首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Histidine phosphorylation is important in prokaryotes and occurs to the extent of 6% of total phosphorylation in eukaryotes. Nevertheless phosphohistidine residues are not normally observed in proteins due to rapid hydrolysis of the phosphoryl group under acidic conditions. Many rapid processes employ phosphohistidines, including the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS), the bacterial two-component systems and reactions catalyzed by enzymes such as nucleoside diphosphate kinase and succinyl-CoA synthetase. In the PTS, the NMR structure of the phosphohistidine moiety of the phosphohistidine-containing protein was determined but no X-ray structures of phosphohistidine forms of PTS proteins have been elucidated. There have been crystal structures of a few phosphohistidine-containing proteins determined: nucleoside diphosphate kinase, succinyl-CoA synthetase, a cofactor-dependent phosphoglycerate mutase and the protein PAE2307 from the hyperthermophilic archaeon Pyrobaculum aerophilum. A common theme for these stable phosphohistidines is the occurrence of ion-pair hydrogen bonds (salt bridges) involving the non-phosphorylated nitrogen atom of the histidine imidazole ring with an acidic amino acid side chain.  相似文献   

2.
Succinyl-CoA synthetase catalyzes the reversible reaction succinyl-CoA + NDP + P(i) <--> succinate + CoA + NTP (N denoting adenosine or guanosine). The enzyme consists of two different subunits, designated alpha and beta. During the reaction, a histidine residue of the alpha-subunit is transiently phosphorylated. This histidine residue interacts with Glu 208 alpha at site I in the structures of phosphorylated and dephosphorylated Escherichia coli SCS. We postulated that Glu 197 beta, a residue in the nucleotide-binding domain, would provide similar stabilization of the histidine residue during the actual phosphorylation/dephosphorylation by nucleotide at site II. In this work, these two glutamate residues have been mutated individually to aspartate or glutamine. Glu 197 beta has been additionally mutated to alanine. The mutant proteins were tested for their ability to be phosphorylated in the forward or reverse direction. The aspartate mutant proteins can be phosphorylated in either direction, while the E208 alpha Q mutant protein can only be phosphorylated by NTP, and the E197 beta Q mutant protein can only be phosphorylated by succinyl-CoA and P(i). These results demonstrate that the length of the side chain at these positions is not critical, but that the charge is. Most significantly, the E197 beta A mutant protein could not be phosphorylated in either direction. Its crystal structure shows large differences from the wild-type enzyme in the conformation of two residues of the alpha-subunit, Cys 123 alpha-Pro 124 alpha. We postulate that in this conformation, the protein cannot productively bind succinyl-CoA for phosphorylation via succinyl-CoA and P(i).  相似文献   

3.
The x-ray crystal structure of the P1 or H domain of the Salmonella CheA protein has been solved at 2.1-A resolution. The structure is composed of an up-down up-down four-helix bundle that is typical of histidine phosphotransfer or HPt domains such as Escherichia coli ArcB(C) and Saccharomyces cerevisiae Ypd1. Loop regions and additional structural features distinguish all three proteins. The CheA domain has an additional C-terminal helix that lies over the surface formed by the C and D helices. The phosphoaccepting His-48 is located at a solvent-exposed position in the middle of the B helix where it is surrounded by several residues that are characteristic of other HPt domains. Mutagenesis studies indicate that conserved glutamate and lysine residues that are part of a hydrogen-bond network with His-48 are essential for the ATP-dependent phosphorylation reaction but not for the phosphotransfer reaction with CheY. These results suggest that the CheA-P1 domain may serve as a good model for understanding the general function of HPt domains in complex two-component phosphorelay systems.  相似文献   

4.
5.
6.
We determined the 1.6-A resolution crystal structure of a conserved hypothetical 29.9-kDa protein from the SIGY-CYDD intergenic region encoded by a Bacillus subtilis open reading frame in the YXKO locus. YXKO homologues are broadly distributed and are by and large described as proteins with unknown function. The YXKO protein has an alpha/beta fold and shows high structural homology to the members of a ribokinase-like superfamily. However, YXKO is the only member of this superfamily known to form tetramers. Putative binding sites for adenosine triphosphate (ATP), a substrate, and Mg(2+)-binding sites were revealed in the structure of the protein, based on high structural similarity to ATP-dependent members of the superfamily. Two adjacent monomers contribute residues to the active site. The crystal structure provides valuable information about the YXKO protein's tertiary and quaternary structure, the biochemical function of YXKO and its homologues, and the evolution of its ribokinase-like superfamily.  相似文献   

7.
Pseudomonas aeruginosa elastase (PAE) is a zinc metalloprotease with 301 amino acids. We have crystallized and solved the three-dimensional structure of PAE, using data to 1.5-A resolution, and have refined the native molecular structure to R = 0.188. The overall tertiary structure of the PAE molecule is similar to that of thermolysin, with which it shares 28% amino acid sequence identity. Nearly all of the active site residues that might potentially interact with substrates are identical in the two proteins. However, the active site cleft is significantly more "open" in PAE than in thermolysin.  相似文献   

8.
The yhcH gene is part of the nan operon in bacteria that encodes proteins involved in sialic acid catabolism. Determination of the crystal structure of YhcH from Haemophilus influenzae was undertaken as part of a structural genomics effort in order to assist with the functional assignment of the protein. The structure was determined at 2.2-A resolution by multiple-wavelength anomalous diffraction. The protein fold is a variation of the double-stranded beta-helix. Two antiparallel beta-sheets form a funnel opened at one side, where a putative active site contains a copper ion coordinated to the side chains of two histidine and two carboxylic acid residues. A comparison to other proteins with a similar fold and analysis of the genomic context suggested that YhcH may be a sugar isomerase involved in processing of exogenous sialic acid.  相似文献   

9.
For the first time, to our knowledge, a nucleoside diphosphate kinase (NDPK) has been purified from plant mitochondria (Pisum sativum L.). In intact pea leaf mitochondria, a 17.4-kDa soluble protein was phosphorylated in the presence of EDTA when [gamma-32P]ATP was used as the phosphate donor. Cell fractionation demonstrated that the 17.4-kDa protein is a true mitochondrial protein, and the lack of accessibility to EDTA of the matrix compartment in intact mitochondria suggested it may have an intermembrane space localization. The 17.4-kDa protein was purified from mitochondrial soluble proteins using ATP-agarose and anion exchange chromatography. Amino-acid sequencing of two peptides, resulting from a trypsin digestion, revealed high similarity with the conserved catalytic phosphohistidine site and with the C-terminal of NDPKs. Acid and alkali treatments of [32P]-labelled pea mitochondrial NDPK indicated the presence of acid-stable as well as alkali-stable phosphogroups. Thin-layer chromatography experiments revealed serine as the acid-stable phosphogroup. The alkali-stable labelling probably reflects phosphorylation of the conserved catalytic histidine residue. In phosphorylation experiments, the purified pea mitochondrial NDPK was labelled more heavily on serine than histidine residues. Furthermore, kinetic studies showed a faster phosphorylation rate for serine compared to histidine. Both ATP and GTP could be used as phosphate donor for histidine as well as serine labelling of the pea mitochondrial NDPK.  相似文献   

10.
Increasing evidence suggests that reversible phosphorylation of histidine residues in proteins is important for signaling cascades in eukaryotic cells. Recently, the first eukaryotic protein histidine phosphatase (PHP) was identified. The beta1-subunit of heterotrimeric G proteins (Gbeta) undergoes phosphorylation on His266 which is apparently involved in receptor-independent G protein activation. We studied whether phosphorylated Gbeta-subunits are substrates of PHP. Phosphorylated Gbetagamma dimers of the retinal G protein transducin and Gbeta in membrane preparations of H10 cells (neonatal rat cardiomyocytes) were dephosphorylated by PHP. Overexpression of PHP in H10 cells showed that PHP and Gbeta also interfere within cells. In membranes of cells overexpressing PHP, the amount of phosphorylated Gbeta was largely reduced. Both our in vitro and cell studies indicate that phosphorylated Gbeta-subunits of heterotrimeric G proteins are substrates of PHP. Therefore, PHP might play a role in the regulation of signal transduction via heterotrimeric G proteins.  相似文献   

11.
Activity of antiterminator protein BglG regulating the beta-glucoside operon in Escherichia coli is controlled by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) in a dual manner. It requires HPr phosphorylation to be active, whereas phosphorylation by the beta-glucoside-specific transport protein EIIBgl inhibits its activity. BglG and its relatives carry two PTS regulation domains (PRD1 and PRD2), each containing two conserved histidines. For BglG, histidine 208 in PRD2 was reported to be the negative phosphorylation site. In contrast, other antiterminators of this family are negatively regulated by phosphorylation of the first histidine in PRD1, and presumably activated by phosphorylation of the histidines in PRD2. In this work, a screen for mutant BglG proteins that escape repression by EIIBgl yielded exchanges of nine residues within PRD1, including conserved histidines His-101 and His-160, and C-terminally truncated proteins. Genetic and phosphorylation analyses indicate that His-101 in PRD1 is phosphorylated by EIIBgl and that His-160 contributes to negative regulation. His-208 in PRD2 is essential for BglG activity, suggesting that it is phosphorylated by HPr. Surprisingly, phosphorylation by HPr is not fully abolished by exchanges of His-208. However, phosphorylation by HPr is inhibited by exchanges in PRD1 and the phosphorylation of these mutants is restored in the presence of wild-type BglG. These results suggest that the activating phosphoryl group is transiently donated from HPr to PRD1 and subsequently transferred to His-208 of a second BglG monomer. The active His-208-phosphorylated BglG dimer can subsequently be inhibited in its activity by EIIBgl-catalyzed phosphorylation at His-101.  相似文献   

12.
The 2.1-A resolution crystal structure of native uncomplexed iron superoxide dismutase (EC 1.15.1.1) from Pseudomonas ovalis was solved and refined to a final R factor of 24%. The dimeric structure contains one catalytic iron center per monomer with an asymmetric trigonal-bipyramidal coordination of protein ligands to the metal. Each monomer contains two domains, with the trigonal ligands (histidines 74 and 160; aspartate 156) contributed by the large domain and stabilized by an extended hydrogen-bonded network, including residues from opposing monomers. The axial ligand (histidine 26) is found on the small domain and does not participate extensively in the stabilizing H-bond network. The open axial coordination position of the iron is devoid of bound water molecules or anions. The metal is located 0.5 A out of the plane of the trigonal ligands toward histidine 26, providing a slightly skewed coordination away from the iron binding site. The molecule contains a glutamine residue in the active site which is conserved between all iron enzymes sequenced to data but which is conserved among all manganese SODs at a separate position in the sequence. This residue shows the same structural interactions in both cases, implying that iron and manganese SODs are second-site revertants of one another.  相似文献   

13.
Blaszczyk J  Li Y  Shi G  Yan H  Ji X 《Biochemistry》2003,42(6):1573-1580
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP), the first reaction in the folate biosynthetic pathway. Arginine residues 82 and 92, strictly conserved in 35 HPPK sequences, play dynamic roles in the catalytic cycle of the enzyme. At 0.89-A resolution, two distinct conformations are observed for each of the two residues in the crystal structure of the wild-type HPPK in complex with two HP variants, two Mg(2+) ions, and an ATP analogue. Structural information suggests that R92 first binds to the alpha-phosphate group of ATP and then shifts to interact with the beta-phosphate as R82, which initially does not bind to ATP, moves in and binds to alpha-phosphate when the pyrophosphoryl transfer is about to occur. The dynamic roles of R82 and R92 are further elucidated by five more crystal structures of two mutant proteins, R82A and R92A, with and without bound ligands. Two oxidized forms of HP are observed with an occupancy ratio of 0.50:0.50 in the 0.89-A structure. The oxidation of HP has significant impact on its binding to the protein as well as the conformation of nearby residue W89.  相似文献   

14.
Phosphorylation of lipocortins in vitro by protein kinase C   总被引:3,自引:0,他引:3  
Protein kinase C catalyzes the incorporation of about 1.1, 0.7 and 0.4 mole of phosphate per mole of Lipocortin-I (P35), Lipocortin-II (P36) and Lipocortin-85 (P36 oligomer) respectively. The phosphorylation is specific for protein kinase C and is dependent on the presence of both calcium and phospholipids. While Lipocortin-I is phosphorylated on threonine residues, Lipocortin-II and Lipocortin-85 are phosphorylated on serine residues. The substoichiometric phosphorylation of Lipocortin-85 appears to preclude the potential regulation of this protein by protein kinase C. The phosphorylation of Lipocortin-I on threonine residues and Lipocortin-II on serine residues suggests these proteins may be regulated by distinct phosphorylation-dephosphorylation reactions.  相似文献   

15.
In higher plants, histidine-aspartate phosphorelays (two-component system) are involved in hormone signaling and stress responses. In these systems, histidine-containing phosphotransfer (HPt) proteins mediate the signal transmission from sensory histidine kinases to response regulators, including integration of several signaling pathways or branching into different pathways. We have determined the crystal structure of a maize HPt protein, ZmHP2, at 2.2 A resolution. ZmHP2 has six alpha-helices with a four-helix bundle at the C-terminus, a feature commonly found in HPt domains. In ZmHP2, almost all of the conserved residues among plant HPt proteins surround this histidine, probably forming the docking interface for the receiver domain of histidine kinase or the response regulator. Arg102 of ZmHP2 is conserved as a basic residue in plant HPt proteins. In bacteria, it is replaced by glutamine or glutamate that form a hydrogen bond to Ndelta atoms of the phospho-accepting histidine. It may play a key role in the complex formation of ZmHP2 with receiver domains.  相似文献   

16.
The neisserial surface protein A (NspA) from Neisseria meningitidis is a promising vaccine candidate because it is highly conserved among meningococcal strains and induces bactericidal antibodies. NspA is a homolog of the Opa proteins, which mediate adhesion to host cells. Here, we present the crystal structure of NspA, determined to 2.55-A resolution. NspA forms an eight-stranded antiparallel beta-barrel. The four loops at the extracellular side of the NspA molecule form a long cleft, which contains mainly hydrophobic residues and harbors a detergent molecule, suggesting that the protein might function in the binding of hydrophobic ligands, such as lipids. In addition, the structure provides a starting point for structure-based vaccine design.  相似文献   

17.
Mutational Analysis of the Role of HPr in Listeria monocytogenes   总被引:1,自引:0,他引:1       下载免费PDF全文
The regulatory role of HPr, a protein of the phosphotransferase system (PTS), was investigated in Listeria monocytogenes. By constructing mutations in the conserved histidine 15 and serine 46 residues of HPr, we were able to examine how HPr regulates PTS activity. The results indicated that histidine 15 was phosphorylated in a phosphoenolpyruvate (PEP)-dependent manner and was essential for PTS activity. Serine 46 was phosphorylated in an ATP-dependent manner by a membrane-associated kinase. ATP-dependent phosphorylation of serine 46 was significantly enhanced in the presence of fructose 1,6-diphosphate and resulted in a reduction of PTS activity. The presence of a charge at position 15 did not inhibit ATP-dependent phosphorylation of serine 46, a finding unique to gram-positive PEP-dependent PTSs studied to this point. Finally, HPr phosphorylated at serine 46 does not appear to possess self-phosphatase activity, suggesting a specific phosphatase protein may be essential for the recycling of HPr to its active form.  相似文献   

18.
19.
Expression of the mosxe protein kinase is required for the normal meiotic maturation of Xenopus oocytes and overexpression induces maturation in the absence of other stimuli. In addition, mosxe functions as a component of cytostatic factor (CSF), an activity responsible for arrest of the mature egg at metaphase II. After microinjection of Xenopus oocytes with in vitro synthesized RNA encoding either wild-type mosxe or kinase-inactive mosxe(R90), both proteins are phosphorylated exclusively on serine residues and exhibit essentially identical chymotryptic maps. Since the phosphorylated kinase-inactive mosxe(R90) protein was recovered from resting oocytes that have not yet begun to translate endogenous mosxe, this indicates that the major phosphopeptides of mosxe(R90) are phosphorylated by a preexisting protein kinase present in resting oocytes, and are not the result of autophosphorylation. The results presented here also indicate that the mosxe protein does not undergo significant phosphorylation at unique sites during oocyte maturation. If the biological activity of mosxe were regulated by phosphorylation, a site of regulatory phosphorylation would most likely be conserved among mos proteins of different species. Site-directed mutagenesis was used to construct 13 individual serine----alanine mutations at conserved residues (3, 16, 18, 25, 26, 57, 71, 76, 102, 105, 127, 211, and 258). These 13 mutants were analyzed for their abilities to induce oocyte maturation and to function as CSF. Results obtained with the mosxe(A105) mutant revealed that serine-105 is required for both maturation induction and CSF activity, even though serine-105 does not represent a major site of phosphorylation. All of the remaining serine----alanine mosxe mutants induced oocyte maturation and exhibited CSF activity comparable with the wild type. These results demonstrate that none of the conserved serines examined in this study function as regulatory phosphorylation sites for these biological activities. Peptide mapping of the remaining mosxe mutants identified serine-3 as a major phosphorylation site in vivo, which is contained within the chymotryptic peptide MPSPIPVERF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号