首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Contractile actomyosin bundles are critical for numerous aspects of muscle and nonmuscle cell physiology. Due to the varying composition and structure of actomyosin bundles in vivo, the minimal requirements for their contraction remain unclear. Here, we demonstrate that actin filaments and filaments of smooth muscle myosin motors can self-assemble into bundles with contractile elements that efficiently transmit actomyosin forces to cellular length scales. The contractile and force-generating potential of these minimal actomyosin bundles is sharply sensitive to the myosin density. Above a critical myosin density, these bundles are contractile and generate large tensile forces. Below this threshold, insufficient cross-linking of F-actin by myosin thick filaments prevents efficient force transmission and can result in rapid bundle disintegration. For contractile bundles, the rate of contraction decreases as forces build and stalls under loads of ∼0.5 nN. The dependence of contraction speed and stall force on bundle length is consistent with bundle contraction occurring by several contractile elements connected in series. Thus, contraction in reconstituted actomyosin bundles captures essential biophysical characteristics of myofibrils while lacking numerous molecular constituents and structural signatures of sarcomeres. These results provide insight into nonsarcomeric mechanisms of actomyosin contraction found in smooth muscle and nonmuscle cells.  相似文献   

2.
Smooth muscle cells have developed a contractile machinery that allows them to exert tension on the surrounding extracellular matrix over their entire length. This has been achieved by coupling obliquely organized contractile filaments to a more-or-less longitudinal framework of cytoskeletal elements. Earlier structural data suggested that the cytoskeleton was composed primarily of intermediate filaments and played only a passive role. More recent findings highlight the segregation of actin isotypes and of actin-associated proteins between the contractile and cytoskeletal domains and raise the possibility that the cytoskeleton performs a more active function. Current efforts focus on defining the relative contributions of myosin cross-bridge cycling and actin-associated protein interactions to the maintenance of tension in smooth muscle tissue.  相似文献   

3.
Bandopadhyay  R.  Orte  C.  Lawrenson  J.G.  Reid  A.R.  De Silva  S.  Allt  G. 《Brain Cell Biology》2001,30(1):35-44
Evidence from a variety of sources suggests that pericytes have contractile properties and may therefore function in the regulation of capillary blood flow. However, it has been suggested that contractility is not a ubiquitous function of pericytes, and that pericytes surrounding true capillaries apparently lack the machinery for contraction. The present study used a variety of techniques to investigate the expression of contractile proteins in the pericytes of the CNS. The results of immunocytochemistry on cryosections of brain and retina, retinal whole-mounts and immunoblotting of isolated brain capillaries indicate strong expression of the smooth muscle isoform of actin (α-SM actin) in a significant number of mid-capillary pericytes. Immunogold labelling at the ultrastructural level showed that α-SM actin expression in capillaries was exclusive to pericytes, and endothelial cells were negative. Compared to α-SM actin, non-muscle myosin was present in lower concentrations. By contrast, smooth muscle myosin isoforms, were absent. Pericytes were strongly positive for the intermediate filament protein vimentin, but lacked desmin which was consistently found in vascular smooth muscle cells. These results add support for a contractile role in pericytes of the CNS microvasculature, similar to that of vascular smooth muscle cells.  相似文献   

4.
Activation of airway smooth muscle (ASM) cells plays a central role in the pathophysiology of asthma. Because ASM is an important therapeutic target in asthma, it is beneficial to develop bioengineered ASM models available for assessing physiological and biophysical properties of ASM cells. In the physiological condition in vivo, ASM cells are surrounded by extracellular matrix (ECM) and exposed to mechanical stresses such as cyclic stretch. We utilized a 3-D culture model of human ASM cells embedded in type-I collagen gel. We further examined the effects of cyclic mechanical stretch, which mimics tidal breathing, on cell orientation and expression of contractile proteins of ASM cells within the 3-D gel. ASM cells in type-I collagen exhibited a tissue-like structure with actin stress fiber formation and intracellular Ca2+ mobilization in response to methacholine. Uniaxial cyclic stretching enhanced alignment of nuclei and actin stress fibers of ASM cells. Moreover, expression of mRNAs for contractile proteins such as α-smooth muscle actin, calponin, myosin heavy chain 11, and transgelin of stretched ASM cells was significantly higher than that under the static condition. Our findings suggest that mechanical force and interaction with ECM affects development of the ASM tissue-like construct and differentiation to the contractile phenotype in a 3-D culture model.  相似文献   

5.
The ability of porcine smooth muscle gelsolin to sever actin filaments was used to study alterations in the organization of F-actin containing structures during skeletal myogenesis. In permeabilized fibroblasts and unfused myoblasts, gelsolin induced complete degradation of the actin cytoskeleton. After fusion of myoblasts to multinucleated myotubes, gelsolin removed a substantial amount of actin, revealing fibers with a sarcomere-like arrangement of gelsolin-insensitive actin. These fibrils were much thinner and had shorter sarcomeres than fully differentiated myofibrils. The proportion of gelsolin-resistant fibrils increased during differentiation, resulting in almost complete inertness of mature myofibrils. Fibrils isolated from adult muscle were also found nearly resistant to gelsolin. Extraction of tropomyosin and myosin in buffer of high ionic strength prior to gelsolin treatment reestablished the susceptibility to the severing protein, both in myotubes and isolated myofibrils. Only small remnants of phalloidin-stainable material were retained. We therefore conclude that during myotube differentiation either an increased interaction of actin with actin-binding proteins (e.g., myosin and tropomyosin), or the assembly of muscle-specific isoforms of these proteins protect the filaments against degradation by actin severing proteins.  相似文献   

6.
It is believed that the contractile filaments in smooth muscle are organized into arrays of contractile units (similar to the sarcomeric structure in striated muscle), and that such an organization is crucial for transforming the mechanical activities of actomyosin interaction into cell shortening and force generation. Details of the filament organization, however, are still poorly understood. Several models of contractile filament architecture are discussed here. To account for the linear relationship observed between the force generated by a smooth muscle and the muscle length at the plateau of an isotonic contraction, a model of contractile unit is proposed. The model consists of 2 dense bodies with actin (thin) filaments attached, and a myosin (thick) filament lying between the parallel thin filaments. In addition, the thick filament is assumed to span the whole contractile unit length, from dense body to dense body, so that when the contractile unit shortens, the amount of overlap between the thick and thin filaments (i.e., the distance between the dense bodies) decreases in exact proportion to the amount of shortening. Assembly of the contractile units into functional contractile apparatus is assumed to involve a group of cells that form a mechanical syncytium. The contractile apparatus is assumed malleable in that the number of contractile units in series and in parallel can be altered to accommodate strains on the muscle and to maintain the muscle's optimal mechanical function.  相似文献   

7.
The contractile systems of vertebrate smooth and striated muscles are compared. Smooth muscles contain relatively large amounts of actin and tropomyosin organized into thin filaments, and smaller amounts of myosin in the form of thick filaments. The protein contents are consistent with observed thin:thick filament ratios of about 15-18:1 in smooth compared to 2:1 in striated muscle. The basic characteristics of both types of contractile proteins are similar; but there are a variety of quantitative differences in protein structures, enzymatic activities and filament stabilities. Biochemical and X-ray diffraction data generally support recent ultrastructural evidence concerning the organization of the myofilaments in smooth muscle, although a basic contractile unit comparable to the sarcomere in striated muscle has not been discerned. Myofilament interactions and contraction in smooth muscle are controlled by changes in the Ca2+ concentration. Recent evidence suggests the Ca2+-binding regulatory site is associated with the myosin in vertebrate smooth muscle (as in a variety of invertebrate muscles), rather than with troponin which is the regulatory protein associated with the thin filament in vertebrate striated muscle.  相似文献   

8.
Calponin, a novel homologue of troponin T, purified from chicken gizzard was found to be one of the most susceptible proteins among smooth muscle contraction-associated proteins to hydrolysis by calpain I purified from human red blood cells. The high susceptibility of calponin was comparable to that reported for troponin T. The rate of degradation of calponin, unlike caldesmon and myosin light chain kinase, was accelerated when bound to calmodulin. When calponin existed as a bound form in both reconstituted actin filament and native thin filament, the rate of proteolysis was markedly retarded, indicating close association of calponin with actin filament. These observations are compatible with the view that calponin is an integral part of the actin-linked contractile machinery in smooth muscle.  相似文献   

9.
10.
A new constitutive model for the biomechanical behaviour of smooth muscle tissue is proposed. The active muscle contraction is accomplished by the relative sliding between actin and myosin filaments, comprising contractile units in the smooth muscle cells. The orientation of the myosin filaments, and thereby the contractile units, are taken to exhibit a statistical dispersion around a preferred direction. The number of activated cross-bridges between the actin and myosin filaments governs the contractile force generated by the muscle and also the contraction speed. A strain-energy function is used to describe the mechanical behaviour of the smooth muscle tissue. Besides the active contractile apparatus, the mechanical model also incorporates a passive elastic part. The constitutive model was compared to histological and isometric tensile test results for smooth muscle tissue from swine carotid artery. In order to be able to predict the active stress at different muscle lengths, a filament dispersion significantly larger than the one observed experimentally was required. Furthermore, a comparison of the predicted active stress for a case of uniaxially oriented myosin filaments and a case of filaments with a dispersion based on the experimental histological data shows that the difference in generated stress is noticeable but limited. Thus, the results suggest that myosin filament dispersion alone cannot explain the increase in active muscle stress with increasing muscle stretch.  相似文献   

11.
Actin polymerization as part of the normal smooth muscle response to various stimuli has been reported. The actin dynamics are believed to be necessary for cytoskeletal remodeling in smooth muscle in its adaptation to external stress and strain and for maintenance of optimal contractility. We have shown in our previous studies in airway smooth muscle that myosins polymerized in response to contractile activation as well as to adaptation at longer cell lengths. We postulated that the same response could be elicited from actins under the same conditions. In the present study, actin filament formation was quantified electron microscopically in cell cross sections. Nanometer resolution allowed us to examine regional distribution of filaments in a cell cross section. Airway smooth muscle bundles were fixed in relaxed and activated states at two lengths; muscle preparations were also fixed after a period of oscillatory strain, a condition known to cause depolymerization of myosin filaments. The results indicate that contractile activation and increased cell length nonsynergistically enhanced actin polymerization; the extent of actin polymerization was substantially less than that of myosin polymerization. Oscillatory strain increased thin filament formation. Although thin filament density was found higher in cytoplasmic areas near dense bodies, contractile activation did not preferentially enhance actin polymerization in these areas. It is concluded that actin thin filaments are dynamic structures whose length and number are regulated by the cell in response to changes in extracellular environment and that polymerization and depolymerization of thin filaments occur uniformly across the whole cell cross section.  相似文献   

12.
When fluorescently labeled contractile proteins are injected into embryonic muscle cells, they become incorporated into the cells' myofibrils. In order to determine if this exchange of proteins is unique to the embryonic stage of development, we isolated adult cardiac myocytes and microinjected them with fluorescently labeled actin, myosin light chains, alpha-actinin, and vinculin. Each of these proteins was incorporated into the adult cardiomyocytes and was colocalized with the cells' native proteins, despite the fact that the labeled proteins were prepared from noncardiac tissues. Within 10 min of injection, alpha-actinin was incorporated into Z-bands surrounding the site of injection. Similarly, 30 sec after injection, actin was incorporated into the entire I-bands at the site of injection. Following a 3-h incubation, increased actin fluorescence was noted at the intercalated disc. Vinculin exchange was seen in the intercalated discs, as well as in the Z-bands throughout the cells. Myosin light chains required 4-6 h after injection to become incorporated into the A-bands of the adult muscle. Nonspecific proteins, such as fluorescent BSA, showed no association with the myofibrils or the former intercalated discs. When adult cells were maintained in culture for 10 days, they retain the ability to incorporate these contractile proteins into their myofibrils. T-tubules and the sarcoplasmic reticulum could be detected in periodic arrays in the freshly isolated cells using the membrane dye WW781 and DiOC6[3], respectively. In conclusion, the myofibrils in adult, as in embryonic, muscle cells are dynamic structures, permitting isoform transitions without dismantling of the myofibrils.  相似文献   

13.
Muscle fibers are maintained in culture in a fully contractile state and are relaxed by the addition of 10(-7) M tetrodotoxin (TTX). This toxin binds to muscle membrane Na+- channels, abolishes spontaneous contractions and causes failure of the fiber to accumulate myosin heavy chains. These effects are reversible on removal of TTX. Synthesis and accumulation kinetics have been obtained for myofibrillar and for cytoplasmic filament proteins in normal, active muscle and in TTX- relaxed muscle fibers in culture. In relaxed fibers the synthesis of most proteins remained normal or slightly elevated. However, the accumulation of all myofibrillar proteins examined was markedly inhibited in TTX-treated cultures, whereas the accumulation of cytoplasmic filament proteins was normal or slightly elevated. Myofibrillar proteins examined were alpha-actin, troponin-C, myosin fast light chain 1, myosin fast light chain 2, alpha, beta-tropomyosins and the phosphorylated forms of tropomyosin and fast light chain 2. Cytoplasmic filament proteins studied were vimentin, alpha, beta-desmin and beta, alpha-actin. We also examined the synthesis and accumulation of six unidentified muscle-specific proteins and nine unidentified nonmuscle-specific proteins. Most of these proteins showed a normal accumulation pattern in TTX-relaxed fibers. We concluded that muscle fibers made inactive by TTX display an increased instability of all myofibrillar proteins while cytoplasmic filament proteins and cytoplasmic proteins in general are relatively unaffected. We suggest that TTX interferes, in a manner as yet unidentified, with assembly and normal stability of myofibrils. Decreased assembly and/or increased instability of myofibrils would lead to increased rates of myofibrillar protein degradation.  相似文献   

14.
A growing body of data supports a view of the actin cytoskeleton of smooth muscle cells as a dynamic structure that plays an integral role in regulating the development of mechanical tension and the material properties of smooth muscle tissues. The increase in the proportion of filamentous actin that occurs in response to the stimulation of smooth muscle cells and the essential role of stimulus-induced actin polymerization and cytoskeletal dynamics in the generation of mechanical tension has been convincingly documented in many smooth muscle tissues and cells using a wide variety of experimental approaches. Most of the evidence suggests that the functional role of actin polymerization during contraction is distinct and separately regulated from the actomyosin cross-bridge cycling process. The molecular basis for the regulation of actin polymerization and its physiological roles may vary in diverse types of smooth muscle cells and tissues. However, current evidence supports a model for smooth muscle contraction in which contractile stimulation initiates the assembly of cytoskeletal/extracellular matrix adhesion complex proteins at the membrane, and proteins within this complex orchestrate the polymerization and organization of a submembranous network of actin filaments. This cytoskeletal network may serve to strengthen the membrane for the transmission of force generated by the contractile apparatus to the extracellular matrix, and to enable the adaptation of smooth muscle cells to mechanical stresses. Better understanding of the physiological function of these dynamic cytoskeletal processes in smooth muscle may provide important insights into the physiological regulation of smooth muscle tissues.  相似文献   

15.
A major development in smooth muscle research in recent years is the recognition that the myofilament lattice of the muscle is malleable. The malleability appears to stem from plastic rearrangement of contractile and cytoskeletal filaments in response to stress and strain exerted on the muscle cell, and it allows the muscle to adapt to a wide range of cell lengths and maintain optimal contractility. Although much is still poorly understood, we have begun to comprehend some of the basic mechanisms underlying the assembly and disassembly of contractile and cytoskeletal filaments in smooth muscle during the process of adaptation to large changes in cell geometry. One factor that likely facilitates the plastic length adaptation is the ability of myosin filaments to form and dissolve at the right place and the right time within the myofilament lattice. It is proposed herein that formation of myosin filaments in vivo is aided by the various filament-stabilizing proteins, such as caldesmon, and that the thick filament length is determined by the dimension of the actin filament lattice. It is still an open question as to how the dimension of the dynamic filament lattice is regulated. In light of the new perspective of malleable myofilament lattice in smooth muscle, the roles of many smooth muscle proteins could be assigned or reassigned in the context of plastic reorganization of the contractile apparatus and cytoskeleton.  相似文献   

16.
Summary The intracellular distributions of major muscle proteins, myosin, actin, tropomyosin, -actinin, and desmin, in smooth muscle cells of chicken gizzard at various stages of embryogenesis were investigated by immunofluorescence-labeling of enzyme-dispersed cells cultured up to three hours. These muscle proteins, except some part of myosin, were organized into fibrous structures as soon as synthesis and accumulation of proteins started. As for myosin, a considerable amount of it was dispersed in soluble cytoplasm as well. On the other hand, Ca++-dependent contractility was detected with detergent-extracted myoblasts and glycerinated tissue from embryos older than 7 days. Although the nascent myofibrils bear a resemblance to stress fibers, the former could be distinguished from the latter by their high stability in dispersed, spherical cells. The above findings, therefore, show that the synthesis of contractile proteins is followed by immediate assembly of them into functional myofibrils without undergoing any intermediate structure. Based on these findings, the mechanism of myofibril formation in developing smooth muscle cells is discussed.  相似文献   

17.
Cellular myosin, actin, and tropomyosin contents and ratios were determined for arterial (carotid, aorta, and coronary), intestinal (circular and longitudinal), esophageal, uterine, and tracheal smooth muscles inthe pig. Tissue protein contents were estimated by densitometry of polyacrylamide gels after electrophoresis of sodium dodecyl sulfate-treated tissue homogenates. Cellular contractile protein contents were estimated by correction for extracellular spaces. Cellular myosin contents were similar in each tissue (average +/- 1 SEM = 19.6 +/- 0.8 mg/g cell wet wt). However, the cellular contents of the thin filament proteins, actin and tropomyosin, were significantly higher in the arteries than in the nonarterial tissues. The calculated weight ratios of actin: myosin averaged 2.6 +/- 0.2 in the three arterial tissues and 1.5 +/- 0.1 in the nonarterial tissues, which may be compared with 0.36 in vertebrate striated muscles. The actin:tropomyosin weight ratios for all tissues were 3.7 +/- 0.1, a value comparable to the skeletal muscle ratio. The physiological implications of variations in the cellular thin filament protein contents are unknown, but these variations probably contribute to the observed differences in contractile function among various smooth muscles.  相似文献   

18.
Contractile stimulation induces actin polymerization in smooth muscle tissues and cells, and the inhibition of actin polymerization depresses smooth muscle force development. In the present study, the role of Cdc42 in the regulation of actin polymerization and tension development in smooth muscle was evaluated. Acetylcholine stimulation of tracheal smooth muscle tissues increased the activation of Cdc42. Plasmids encoding wild type Cdc42 or a dominant negative Cdc42 mutant, Asn-17 Cdc42, were introduced into tracheal smooth muscle strips by reversible permeabilization, and tissues were incubated for 2 days to allow for protein expression. Expression of recombinant proteins was confirmed by immunoblot analysis. The expression of the dominant negative Cdc42 mutant inhibited contractile force and the increase in actin polymerization in response to acetylcholine stimulation but did not inhibit the increase in myosin light chain phosphorylation. The expression of wild type Cdc42 had no significant effect on force, actin polymerization, or myosin light chain phosphorylation. Contractile stimulation increased the association of neuronal Wiskott-Aldrich syndrome protein with Cdc42 and the Arp2/3 (actin-related protein) complex in smooth muscle tissues expressing wild type Cdc42. The agonist-induced increase in these protein interactions was inhibited in tissues expressing the inactive Cdc42 mutant. We conclude that Cdc42 activation regulates active tension development and actin polymerization during contractile stimulation. Cdc42 may regulate the activation of neuronal Wiskott-Aldrich syndrome protein and the actin related protein complex, which in turn regulate actin filament polymerization initiated by the contractile stimulation of smooth muscle.  相似文献   

19.
Different interacting signaling modules involving Ca2+/calmodulin-dependent myosin light chain kinase, Ca2+-independent regulatory light chain phosphorylation, myosin phosphatase inhibition, and actin filament-based proteins are proposed as specific cellular mechanisms involved in the regulation of smooth muscle contraction. However, the relative importance of specific modules is not well defined. By using tamoxifen-activated and smooth muscle-specific knock-out of myosin light chain kinase in mice, we analyzed its role in tonic airway smooth muscle contraction. Knock-out of the kinase in both tracheal and bronchial smooth muscle significantly reduced contraction and myosin phosphorylation responses to K+-depolarization and acetylcholine. Kinase-deficient mice lacked bronchial constrictions in normal and asthmatic airways, whereas the asthmatic inflammation response was not affected. These results indicate that myosin light chain kinase acts as a central participant in the contractile signaling module of tonic smooth muscle. Importantly, contractile airway smooth muscles are necessary for physiological and asthmatic airway resistance.  相似文献   

20.
To identify regulatory mechanisms potentially involved in formation of actomyosin structures in smooth muscle cells, the influence of F-actin on smooth muscle myosin assembly was examined. In physiologically relevant buffers, AMPPNP binding to myosin caused transition to the soluble 10S myosin conformation due to trapping of nucleotide at the active sites. The resulting 10S myosin-AMPPNP complex was highly stable and thick filament assembly was suppressed. However, upon addition to F-actin, myosin readily assembled to form thick filaments. Furthermore, myosin assembly caused rearrangement of actin filament networks into actomyosin fibers composed of coaligned F-actin and myosin thick filaments. Severin-induced fragmentation of actin in actomyosin fibers resulted in immediate disassembly of myosin thick filaments, demonstrating that actin filaments were indispensable for mediating myosin assembly in the presence of AMPPNP. Actomyosin fibers also formed after addition of F-actin to nonphosphorylated 10S myosin monomers containing the products of ATP hydrolysis trapped at the active site. The resulting fibers were rapidly disassembled after addition of millimolar MgATP and consequent transition of myosin to the soluble 10S state. However, reassembly of myosin filaments in the presence of MgATP and F-actin could be induced by phosphorylation of myosin P-light chains, causing regeneration of actomyosin fiber bundles. The results indicate that actomyosin fibers can be spontaneously formed by F-actin-mediated assembly of smooth muscle myosin. Moreover, induction of actomyosin fibers by myosin light chain phosphorylation in the presence of actin filament networks provides a plausible hypothesis for contractile fiber assembly in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号