Regulation of Na+ channels by neurotoxins has been studied in pinched- off nerve endings (synaptosomes) from rat brain. Activation of Na+ channels by the steroid batrachotoxin and by the alkaloid veratridine resulted in an increase in the rate of influx of 22Na into the synaptosomes. In the presence of 145 mM Na+, these agents also depolarized the synaptosomes, as indicated by increased fluorescence in the presence of a voltage-sensitive oxacarbocyanine dye [diO-C5(3)]. Polypeptide neurotoxins from the scorpion Leiurus quinquestriatus and from the sea anemone Anthopleura xanthogrammica potentiated the stimulatory effects of batrachotoxin and veratridine on the influx of 22Na into synaptosomes. Saxitoxin and tetrodotoxin blocked the stimulatory effects of batrachotoxin and veratridine, both in the presence and absence of the polypeptide toxins, but did not affect control 22Na influx or resting membrane potential. A three-state model for Na+ channel operation can account for the effects of these neurotoxins on Na+ channels as determined both by Na+ flux measurements in vitro and by electrophysiological experiments in intact nerve and muscle.  相似文献   

6.
The modulation of presynaptic calcium (Ca) channels by heterotrimeric G proteins is a key factor for the regulation of neurotransmission. Over the past 20 yr, a significant understanding of the molecular events underlying this regulation has been acquired. It is now widely accepted that binding of G protein betagamma dimers directly to the cytoplasmic region linking domains I and II of the Ca channel alpha1 subunit results in a stabilization of the closed conformation of the channel, thereby inhibiting current activity. The extent of the inhibition is dependent on the Gbeta subunit isoform, and is antagonized by both strong membrane depolarizations and protein kinase C-dependent phosphorylation of the channel. Finally, the inhibition is critically modulated by regulator of G protein signaling proteins, and by proteins forming the presynaptic vesicle release complex. Thus, the regulation of the activities of presynaptic Ca channels is becoming increasingly complex, a feature that may contribute to the overall fine-tuning of Ca entry into presynaptic nerve termini, and thus, neurotransmission.  相似文献   

7.
8.
Single calcium channels and their inactivation   总被引:1,自引:0,他引:1  
Inactivation of single Ca channels in snail neurons was examined to test the idea that entering Ca ions react directly with the channel to produce this effect. Simulations of specific models were used for comparison with the experimental data. The Ca-dependent model predicts time-dependent changes in the single-channel events which were not found experimentally. It is possible that Ca-dependent inactivation is mediated by a Ca-binding protein that is associated with but not part of the channel itself.  相似文献   

9.
Summary Intracellular microelectrode recording and ionophoretic application of carbamylcholine (CCh) were used to compare the cholinergic sensitivity of postsynaptic dendrites of an identified neurone with that of an identified presynaptic cholinergic axon.The axon of the lateral filiform hair sensory neurone (LFHSN) in the first-instar cockroachPeriplaneta americana was found to be as sensitive to CCh as the dendritic regions of giant interneurone 3 (GI 3). The CCh response of both neurones was unaffected by replacing Ca2+ with Mg2+, confirming that the ACh receptors are present on the neurones under test. The CCh response of both neurones was mimicked by ionophoretic application of nicotine. The responses were blocked by 10–5 M mecamylamine and 10–6 M d-tubocurarine and were not affected by muscarinic antagonists, suggesting that the ACh receptors present on GI 3 and LFHSN are predominantly nicotinic.The muscarinic agonist oxotremorine and the antagonists atropine and quinuclidinyl benzilate had no modulatory effect on LFHSN-GI 3 synaptic transmission.The latency of the LFHSN response to CCh was consistent with the hypothesis that ACh receptors are situated on the main axon/terminal within the neuropil of the ganglion. It has previously been shown that this region of the axon does not form output synapses (Blagburn et al. 1985a). This indirect evidence indicates that presynaptic or extrasynaptic ACh receptors are present in the membrane of a cholinergic axon.LFHSN was depolarized by synaptically-released ACh after normal or evoked spike bursts, suggesting that the nicotinic ACh receptors act as autoreceptors. However, it was not possible to obtain direct evidence to support the hypothesis that these receptors modulate ACh release.Abbreviations CCh carbamylcholine - GI giant interneurone - FHSN filiform hair sensory neurone - LFHSN lateral filiform hair sensory neurone - R in input resistance - V depolarization - V m resting potential  相似文献   

10.
《The Journal of cell biology》1983,97(6):1737-1744
The crude extract of venom glands of the polychaete annelid Glycera convoluta triggers a large Ca2+-dependent acetylcholine release from both frog motor nerve terminals and Torpedo electric organ synaptosomes. This extract was partially purified by Concanavalin A affinity chromatography. The biological activity was correlated in both preparations to a 300,000-dalton band, as shown by gel electrophoresis. This confirmed previous determinations obtained with chromatographic methods. This glycoprotein binds to presynaptic but not postsynaptic plasma membranes isolated from Torpedo electric organ. Pretreatment of intact synaptosomes by pronase abolished both the binding and the venom- induced acetylcholine release without impairing the high K+-induced acetylcholine release. Pretreatment of nerve terminal membranes by Concanavalin A similarly prevented the binding and the biological response. Binding to Torpedo membranes was still observed in the presence of EGTA. An antiserum directed to venom glycoproteins inhibited the neurotoxin so we could directly follow its binding to the presynaptic membrane. Glycera convoluta neurotoxin has to bind to a ectocellularly oriented protein of the presynaptic terminal to induce transmitter release.  相似文献   

11.
Ca2+-sensitive minielectrodes and the fluorescent cytosolic calcium probes, quin2 and fura2, were used to study some aspects of calcium homeostasis in intact and permeabilized synaptosomes from whole rat brain. Experiments in permeabilized synaptosomes revealed the existence of a vesicular, non-mitochondrial, ATP-dependent calcium uptake system with a vanadate sensitivity similar to that of brain microsomes, or endoplasmic reticulum-type calcium sequestering organelles. By using the fluorescent probes it was possible to show that caffeine mobilizes calcium from these internal stores in intact synaptosomes. Our results indicate a role of the caffeine sensitive calcium stores in the buffering of calcium loads elicited by plasma membrane depolarization.  相似文献   

12.
The effects of low pH, and of alkaline earth cations, were examined on calcium uptake by pinched-off nerve terminals (synaptosomes). This uptake appears to be mediated by voltage-sensitive Ca channels (J. Physiol. 247:617, 1975). Ca uptake was measured in low (5 mM) or high (77 mM) potassium media. The extra uptake promoted by depolarizing (K-rich) media was almost maximal at pH 7.5, and decreased as the pH was lowered. Data relating depolarization-induced 45Ca uptake to pH fit a titration curve with a pKa approximately 6. Experiments in which Ca concentration and pH were both varied indicated that Ca2+ and H+ compete for a common binding site. Inhibition of depolarization-induced 45Ca uptake by the alkaline earth cations was studied to determine the apparent binding sequence for these cations in the Ca channels: Ca greater than Sr greater than Ba greater than Mg. This sequence resembles that observed for block of Ca channels in other preparations. The apparent binding sequence of the alkaline earth cations and the apparent pKa (approximately 6) of the Ca-binding site indicate that the Ca channel is a "high field strength" system. Protonation of a Ca channel binding site could explain the inhibitory effect of low pH on Ca-dependent neurotransmitter release (cf. Del Castillo et al., J. Cell. Comp. Physiol. 59:35, 1962).  相似文献   

13.
In vertebrates, the physical coupling between presynaptic calcium channels and synaptic vesicle release proteins enhances the efficiency of neurotransmission. Recent evidence indicates that these synaptic proteins may feedback directly on synaptic release by negatively regulating calcium entry, and indirectly through pathways involving second messenger molecules. Studies of individual neurons from both vertebrates and invertebrates have provided novel insights into the roles of scaffolding proteins in calcium channel targeting and neurotransmitter release. These studies require us to expand current models of synaptic transmission.  相似文献   

14.
Potassium-stimulated 45Ca entry into rat brain synaptosomes was measured at times ranging from 1 to 60 s. The K-rich solutions were used to depolarize the synaptosomes. Backflux of 45Ca from the synaptosomes was negligible during the first 10-20 s of incubation. An initial ("fast") phase of K-stimulated Ca entry, lasting from 1 to 2 s was observed. This phase was inhibited by low concentrations of La (KI approximately equal to 0.3 microM). It was also abolished ("inactivated") by incubating the synaptosomes in depolarizing solutions (containing veratridine, gramicidin, or elevated [K]o) before the addition of 45Ca. An additional long lasting ("slow") phase of K-stimulated Ca entry was also detected. This "slow" Ca entry was much less sensitive to La (KI > 100 microM) and was not affected by depolarizing the synaptosomes before the addition of 45Ca. The rate of influx during the fast phase was about four times the rate of Ca influx during the slow phase. Neither the fast nor slow phase of Ca entry was sensitive to tetrodotoxin (10 microM), a potent blocker of Na channels, but both phases were inhibited by Ni, Mn, Mg, and other agents that block Ca channels. The data are consistent with the presence of two distinct populations of voltage-regulated, divalent cation-selective pathways for Ca entry in presynaptic brain nerve endings.  相似文献   

15.
The activity of some voltage-gated calcium channels (VGCCs) can be inhibited by specific G protein beta subunits. Conversely, in the case of N-type VGCCs, protein kinase C can relieve Gbeta-dependent inhibition by phosphorylating at least one specific site on the calcium channel. A recent publication describes a newly identified method of intracellular regulation of specific VGCCs. Wu et al. have uncovered that VGCC activity can be regulated by phosphatidylinositol-4',5'-bisphosphate (PIP2). Whereas PIP2 is important for maintaining the activity (open state) of Cav2.1 (N-type) and Cav2.2 (P/Q-type) channels, the enzymatic breakdown of PIP2 leads to the inactivation of these channels. Additionally, PIP2 can cause changes in voltage-dependent activation of Cav2.2 (P/Q-type) channels that make it more difficult for these channels to open (from the closed state). Furthermore, protein kinase A activity can circumvent PIP2-mediated inhibition. Thus, the PIP2-mediated regulation of VGCCs is tightly controlled by the functions of kinases (and phosphatases), as well as phospholipases. Wu et al. stress that because PIP2 can be found at synapses, PIP2-dependent control of VGCCs "could have profound consequences on synaptic transmission and plasticity."  相似文献   

16.
The particulate fraction from osmotically shocked synaptosomes ('synaptosomal membrances') sequesters Ca when incubated with ATP]containing solutions. This net accumulation of Ca can reduce the free [Ca2+] of the bathing medium to sub-micromolar levels (measured with arsenazo III). Two distinct types of Ca sequestration site are responsible for the Ca2+ buffering. One site, presumed to be smooth endoplasmic reticulum, operates at low [Ca2+] (less than 1 microM), and has a relatively small capacity. Ca sequestration at this site is prevented by the Ca2+ ionophore, A-23187, but not by mitochondrial poisons. The secone (mitochondrial) site, in contrast, is blocked by the mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone, and oligomycin. Since the intraterminal organelles can buffer [Ca2+] to about 0.3-0.5 microM, this may be an upper limit to the normal resting level of [Ca2+]i in nerve terminals. In the steady state, total cell Ca and [Ca2+]i will be governed principally be Ca transport mechanisms in the plasmalemma; the intracellular organelle transport systems then operate in equilibrium with this [Ca2+]. During activity, however, Ca rapidly enters the terminals and [Ca2+]i rises. The intracellular buffering mechanisms then come into play and help to return [Ca2+]i toward the resting level; the non-mitochondrial Ca sequestration mechanism probably plays the major role in this Ca buffering.  相似文献   

17.
Ultrastructural techniques and electron probe microanalysis were used to determine whether or not the smooth endoplasmic reticulum (SER) within presynaptic nerve terminals is a Ca-sequestering site. The three- dimensional structure of the SER was determined from serial sections of synaptosomes. The SER consists of flattened cisterns that may branch and are frequently juxtaposed to mitochondria. To investigate intraterminal Ca sequestration, synaptosomes were treated with saponin to disrupt the plasmalemmal permeability barrier. When these synaptosomes were incubated in solutions containing Ca, ATP, and oxalate, electrondense Ca oxalate deposits were found in intraterminal mitochondria, SER cisterns, and large vesicular profiles. Saponin- treated synaptosomes that were incubated in the presence of mitochondrial poisons contained electron-dense deposits within SER cisterns and large vesicular profiles, but very rarely in mitochondria. Similar deposits were observed within saponin-treated synaptosomes that were not post-fixed with OSO4, and within saponin-treated synaptosomes that were prepared for analysis by freeze-substitution. Electron-probe microanalyses of these deposits confirmed the presence of large concentrations of Ca. When oxalate was omitted from the incubation solutions, no electron-dense deposits were present in saponin-treated synaptosomes. In other control experiments, either the Ca ionophore A23187 or the Ca chelator EGTA was added to the incubation media; electron-dense deposits were very rarely observed within the intraterminal organelles of these saponin-treated synaptosomes. The data indicate that presynaptic nerve terminal SER is indeed a Ca- sequestering organelle.  相似文献   

18.
The particulate fraction from osmotically shocked synaptosomes (‘synaptosomal membranes’) sequesters Ca when incubated with ATP-containing solutions. This net accumulation of Ca can reduce the free [Ca2+] of the bathing medium to sub-micromolar levels (measured with arsenazo III). Two distinct types of Ca sequestration site are responsible for the Ca2+ buffering. One site, presumed to be smooth endoplasmic reticulum, operates at low [Ca2+] (less than 1 μM), and has a relatively small capacity. Ca sequestration at this site is prevented by the Ca2+ ionophore, A-23187, but not by mitochondrial poisons. The second (mitochondrial) site, in contrast, is blocked by the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, and oligomycin. Since the intraterminal organelles can buffer [Ca2+] to about 0.3–0.5 μM, this may be an upper limit to the normal resting level of [Ca2+]i in nerve terminals. In the steady state, total cell Ca and [Ca2+]i will be governed principally by Ca transport mechanisms in the plasmalemma; the intracellular organelle transport systems then operate in equilibrium with this [Ca2+]. During activity, however, Ca rapidly enters the terminals and [Ca2+]i rises. The intracellular buffering mechanisms then come into play and help to return [Ca2+]i toward the resting level; the non-mitochondrial Ca sequestration mechanism probably plays the major role in this Ca buffering.  相似文献   

19.
Phosphorylation by cAMP-dependent protein kinase (PKA) and other second messenger-activated protein kinases modulates the activity of a variety of effector proteins including ion channels. Anti-peptide antibodies specific for the alpha 1 subunits of the class B, C or E calcium channels from rat brain specifically recognize a pair of polypeptides of 220 and 240 kDa, 200 and 220 kDa, and 240 and 250 kDa, respectively, in hippocampal slices in vitro. These calcium channels are localized predominantly on presynaptic and dendritic, somatic and dendritic, and somatic sites, respectively, in hippocampal neurons. Both size forms of alpha 1B and alpha 1E and the full-length form of alpha 1C are phosphorylated by PKA after solubilization and immunoprecipitation. Stimulation of PKA in intact hippocampal slices also induced phosphorylation of 25-50% of the PKA sites on class B N-type calcium channels, class C L-type calcium channels and class E calcium channels, as assessed by a back-phosphorylation method. Tetraethylammonium ion (TEA), which causes neuronal depolarization and promotes repetitive action potentials and neurotransmitter release by blocking potassium channels, also stimulated phosphorylation of class B, C and E alpha 1 subunits, suggesting that these three classes of channels are phosphorylated by PKA in response to endogenous electrical activity in the hippocampus. Regulation of calcium influx through these calcium channels by PKA may influence calcium-dependent processes within hippocampal neurons, including neurotransmitter release, calcium-activated enzymes and gene expression.  相似文献   

20.
1. Isolated nerve terminals (T-sacs and synaptosomes) prepared from the purely cholinergic Torpedo electric organ have been studied for their ability to incorporate and metabolise [2-3H] adenosine and to degrade 5'-AMP to adenosine. 2. A temperature-dependent, saturable uptake system for adenosine was found with kinetic properties similar to nucleoside transport systems in other cells. The uptake system in Torpedo nerve terminals was inhibited by 2'-deoxyadenosine, a known inhibitor of adenosine transport. 3. Intraterminal adenosine is rapidly metabolised to a number of products including AMP, ADP and ATP. 4. Isolated nerve terminals contain considerable 5'-nucleotidase activity, most of which resides on the outer face of the external membrane. The Km of the enzyme is congruent to 5 micron and it is inhibited by a phosphonate analogue of ADP, alpha-beta-methylene-ADP. It is suggested that this 5'-nucleotidase plays an important role in the production of adenosine from a nucleotide pool in the synaptic cleft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号