首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5-Formyltetrahydrofolate cycloligase (5-FCL) catalyzes the conversion of 5-formyltetrahydrofolate (5-CHO-H(4)PteGlu(n)) to 5,10-methenyltetrahydrofolate and is considered to be the main means whereby 5-CHO-H(4)PteGlu(n) is metabolized in mammals, yeast, and bacteria. 5-CHO-H(4)PteGlu(n) is known to occur in plants and to be highly abundant in leaf mitochondria. Genomics-based approaches identified Arabidopsis and tomato cDNAs encoding proteins homologous to 5-FCLs of other organisms but containing N-terminal extensions with the features of mitochondrial targeting peptides. These homologs were shown to have 5-FCL activity by characterizing recombinant enzymes produced in Escherichia coli and by functional complementation of a yeast fau1 mutation with the Arabidopsis 5-FCL cDNA. The recombinant Arabidopsis enzyme is active as a monomer, prefers the penta- to the monoglutamyl form of 5-CHO-H(4)PteGlu(n), and has kinetic properties broadly similar to those of 5-FCLs from other organisms. Enzyme assays and immunoblot analyses indicated that 5-FCL is located predominantly if not exclusively in plant mitochondria and that the mature, active enzyme lacks the putative targeting sequence. Serine hydroxymethyltransferase (SHMT) from plant mitochondria was shown to be inhibited by 5-CHO-H(4)PteGlu(n) as are SHMTs from other organisms. Since mitochondrial SHMT is crucial to photorespiration, 5-FCL may help prevent 5-CHO-H(4)PteGlu(n) from reaching levels that would inhibit this process. Consistent with this possibility, 5-FCL activity was far higher in leaf mitochondria than root mitochondria.  相似文献   

2.
The folate derivative 5-formyltetrahydrofolate (folinic acid; 5-CHO-THF) was discovered over 40 years ago, but its role in metabolism remains poorly understood. Only one enzyme is known that utilizes 5-CHO-THF as a substrate: 5,10-methenyltetrahydrofolate synthetase (MTHFS). A BLAST search of the yeast genome using the human MTHFS sequence revealed a 211-amino acid open reading frame (YER183c) with significant homology. The yeast enzyme was expressed in Escherichia coli, and the purified recombinant enzyme exhibited kinetics similar to previously purified MTHFS. No new phenotype was observed in strains disrupted at MTHFS or in strains additionally disrupted at the genes encoding one or both serine hydroxymethyltransferases (SHMT) or at the genes encoding one or both methylenetetrahydrofolate reductases. However, when the MTHFS gene was disrupted in a strain lacking the de novo folate biosynthesis pathway, folinic acid (5-CHO-THF) could no longer support the folate requirement. We have thus named the yeast gene encoding methenyltetrahydrofolate synthetase FAU1 (folinic acid utilization). Disruption of the FAU1 gene in a strain lacking both 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase isozymes (ADE16 and ADE17) resulted in a growth deficiency that was alleviated by methionine. Genetic analysis suggested that intracellular accumulation of the purine intermediate AICAR interferes with a step in methionine biosynthesis. Intracellular levels of 5-CHO-THF were determined in yeast disrupted at FAU1 and other genes encoding folate-dependent enzymes. In fau1 disruptants, 5-CHO-THF was elevated 4-fold over wild-type yeast. In yeast lacking MTHFS along with both AICAR transformylases, 5-CHO-THF was elevated 12-fold over wild type. 5-CHO-THF was undetectable in strains lacking SHMT activity, confirming SHMT as the in vivo source of 5-CHO-THF. Taken together, these results indicate that S. cerevisiae harbors a single, nonessential, MTHFS activity. Growth phenotypes of multiply disrupted strains are consistent with a regulatory role for 5-CHO-THF in one-carbon metabolism and additionally suggest a metabolic interaction between the purine and methionine pathways.  相似文献   

3.
Mitochondrial serine hydroxymethyltransferase (SHMT), combined with glycine decarboxylase, catalyzes an essential sequence of the photorespiratory C2 cycle, namely, the conversion of two molecules of glycine into one molecule each of CO2, NH4+, and serine. The Arabidopsis (Arabidopsis thaliana) mutant shm (now designated shm1-1) is defective in mitochondrial SHMT activity and displays a lethal photorespiratory phenotype when grown at ambient CO2, but is virtually unaffected at elevated CO2. The Arabidopsis genome harbors seven putative SHM genes, two of which (SHM1 and SHM2) feature predicted mitochondrial targeting signals. We have mapped shm1-1 to the position of the SHM1 gene (At4g37930). The mutation is due to a G --> A transition at the 5' splice site of intron 6 of SHM1, causing aberrant splicing and a premature termination of translation. A T-DNA insertion allele of SHM1, shm1-2, and the F1 progeny of a genetic cross between shm1-1 and shm1-2 displayed the same conditional lethal phenotype as shm1-1. Expression of wild-type SHM1 under the control of either the cauliflower mosaic virus 35S or the SHM1 promoter in shm1-1 abrogated the photorespiratory phenotype of the shm mutant, whereas overexpression of SHM2 or expression of SHM1 under the control of the SHM2 promoter did not rescue the mutant phenotype. Promoter-beta-glucuronidase analyses revealed that SHM1 is predominantly expressed in leaves, whereas SHM2 is mainly transcribed in the shoot apical meristem and roots. Our findings establish SHM1 as the defective gene in the Arabidopsis shm1-1 mutant.  相似文献   

4.
5-Formyltetrahydrofolate (5-CHO-THF) is formed by a side reaction of serine hydroxymethyltransferase. Unlike other folates, it is not a one-carbon donor but a potent inhibitor of folate enzymes and must therefore be metabolized. Only 5-CHO-THF cycloligase (5-FCL) is generally considered to do this. However, comparative genomic analysis indicated (i) that certain prokaryotes lack 5-FCL, implying that they have an alternative 5-CHO-THF-metabolizing enzyme, and (ii) that the histidine breakdown enzyme glutamate formiminotransferase (FT) might moonlight in this role. A functional complementation assay for 5-CHO-THF metabolism was developed in Escherichia coli, based on deleting the gene encoding 5-FCL (ygfA). The deletion mutant accumulated 5-CHO-THF and, with glycine as sole nitrogen source, showed a growth defect; both phenotypes were complemented by bacterial or archaeal genes encoding FT. Furthermore, utilization of supplied 5-CHO-THF by Streptococcus pyogenes was shown to require expression of the native FT. Recombinant bacterial and archaeal FTs catalyzed formyl transfer from 5-CHO-THF to glutamate, with k(cat) values of 0.1-1.2 min(-1) and K(m) values for 5-CHO-THF and glutamate of 0.4-5 μM and 0.03-1 mM, respectively. Although the formyltransferase activities of these proteins were far lower than their formiminotransferase activities, the K(m) values for both substrates relative to their intracellular levels in prokaryotes are consistent with significant in vivo flux through the formyltransferase reaction. Collectively, these data indicate that FTs functionally replace 5-FCL in certain prokaryotes.  相似文献   

5.
The photorespiratory cycle is a crucial pathway in photosynthetic organisms because it removes toxic 2‐phosphoglycolate made by the oxygenase activity of ribulose‐1,5‐bisphosphate carboxylase/oxygenase and retrieves its carbon as 3‐phosphoglycerate. Mitochondrial serine hydroxymethyltransferase 1 (SHMT1) is an essential photorespiratory enzyme converting glycine to serine. SHMT1 regulation remains poorly understood although it could involve the phosphorylation of serine 31. Here, we report the complementation of Arabidopsis thaliana shm1‐1 by SHMT1 wild‐type, phosphorylation‐mimetic (S31D) or nonphophorylatable (S31A) forms. All SHMT1 forms could almost fully complement the photorespiratory growth phenotype of shm1‐1; however, each transgenic line had only 50% of normal SHMT activity. In response to either a salt or drought stress, Compl‐S31D lines showed a more severe growth deficiency compared with the other transgenic lines. This sensitivity to salt appeared to reflect reduced SHMT1‐S31D protein amounts and a lower activity that impacted leaf metabolism leading to proline underaccumulation and overaccumulation of polyamines. The S31D mutation in SHMT1 also led to a reduction in salt‐induced and ABA‐induced stomatal closure. Taken together, our results highlight the importance of maintaining photorespiratory SHMT1 activity in salt and drought stress conditions and indicate that SHMT1 S31 phosphorylation could be involved in modulating SHMT1 protein stability.  相似文献   

6.
Serine hydroxymethyltransferase (SHMT) is part of the mitochondrial enzyme complex catalysing the photorespiratory production of serine, ammonium and CO(2) from glycine. Potato plants (Solanum tuberosum cv. Solara) with antisensed SHMT were generated to investigate whether photorespiratory intermediates accumulated during light lead to nocturnal activation of the nitrogen-assimilating enzymes glutamine synthetase (GS) and glutamate synthase (GOGAT). The transformant lines contained 70-90% less SHMT protein, and exhibited a corresponding decrease in mitochondrial SHMT activity. SHMT antisense plants displayed lower photosynthetic capacity and accumulated glycine in light. Glycine was converted to serine in the second half of the light period, while serine, ammonium and glutamine showed an inverse diurnal rhythm and reached highest values in darkness. GS/GOGAT protein levels and activities in the transgenics also reached maximum levels in darkness. The diurnal displacement of NH(4)(+) assimilation was accompanied by a change in the subunit composition of GS(2), but not GS(1). It is concluded that internal accumulation of post-photorespiratory ammonium is leading to nocturnal activation of GS/GOGAT, and that the time shift in ammonia assimilation can constitute part of a strategy to survive photorespiratory impairment.  相似文献   

7.
Serine hydroxymethyltransferase (SHMT) catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate serving as the one-carbon carrier. SHMT also catalyzes the folate-independent retroaldol cleavage of allothreonine and 3-phenylserine and the irreversible conversion of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate. Studies of wild-type and site mutants of SHMT have failed to clearly establish the mechanism of this enzyme. The cleavage of 3-hydroxy amino acids to glycine and an aldehyde occurs by a retroaldol mechanism. However, the folate-dependent cleavage of serine can be described by either the same retroaldol mechanism with formaldehyde as an enzyme-bound intermediate or by a nucleophilic displacement mechanism in which N5 of tetrahydrofolate displaces the C3 hydroxyl of serine, forming a covalent intermediate. Glu75 of SHMT is clearly involved in the reaction mechanism; it is within hydrogen bonding distance of the hydroxyl group of serine and the formyl group of 5-formyltetrahydrofolate in complexes of these species with SHMT. This residue was changed to Leu and Gln, and the structures, kinetics, and spectral properties of the site mutants were determined. Neither mutation significantly changed the structure of SHMT, the spectral properties of its complexes, or the kinetics of the retroaldol cleavage of allothreonine and 3-phenylserine. However, both mutations blocked the folate-dependent serine-to-glycine reaction and the conversion of methenyltetrahydrofolate to 5-formyltetrahydrofolate. These results clearly indicate that interaction of Glu75 with folate is required for folate-dependent reactions catalyzed by SHMT. Moreover, we can now propose a promising modification to the retroaldol mechanism for serine cleavage. As the first step, N5 of tetrahydrofolate makes a nucleophilic attack on C3 of serine, breaking the C2-C3 bond to form N5-hydroxymethylenetetrahydrofolate and an enzyme-bound glycine anion. The transient formation of formaldehyde as an intermediate is possible, but not required. This mechanism explains the greatly enhanced rate of serine cleavage in the presence of folate, and avoids some serious difficulties presented by the nucleophilic displacement mechanism involving breakage of the C3-OH bond.  相似文献   

8.
High-molecular-mass proteins from pea (Pisum sativum) mitochondrial matrix retained on an XM-300 Diaflo membrane ('matrix extract') exhibited high rates of glycine oxidation in the presence of NAD+ and tetrahydropteroyl-L-glutamic acid (H4 folate) as long as the medium exhibited a low ionic strength. Serine hydroxymethyltransferase (SHMT) (4 x 53 kDa) and the four proteins of the glycine-cleavage system, including a pyridoxal phosphate-containing enzyme ('P-protein'; 2 x 97 kDa), a carrier protein containing covalently bound lipoic acid ('H-protein'; 15.5 kDa), a protein exhibiting lipoamide dehydrogenase activity ('L-protein'; 2 x 61 kDa) and an H4 folate-dependent enzyme ('T-protein'; 45 kDa) have been purified to apparent homogeneity from the matrix extract by using gel filtration, ion-exchange and phenyl-Superose fast protein liquid chromatography. Gel filtration on Sephacryl S-300 in the presence of 50 mM-KCl proved to be the key step in disrupting this complex. During the course of glycine oxidation catalysed by the matrix extract a steady-state equilibrium in the production and utilization of 5,10-methylene-H4 folate was reached, suggesting that glycine cleavage and SHMT are linked together via a soluble pool of H4 folate. The rate of glycine oxidation catalysed by the matrix extract was sensitive to the NADH/NAD+ molar ratios, because NADH competitively inhibited the reaction catalysed by lipoamide dehydrogenase.  相似文献   

9.
Serine hydroxymethyltransferase (SHMT) is a key enzyme in the formation and regulation of the folate one-carbon pool. Recent studies on human subjects have shown the existence of two single nucleotide polymorphisms that may be associated with several disease states. One of these mutations results in Ser394 being converted to an Asn (S394N) and the other in the change of Leu474 to a Phe (L474F). These mutations were introduced into the cDNA for both human and rabbit cytosolic SHMT and the mutant enzymes expressed and purified from an Escherichia coli expression system. The mutant enzymes show normal values for kcat and Km for serine. However, the S394N mutant enzyme has increased dissociation constant values for both glycine and tetrahydrofolate (tetrahydropteroylglutamate) and its pentaglutamate form compared to wild-type enzyme. The L474F mutant shows lowered affinity (increased dissociation constant) for only the pentaglutamate form of the folate ligand. Both mutations result in decreased rates of pyridoxal phosphate addition to the mutant apo enzymes to form the active holo enzymes. Neither mutation significantly affects the stability of SHMT or the rate at which it converts 5,10-methenyl tetrahydropteroyl pentaglutamate to 5-formyl tetrahydropteroyl pentaglutamate. Analysis of the structures of rabbit and human SHMT show how mutations at these two sites can result in the observed functional differences.  相似文献   

10.
Serine occupies a central position in folate-dependent, one-carbon metabolism through 5,10-methylenetetrahydrofolate (MTHF) and 5-formyltetrahydrofolate (FTHF). We characterized the ontogeny of the specific activity of key enzymes involved in serine, 5,10-MTHF, and 5-FTHF metabolism: methenyltetrahydrofolate synthetase (MTHFS), MTHF reductase (MTHFR), the glycine cleavage system (GCS), methionine synthase (MS), and serine hydroxymethyltransferase (SHMT) in rabbit liver, placenta, brain, and kidney. In liver, MTHFS activity is low in the fetus (0.36 +/- 0.07 nmol. min(-1). mg protein(-1)), peaks at 3 wk (1.48 +/- 0.50 nmol. min(-1). mg protein(-1)), and then decreases to adult levels (1.13 +/- 0.32 nmol. min(-1). mg protein(-1)). MTHFR activity is highest early in gestation (24.9 +/- 2.4 nmol. h(-1). mg protein(-1)) and declines rapidly by birth (4.7 +/- 1.3 nmol. h(-1). mg protein(-1)). MS is highest during fetal life and declines after birth. Cytosolic SHMT activity does not vary during development, but mitochondrial SHMT peaks at 23 days. GCS activity is high in the fetus and the neonate, declining after weaning. In placenta and brain, all activities are low throughout gestation. Cytosolic and mitochondrial SHMT activities are low in kidney and rise after weaning, whereas MTHFS is low throughout development. These data suggest that the liver is the primary site of activity for these enzymes. Throughout development, there are multiple potential sources for production of 5,10-MTHF, but early in gestation high MTHFR activity and low MTHFS activity could reduce 5,10-MTHF availability.  相似文献   

11.
The mitochondrial multienzyme glycine decarboxylase (GDC) catalyzes the tetrahydrofolate-dependent catabolism of glycine to 5,10-methylene-tetrahydrofolate and the side products NADH, CO(2), and NH(3). This reaction forms part of the photorespiratory cycle and contributes to one-carbon metabolism. While the important role of GDC for these two metabolic pathways is well established, the existence of bypassing reactions has also been suggested. Therefore, it is not clear to what extent GDC is obligatory for these processes. Here, we report on features of individual and combined T-DNA insertion mutants for one of the GDC subunits, P protein, which is encoded by two genes in Arabidopsis (Arabidopsis thaliana). The individual knockout of either of these two genes does not significantly alter metabolism and photosynthetic performance indicating functional redundancy. In contrast, the double mutant does not develop beyond the cotyledon stage in air enriched with 0.9% CO(2). Rosette leaves do not appear and the seedlings do not survive for longer than about 3 to 4 weeks under these nonphotorespiratory conditions. This feature distinguishes the GDC-lacking double mutant from all other known photorespiratory mutants and provides evidence for the nonreplaceable function of GDC in vital metabolic processes other than photorespiration.  相似文献   

12.
A mutant of Arabidopsis thaliana (L.) Heyn. (a small plant in the crucifer family) that lacks glycine decarboxylase activity owing to a recessive nuclear mutation has been isolated on the basis of a growth requirement for high concentrations of atmospheric CO2. Mitochondria isolated from leaves of the mutant did not exhibit glycine-dependent O2 consumption, did not release 14CO2 from [14C]glycine, and did not catalyse the glycine-bicarbonate exchange reaction that is considered to be the first partial reaction associated with glycine cleavage. Photosynthesis in the mutant was decreased after illumination under atmospheric conditions that promote partitioning of carbon into intermediates of the photorespiratory pathway, but was not impaired under non-photorespiratory conditions. Thus glycine decarboxylase activity is not required for any essential function unrelated to photorespiration. The photosynthetic response of the mutant in photorespiratory conditions is probably caused by an increased rate of glyoxylate oxidation, which results from the sequestering of all readily transferable amino groups in a metabolically inactive glycine pool, and by a depletion of intermediates from the photosynthesis cycle. The rate of release of 14CO2 from exogenously applied [14C]glycollate was 14-fold lower in the mutant than in the wild type, suggesting that glycine decarboxylation is the only significant source of photorespiratory CO2.  相似文献   

13.
Uracil accumulates in DNA as a result of impaired folate-dependent de novo thymidylate biosynthesis, a pathway composed of the enzymes serine hydroxymethyltransferase (SHMT), thymidylate synthase (TYMS), and dihydrofolate reductase. In G1, this pathway is present in the cytoplasm and at S phase undergoes small ubiquitin-like modifier-dependent translocation to the nucleus. It is not known whether this pathway functions in the cytoplasm, nucleus, or both in vivo. SHMT1 generates 5,10-methylenetetrahydrofolate for de novo thymidylate biosynthesis, a limiting step in the pathway, but also tightly binds 5-methyltetrahydrofolate in the cytoplasm, a required cofactor for homocysteine remethylation. Overexpression of SHMT1 in cell cultures inhibits folate-dependent homocysteine remethylation and enhances thymidylate biosynthesis. In this study, the impact of increased Shmt1 expression on folate-mediated one-carbon metabolism was determined in mice that overexpress the Shmt1 cDNA (Shmt1tg+ mice). Compared with wild type mice, Shmt1tg+ mice exhibited elevated SHMT1 and TYMS protein levels in tissues and evidence for impaired homocysteine remethylation but surprisingly exhibited depressed levels of nuclear SHMT1 and TYMS, lower rates of nuclear de novo thymidylate biosynthesis, and a nearly 10-fold increase in uracil content in hepatic nuclear DNA when fed a folate- and choline-deficient diet. These results demonstrate that SHMT1 and TYMS localization to the nucleus is essential to prevent uracil accumulation in nuclear DNA and indicate that SHMT1-mediated nuclear de novo thymidylate synthesis is critical for maintaining DNA integrity.  相似文献   

14.
A methionine-auxotropic mutant deficient in homocysteine transmethylation activity was induced from a methylotrophic L-serine-producing derivatives of Pseudomonas MS31. This mutant grown with limited L-methionine had more than 1.7-fold higher serine hydroxymethyltransferase (SHMT) activity than its parent strain. The elevated SHMT activity significantly contributed to the improvement of L-serine accumulation from glycine and methanol. Under the optimum conditions, this mutant accumulated up to 23.9 mg/ml of L-serine. The yield coefficient L-serine from consumed glycine was 89% (mol/mol). The maximum conversion rate of added glycine (19 mg/ml) to L-serine was 77% (mol/mol).  相似文献   

15.
The oxidation of glycolate to glyoxylate is an important reaction step in photorespiration. Land plants and charophycean green algae oxidize glycolate in the peroxisome using oxygen as a co-factor, whereas chlorophycean green algae use a mitochondrial glycolate dehydrogenase (GDH) with organic co-factors. Previous analyses revealed the existence of a GDH in the mitochondria of Arabidopsis thaliana (AtGDH). In this study, the contribution of AtGDH to photorespiration was characterized. Both RNA abundance and mitochondrial GDH activity were up-regulated under photorespiratory growth conditions. Labelling experiments indicated that glycolate oxidation in mitochondrial extracts is coupled to CO(2) release. This effect could be enhanced by adding co-factors for aminotransferases, but is inhibited by the addition of glycine. T-DNA insertion lines for AtGDH show a drastic reduction in mitochondrial GDH activity and CO(2) release from glycolate. Furthermore, photorespiration is reduced in these mutant lines compared with the wild type, as revealed by determination of the post-illumination CO(2) burst and the glycine/serine ratio under photorespiratory growth conditions. The data show that mitochondrial glycolate oxidation contributes to photorespiration in higher plants. This indicates the conservation of chlorophycean photorespiration in streptophytes despite the evolution of leaf-type peroxisomes.  相似文献   

16.
1. The concentrations of folate-dependent enzymes in Neurospora crassa Lindegren A wild type (FGSC no. 853), Ser-l mutant, strain H605a (FGSC no. 118), and for mutant, strain C-24 (FGSC no. 9), were compared during exponential growth on defined minimal media. Both mutants were partially lacking in serine hydroxymethyltransferase, but contained higher concentrations of 10-formyltetrahydrofolate synthetase than did the wild type. Mycelia of the mutants contained higher concentrations of these enzymes when growth media were supplemented with 1mM-glycine. In the wild-type, this glycine supplement also increased the specific activities of 5,10-methylenetetrahydrofolate dehydrogenase and 5,10-methylenetetrahydrofolate reductase. 5. During growth, total folate and polyglutamyl folate concentrations were greatest in the wild-type. Methylfolates were not detected in mutant Ser-l, and were only present in the for mutant after growth in glycine-supplemented media. Exogenous glycine increased folate concentration threefold in the wild type, mainly owing to increases in unsubstituted polyglutamyl derivatives. 3. Feeding experiments using 14C-labelled substrates showed that C1 units were generated from formate, glycine and serine in the wild type. Greater incorporation of 14C occurred when mycelia were cultured in glycine-supplemented media. Formate and serine were precursors of C1 units in the mutants, but the ability to cleave glycine was slight or lacking.  相似文献   

17.
The major photorespiratory pathway in higher plants is distributed over chloroplasts, mitochondria, and peroxisomes. In this pathway, glycolate oxidation takes place in peroxisomes. It was previously suggested that a mitochondrial glycolate dehydrogenase (GlcDH) that was conserved from green algae lacking leaf-type peroxisomes contributes to photorespiration in Arabidopsis thaliana. Here, the identification of two Arabidopsis mitochondrial alanine:glyoxylate aminotransferases (ALAATs) that link glycolate oxidation to glycine formation are described. By this reaction, the mitochondrial side pathway produces glycine from glyoxylate that can be used in the glycine decarboxylase (GCD) reaction of the major pathway. RNA interference (RNAi) suppression of mitochondrial ALAAT did not result in major changes in metabolite pools under standard conditions or enhanced photorespiratroy flux, respectively. However, RNAi lines showed reduced photorespiratory CO(2) release and a lower CO(2) compensation point. Mitochondria isolated from RNAi lines are incapable of converting glycolate to CO(2), whereas simultaneous overexpression of GlcDH and ALAATs in transiently transformed tobacco leaves enhances glycolate conversion. Furthermore, analyses of rice mitochondria suggest that the side pathway for glycolate oxidation and glycine formation is conserved in monocotyledoneous plants. It is concluded that the photorespiratory pathway from green algae has been functionally conserved in higher plants.  相似文献   

18.
Serine hydroxymethyltransferase (SHMT) from Bacillus stearothermophilus (bsSHMT) is a pyridoxal 5'-phosphate-dependent enzyme that catalyses the conversion of L-serine and tetrahydrofolate to glycine and 5,10-methylene tetrahydrofolate. In addition, the enzyme catalyses the tetrahydrofolate-independent cleavage of 3-hydroxy amino acids and transamination. In this article, we have examined the mechanism of the tetrahydrofolate-independent cleavage of 3-hydroxy amino acids by SHMT. The three-dimensional structure and biochemical properties of Y51F and Y61A bsSHMTs and their complexes with substrates, especially L-allo-Thr, show that the cleavage of 3-hydroxy amino acids could proceed via Calpha proton abstraction rather than hydroxyl proton removal. Both mutations result in a complete loss of tetrahydrofolate-dependent and tetrahydrofolate-independent activities. The mutation of Y51 to F strongly affects the binding of pyridoxal 5'-phosphate, possibly as a consequence of a change in the orientation of the phenyl ring in Y51F bsSHMT. The mutant enzyme could be completely reconstituted with pyridoxal 5'-phosphate. However, there was an alteration in the lambda max value of the internal aldimine (396 nm), a decrease in the rate of reduction with NaCNBH3 and a loss of the intermediate in the interaction with methoxyamine (MA). The mutation of Y61 to A results in the loss of interaction with Calpha and Cbeta of the substrates. X-Ray structure and visible CD studies show that the mutant is capable of forming an external aldimine. However, the formation of the quinonoid intermediate is hindered. It is suggested that Y61 is involved in the abstraction of the Calpha proton from 3-hydroxy amino acids. A new mechanism for the cleavage of 3-hydroxy amino acids via Calpha proton abstraction by SHMT is proposed.  相似文献   

19.
The hydroxymethyl group of serine is a primary source of tetrahydrofolate (THF)-activated one-carbon units that are required for the synthesis of purines and thymidylate and for S-adenosylmethionine (AdoMet)-dependent methylation reactions. Serine hydroxymethyltransferase (SHMT) catalyzes the reversible and THF-dependent conversion of serine to glycine and 5,10-methylene-THF. SHMT is present in eukaryotic cells as mitochondrial SHMT and cytoplasmic (cSHMT) isozymes that are encoded by distinct genes. In this study, the essentiality of cSHMT-derived THF-activated one-carbons was investigated by gene disruption in the mouse germ line. Mice lacking cSHMT are viable and fertile, demonstrating that cSHMT is not an essential source of THF-activated one-carbon units. cSHMT-deficient mice exhibit altered hepatic AdoMet levels and uracil content in DNA, validating previous in vitro studies that indicated this enzyme regulates the partitioning of methylenetetrahydrofolate between the thymidylate and homocysteine remethylation pathways. This study suggests that mitochondrial SHMT-derived one-carbon units are essential for folate-mediated one-carbon metabolism in the cytoplasm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号