首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report that 10- and 25-kDa toxin fragments adhere to CryIC prepared from Bacillus thuringiensis insecticidal crystals, block iodination, and alter membrane binding. There is no apparent affect on CryIC toxicity against Spodoptera exigua. Associated peptides remained bound to CryIC in the presence of 50 mM dithiothreitol or 6 M urea. A novel detergent-renaturation procedure was developed for the purification of B. thuringiensis CryIC toxin. Sodium dodecyl sulfate (SDS) treatment followed by gel filtration chromatography yielded a homogeneous 62-kDa CryIC toxin. After removal of SDS and renaturation, the purified CryIC toxin was fully insecticidal to S. exigua larvae. I-labeled CryIC bound with high affinity to brush border membrane vesicles from S. exigua larvae.  相似文献   

2.
A colony of Plutella xylostella from crucifer fields in Florida was used in mortality bioassays with HD-1 spore, CryIA(a), CryIA(b), CryIA(c), CryIB, CryIC, CryID, CryIE, or CryIIA. The data revealed high levels of field-evolved resistance to HD-1 spore and all CryIA protoxins and no resistance to CryIB, CryIC, or CryID. CryIE and CryIIA were essentially not toxic. When HD-1 spore was combined 1:1 with protoxin and fed to susceptible larvae, spore synergized the activity of CryIA and CryIC 5- to 8-fold and 1.7-fold, respectively, and did not synergize the mortality of CryIIA. When fed to Florida larvae, spore failed to synergize the activity of all three CryIA protoxins, synergized the activity of CryIC 5.3-fold, and did not synergize the mortality for CryIIA. Binding studies with CryIA(b), CryIB, and CryIC were performed to determine possible mechanisms of resistance. The two techniques used were (i) binding of biotinylated toxin to tissue sections of larval midguts and (ii) binding of biotinylated toxin to brush border membrane vesicles prepared from whole larvae. Both showed dramatically reduced binding of CryIA(b) in resistant larvae compared with that in susceptible larvae but no differences in binding of CryIB or CryIC.  相似文献   

3.
The susceptibility of larvae of the diamondback moth, Plutella xylostella Linnaeus to purified crystal proteins and spore-crystal preparations of Bacillus thuringiensis was investigated for 13 populations from seven states in India. The LC50 (microg ml(-1), 48 h) values of Cry proteins for different populations of P. xylostella ranged from 0.14-3.74 (Cry1Aa), 0.007-1.25 (Cry1Ab), 0.18-2.47 (Cry1Ac) and 0.12-3.0 (Cry1C). The LC50 (mg (ai) l(-1), 48 h) of spore-crystal preparations ranged from 0.02-0.98 (HD-1) and 0.06-2.14 (HD-73). Significantly higher LC50 values for all tested toxins and strains were obtained with populations collected from Iruttupallam and Ottanchathiram in the southern state of Tamil Nadu, whereas some of the populations collected from the northern part of India were more susceptible than the susceptible IARI 17-65 population. The high levels of resistance in the Iruttupallam and Ottanchathiram populations to Cry1Ab suggested selection pressure by Cry1Ab, which is the predominant toxin in B. thuringiensis formulations used in India. Cry1Ab was found to be more toxic than the other toxins. The population from Iruttupallam showed increased resistance following selection with Cry1Ab in the laboratory (LC50 from 1.25 to 4.31 microg ml(-1) over two generations) and also showed cross resistance to CrylAa and CrylAc. The resistance to Biobit in the field population from Iruttupallam declined slowly; requiring c. 33 generations for an overall 10-fold decline in LC50 when the insects were reared in the laboratory without exposure to B. thuringensis.  相似文献   

4.
To test our hypothesis that substitution of domain III of Bacillus thuringiensis delta-endotoxin (Cry) proteins might improve toxicity to pest insects, e.g., Spodoptera exigua, in vivo recombination was used to produce a number of cryIA(b)-cryIC hybrid genes. A rapid screening assay was subsequently exploited to select hybrid genes encoding soluble protoxins. Screening of 120 recombinants yielded two different hybrid genes encoding soluble proteins with domains I and II of CryIA(b) and domain III of CryIC. These proteins differed by only one amino acid residue. Both hybrid protoxins gave a protease-resistant toxin upon in vitro activation by trypsin. Bioassays showed that one of these CryIA(b)-CryIC hybrid proteins (H04) was highly toxic to S. exigua compared with the parental CryIA(b) protein and significantly more toxic than CryIC. In semiquantitative binding studies with biotin-labelled toxins and intact brush border membrane vesicles of S. exigua, this domain III substitution appeared not to affect binding-site specificity. However, binding to a 200-kDa protein by CryIA(b) in preparations of solubilized and blotted brush border membrane vesicle proteins was completely abolished by the domain III substitution. A reciprocal hybrid containing domains I and II of CryIC and domain III of CryIA(b) did bind to the 200-kDa protein, confirming that domain III of CryIA(b) was essential for this reaction. These results show that domain III of CryIC protein plays an important role in the level of toxicity to S. exigua, that substitution of domain III may be a powerful tool to increase the repertoire of available active toxins for pest insects, and that domain III is involved in binding to gut epithelium membrane proteins of S. exigua.  相似文献   

5.
The impending widespread use of transgenic crop plants encoding a single insecticidal toxin protein of Bacillus thuringiensis has focused attention on the perceived risk of rapid selection of resistance in target insects. We have used Bacillus thuringiensis subsp. israelensis toxins as a model system and determined the speed and magnitude of evolution of resistance in colonies of the mosquito Culex quinquefasciatus during selection for 28 consecutive generations with single or multiple toxins. The parental strain was synthesized by combining approximately 500 larvae from each of 19 field collections obtained from the states of California, Oregon, Louisiana, and Tennessee. At least 10,000 larvae were selected in each generation of each line at an average mortality level of 84%. The susceptibilities of the parental and selected lines were compared in parallel tests in every third generation by using fresh suspensions of toxin powders. The normal toxin complement of B. thuringiensis subsp. israelensis consists of four toxins, CryIVA, CryIVB, CryIVD, and CytA. Resistance became evident first in the line that was selected with a single toxin (CryIVD), attaining the highest level (resistance ratio [RR], >913 at 95% lethal concentration) by generation F(inf28) when the study was completed. Resistance evolved more slowly and to a lower level (RR, >122 by F(inf25)) in the line selected with two toxins (CryIVA+CryIVB) and lower still (RR, 91 by F(inf28)) in the line selected with three toxins (CryIVA+CryIVB+ CryIVD). Resistance was remarkably low (RR, 3.2) in the line selected with all four toxins. The results reveal the importance of the full complement of toxins found in natural populations of B. thuringiensis subsp. israelensis as an effective approach to resistance management.  相似文献   

6.
The cloned 135-kDa CryIC delta-endotoxin from Bacillus thuringiensis is a lepidopteran-active toxin, displaying high activity in vivo against Spodoptera litoralis and Spodoptera frugiperda larvae and in vitro against the S. frugiperda Sf9 cell line. Here, we report that the CryIC delta-endotoxin cloned from B. thuringienesis subsp. aizawai HD-229 and expressed in an acrystalliferous B. thuringiensis strain is also toxic to Aedes aegypti, Anophles gambiae, and Culex quinquefasciatus mosquito larvae. Furthermore, when solubilized and proteolytically activated by insect gut extracts, CryIC is cytotoxic to cell lines derived from the first two of these dipteran insects. This activity was not observed for two other lepidopteran-active delta-endotoxins, CryIA(a) and CryIA(c). However, in contrast to the case with a lepidopteran and dipteran delta-endotoxin cloned from B. thuringiensis subsp. aizawai IC1 (M.Z. Haider, B. H. Knowles, and D. J. Ellar, Eur. J. Biochem. 156:531-540, 1986), no differences in the in vitro specificity or processing of CryIC were found when it was activated by lepidopteran or dipteran gut extract. The recombinant CryIC delta-endotoxin expressed in Escherichia coli was also toxic to A. aegypti larvae. By contrast, a second cryIC gene cloned from B. thuringiensis subsp. aizawai 7.29 (V. Sanchis, D. Lereclus, G. Menou, J. Chaufaux, S. Guo, and M. M. Lecadet, Mol. Microbiol. 3:229-238, 1989) was nontoxic. DNA sequencing showed that the two genes were identical. However, CryIC from B. thuringiensis subsp. aizawai 7.29 had been cloned with a truncated C terminus, and when it was compared with the full-length CryIC delta-endotoxin, it was found to be insoluble under alkaline reducing conditions. These results show that CryIC from B. thuringiensis subsp. aizawai is a dually active delta-endotoxin.  相似文献   

7.
Bacillus thuringiensis subsp. aizawai HD133 is one of several strains particularly effective against Plodia interpunctella selected for resistance to B. thuringiensis subsp. kurstaki HD1 (Dipel). B. thuringiensis subsp. aizawai HD133 produces inclusions containing three protoxins, CryIA(b), CryIC, and CryID, and the CryIC protoxin has been shown to be active on resistant P. interpunctella as well as on Spodoptera larvae. The CryIA(b) protoxin is very similar to the major one in B. thuringiensis subsp. kurstaki HD1, and as expected, this protoxin was inactive on resistant P. interpunctella. A derivative of B. thuringiensis subsp. aizawai HD133 which had been cured of a 68-kb plasmid containing the cryIA(b) gene produced inclusions comprising only the CryIC and CryID protoxins. Surprisingly, these inclusions were much less toxic for resistant P. interpunctella and two other Lepidoptera than those produced by the parental strain, whereas the soluble protoxins from these strains were equally effective. In contrast, inclusions from the two strains were about as active as soluble protoxins for Spodoptera frugiperda larvae, so toxicity differences between inclusions may be due to the solubilizing conditions within particular larval guts. Consistent with this hypothesis, it was found that a higher pH was required to solubilize protoxins from inclusions from the plasmid-cured strain than from B. thuringiensis subsp. aizawai HD133, a difference which is probably attributable to the absence of the CryIA(b) protoxin in the former. The interactions of structurally related protoxins within an inclusion are probably important for solubility and are thus another factor in the effectiveness of B. thuringiensis isolates for particular insect larvae.  相似文献   

8.
Binding sites for insecticidal toxins of Bacillus thuringiensis are located in the brush border membranes of insect midguts. Two approaches were used to investigate the interactions of B. thuringiensis subsp. kurstaki HD-73 CryIA(c) toxin with brush border membrane vesicles from sensitive and naturally resistant insects: 125I-toxin-vesicle binding assays and protein blots probed with 125I-CryIA(c) toxin. In bioassays, Manduca sexta and Heliothis virescens larvae were highly sensitive, Helicoverpa zea larvae were moderately sensitive, and Spodoptera frugiperda larvae were resistant to CryIA(c) toxin. Studies of binding of 125I-CryIA(c) toxin to brush border membrane vesicles from the larval midguts revealed that all insects tested had high-affinity, saturable binding sites. Significantly, S. frugiperda larvae bind but are not killed by CryIA(c) toxin. Labeled CryIA(c) toxin incubated with protein blots identifies a major binding molecule of 120 kDa for M. sexta and 148 kDa for S. frugiperda. H. virescens and H. zea are more complex, containing 155-, 120-, 103-, 90-, and 63-kDa proteins as putative toxin-binding molecules. H. virescens also contains a minor toxin-binding protein of 81 kDa. These experiments provide information that can be applied toward a more detailed characterization of B. thuringiensis toxin-binding proteins.  相似文献   

9.
Binding sites for insecticidal toxins of Bacillus thuringiensis are located in the brush border membranes of insect midguts. Two approaches were used to investigate the interactions of B. thuringiensis subsp. kurstaki HD-73 CryIA(c) toxin with brush border membrane vesicles from sensitive and naturally resistant insects: 125I-toxin-vesicle binding assays and protein blots probed with 125I-CryIA(c) toxin. In bioassays, Manduca sexta and Heliothis virescens larvae were highly sensitive, Helicoverpa zea larvae were moderately sensitive, and Spodoptera frugiperda larvae were resistant to CryIA(c) toxin. Studies of binding of 125I-CryIA(c) toxin to brush border membrane vesicles from the larval midguts revealed that all insects tested had high-affinity, saturable binding sites. Significantly, S. frugiperda larvae bind but are not killed by CryIA(c) toxin. Labeled CryIA(c) toxin incubated with protein blots identifies a major binding molecule of 120 kDa for M. sexta and 148 kDa for S. frugiperda. H. virescens and H. zea are more complex, containing 155-, 120-, 103-, 90-, and 63-kDa proteins as putative toxin-binding molecules. H. virescens also contains a minor toxin-binding protein of 81 kDa. These experiments provide information that can be applied toward a more detailed characterization of B. thuringiensis toxin-binding proteins.  相似文献   

10.
The American bollworm, H. armigera, evolved 31-fold resistance to selection pressure of B. thuringiensis endotoxin Cry1Ac within six generations. The Cry1Ac selected larvae of H. armigera showed cross-resistance to Cry1Aa and Cry1Ab both in terms of mortality and growth reduction. Studies on mechanisms of resistance to Cry1Ac showed that proteases of resistant insects degraded Cry1Ac faster than those of susceptible insects, which led to the relative unavailability of toxin of about 58 kDa for binding and perforation of midgut epithelial membrane of the target insect. Besides, resistant and susceptible populations of H. armigera differed in the binding of their receptors with Cry1Ac toxin. These results suggest the possibility of both mechanisms existing in imparting resistance. These findings mandate the necessity of B. thuringiensis resistance management for usage of B. thuringiensis either as a conventional insecticide or through transgenic crops.  相似文献   

11.
Repeated exposure in the field followed by laboratory selection produced 1,800- to >6,800-fold resistance to formulations of Bacillus thuringiensis subsp. kurstaki in larvae of the diamondback moth, Plutella xylostella. Four toxins from B. thuringiensis subsp. kurstaki [CryIA(a), CryIA(b), CryIA(c), and CryIIA] caused significantly less mortality in resistant larvae than in susceptible larvae. Resistance to B. thuringiensis subsp. kurstaki formulations and toxins did not affect the response to CryIC toxin from B. thuringiensis subsp. aizawai. Larvae resistant to B. thuringiensis subsp. kurstaki showed threefold cross-resistance to formulations of B. thuringiensis subsp. aizawai containing CryIC and CryIA toxins. This minimal cross-resistance may be caused by resistance to CryIA toxins shared by B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai.  相似文献   

12.
A population (SERD3) of the diamondback moth (Plutella xylostella L.) with field-evolved resistance to Bacillus thuringiensis subsp. kurstaki HD-1 (Dipel) and B. thuringiensis subsp. aizawai (Florbac) was collected. Laboratory-based selection of two subpopulations of SERD3 with B. thuringiensis subsp. kurstaki (Btk-Sel) or B. thuringiensis subsp. aizawai (Bta-Sel) increased resistance to the selecting agent with little apparent cross-resistance. This result suggested the presence of independent resistance mechanisms. Reversal of resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai was observed in the unselected SERD3 subpopulation. Binding to midgut brush border membrane vesicles was examined for insecticidal crystal proteins specific to B. thuringiensis subsp. kurstaki (Cry1Ac), B. thuringiensis subsp. aizawai (Cry1Ca), or both (Cry1Aa and Cry1Ab). In the unselected SERD3 subpopulation (ca. 50- and 30-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai), specific binding of Cry1Aa, Cry1Ac, and Cry1Ca was similar to that for a susceptible population (ROTH), but binding of Cry1Ab was minimal. The Btk-Sel (ca. 600-and 60-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai) and Bta-Sel (ca. 80-and 300-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai) subpopulations also showed reduced binding to Cry1Ab. Binding of Cry1Ca was not affected in the Bta-Sel subpopulation. The results suggest that reduced binding of Cry1Ab can partly explain resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai. However, the binding of Cry1Aa, Cry1Ac, and Cry1Ca and the lack of cross-resistance between the Btk-Sel and Bta-Sel subpopulations also suggest that additional resistance mechanisms are present.  相似文献   

13.
Three laboratory strains of Helicoverpa armigera (Hübner) were established by mating of field-collected insects with an existing insecticide-susceptible laboratory strain. These strains were cultured on artificial diet containing the Cry1Ac protoxin of Bacillus thuringiensis using three different protocols. When no response to selection was detected after 7-11 generations of selection, the three strains were combined by controlled mating to preserve genetic diversity. The composite strain (BX) was selected on the basis of growth rate on artificial diet containing Cry1Ac crystals. Resistance to Cry1Ac was first detected after 16 generations of continuous selection. The resistance ratio (RR) peaked approximately 300-fold at generation 21, after which it declined to oscillate between 57- and 111-fold. First-instar H. armigera from generation 25 (RR = 63) were able to complete their larval development on transgenic cotton expressing Cry1Ac and produce fertile adults. There appeared to be a fitness cost associated with resistance on cotton and on artificial diet. The BX strain was not resistant to the commercial Bt spray formulations DiPel and XenTari, which contain multiple insecticidal crystal proteins, but was resistant to the MVP formulation, which only contains Cry1Ac. The strain was also resistant to Cry1Ab but not to Cry2Aa or Cry2Ab. Toxin binding assays showed that the resistant insects lacked the high affinity binding site that was detected in early generations of the strain. Genetic analysis confirmed that resistance in the BX strain of H. armigera is incompletely recessive.  相似文献   

14.
Four subpopulations of a Plutella xylostella (L.) strain from Malaysia (F(4) to F(8)) were selected with Bacillus thuringiensis subsp. kurstaki HD-1, Bacillus thuringiensis subsp. aizawai, Cry1Ab, and Cry1Ac, respectively, while a fifth subpopulation was left as unselected (UNSEL-MEL). Bioassays at F(9) found that selection with Cry1Ac, Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai gave resistance ratios of >95, 10, 7, and 3, respectively, compared with UNSEL-MEL (>10,500, 500, >100, and 26, respectively, compared with a susceptible population, ROTH). Resistance to Cry1Ac, Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai in UNSEL-MEL declined significantly by F(9). The Cry1Ac-selected population showed very little cross-resistance to Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai (5-, 1-, and 4-fold compared with UNSEL-MEL), whereas the Cry1Ab-, B. thuringiensis subsp. kurstaki-, and B. thuringiensis subsp. aizawai-selected populations showed high cross-resistance to Cry1Ac (60-, 100-, and 70-fold). The Cry1Ac-selected population was reselected (F(9) to F(13)) to give a resistance ratio of >2,400 compared with UNSEL-MEL. Binding studies with (125)I-labeled Cry1Ab and Cry1Ac revealed complete lack of binding to brush border membrane vesicles prepared from Cry1Ac-selected larvae (F(15)). Binding was also reduced, although less drastically, in the revertant population, which indicates that a modification in the common binding site of these two toxins was involved in the resistance mechanism in the original population. Reciprocal genetic crosses between Cry1Ac-reselected and ROTH insects indicated that resistance was autosomal and showed incomplete dominance. At the highest dose of Cry1Ac tested, resistance was recessive while at the lowest dose it was almost completely dominant. The F(2) progeny from a backcross of F(1) progeny with ROTH was tested with a concentration of Cry1Ac which would kill 100% of ROTH moths. Eight of the 12 families tested had 60 to 90% mortality, which indicated that more than one allele on separate loci was responsible for resistance to Cry1Ac.  相似文献   

15.
A 4.0-kb BamHI-HindIII fragment encoding the cryIIA operon from the NRD-12 isolate of Bacillus thuringiensis subsp. kurstaki was cloned into Escherichia coli. The nucleotide sequence of the 2.2-kb AccI-HindIII fragment containing the NRD-12 cryIIA gene was identical to the HD-1 and HD-263 cryIIA gene sequences. Expression of cryIIA and subsequent purification of CryIIA inclusion bodies resulted in a protein with insecticidal activity against Heliothis virescens, Trichoplusia ni, and Culex quinquefasciatus but not Spodoptera exigua. The 4.0-kb BamII-HindIII fragment encoding the cryIIA operon was inserted into the B. thuringiensis-E. coli shuttle vector pHT3101 (pMAU1). pMAU1 was used to transform an acrystalliferous HD-1 strain of B. thuringiensis subsp. kurstaki and a leaf-colonizing strain of B. cereus (BT-8) by using electroporation. Spore-crystal mixtures from both transformed strains were toxic to H. virescens and T. ni but not Helicoverpa zea or S. exigua.  相似文献   

16.
Bacillus thuringiensis was isolated from 122 of 413 samples obtained from warehouses. Eighty-seven (71.31%) of these B. thuringiensis isolates were toxic to Spodoptera exigua , causing more than 60% mortality. Twenty-seven isolates were highly toxic to S. exigua , causing more than 95% mortality. Isolates 133, 47 and 58, which belonged to serotype H7, H4, H4, respectively, were more active than the other isolates and their 50% lethality concentration (LC50) values were 17.93, 14.78 and 15.55  μ g/ml, respectively. The isolate 133, 47 and 58 were analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and polymerase chain reaction. The results showed that they contained ~135 and 65 kDa crystal proteins, that were similar with reference strain HD-1. Isolate 133 contained the cryIA(a) , cryIA(b) , cryIA(c) , cryIE and cryII genes whereas both isolate 47 and 58 contained the cryIA(b) , cryIA(c) , cryIE and cryII genes; but they did not contain cryIII gene.  相似文献   

17.
A two-step procedure was used to place a cryIC crystal protein gene from Bacillus thuringiensis subsp. aizawai into the chromosomes of two B. thuringiensis subsp. kurstaki strains containing multiple crystal protein genes. The B. thuringiensis aizawai cryIC gene, which encodes an insecticidal protein highly specific to Spodoptera exigua (beet armyworm), has not been found in any B. thuringiensis subsp. kurstaki strains. The cryIC gene was cloned into an integration vector which contained a B. thuringiensis chromosomal fragment encoding a phosphatidylinositol-specific phospholipase C, allowing the B. thuringiensis subsp. aizawai cryIC to be targeted to the homologous region of the B. thuringiensis subsp. kurstaki chromosome. First, to minimize the possibility of homologous recombination between cryIC and the resident crystal protein genes, B. thuringiensis subsp. kurstaki HD73, which contained only one crystal gene, was chosen as a recipient and transformed by electroporation. Second, a generalized transducing bacteriophage, CP-51, was used to transfer the integrated cryIC gene from HD73 to two other B. thuringiensis subsp. kurstaki stains. The integrated cryIC gene was expressed at a significant level in all three host strains, and the expression of cryIC did not appear to reduce the expression of the endogenous crystal protein genes. Because of the newly acquired ability to produce the CryIC protein, the recombinant strains showed a higher level of activity against S. exigua than did the parent strains. This two-step procedure should therefore be generally useful for the introduction of an additional crystal protein gene into B. thuringiensis strains which have multiple crystal protein genes and which show a low level of transformation efficiency.  相似文献   

18.
DNA dot blot hybridizations with a cryV-specific probe and a cryI-specific probe were performed to screen 24 Bacillus thuringiensis strains for their cryV-type (lepidopteran- and coleopteran-specific) and cryI-type (lepidopteran-specific) insecticidal crystal protein gene contents, respectively. The cryV-specific probe hybridized to 12 of the B. thuringiensis strains examined. Most of the cryV-positive strains also hybridized to the cryI-specific probe, indicating that the cryV genes are closely related to cryI genes. Two cryV-type genes, cryV1 and cryV465, were cloned from B. thuringiensis subsp. kurstaki HD-1 and B. thuringiensis subsp. entomocidus BP465, respectively, and their nucleotide sequences were determined. The CryV1 protein was toxic to Plutella xylostella and Bombyx mori, whereas the CryV465 protein was toxic only to Plutella xylostella.  相似文献   

19.
Abstract An isolate of Bacillus thuringiensis subsp. israelensis (BTI) was obtained from field-collected larvae of the saturniid moth, Hylesia metabus . This isolate was shown to belong to serotype H 14, and to produce a spherical parasporal body identical to that of the type strain of BTI. With an LC50 of 0.764 μg cm−2, this isolate was more toxic to H. metabus than the HD-1 strain of B. thuringiensis subsp. kurstaki (HD-1). These results demonstrate that BTI can be active against lepidopterous insects, a wider spectrum of activity than previously realized.  相似文献   

20.
Immunoblotting and cytochemical procedures were used to determine whether toxin binding was altered in strains of the Indianmeal moth, Plodia interpunctella, selected for resistance to various strains of Bacillus thuringiensis. Each of these B. thuringiensis subspecies produces a mixture of protoxins, primarily Cry1 types, and the greatest insect resistance is to the Cry1A protoxins. In several cases, however, there was also resistance to toxins not present in the B. thuringiensis strains used for selection. The Cry1Ab and Cry1Ac toxins bound equally well over a range of toxin concentrations and times of incubation to a single protein of ca. 80-kDa in immunoblots of larval membrane extracts from all of the colonies. This binding protein is essential for toxicity since a mutant Cry1Ac toxin known to be defective in binding and thus less toxic bound poorly to the 80-kDa protein. This binding protein differed in size from the major aminopeptidase N antigens implicated in toxin binding in other insects. Binding of fluorescently labeled Cry1Ac or Cry1Ab toxin to larval sections was found at the tips of the brush border membrane prepared from the susceptible but not from any of the resistant P. interpunctella. Accessibility of a major Cry1A-binding protein appears to be altered in resistant larvae and could account for their broad resistance to several B. thuringiensis toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号