首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
Microtubule-associated protein 2 (MAP2) and tau, which is involved in Alzheimer's disease, are major cytoskeletal proteins in neurons. These proteins are involved in microtubule assembly and stability. To further characterize MAP2, we took a strategy of identifying potential MAP2 binding partners. The low molecular weight MAP2c protein has 11 PXXP motifs that are conserved across species, and these PXXP motifs could be potential ligands for Src homology 3 (SH3) domains. We tested for MAP2 interaction with SH3 domain-containing proteins. All neuronal MAP2 isoforms bound specifically to the SH3 domains of c-Src and Grb2 in an in vitro glutathione S-transferase-SH3 pull-down assay. Interactions between endogenous proteins were confirmed by co-immunoprecipitation using brain lysate. All three proteins were also found co-expressed in neuronal cell bodies and dendrites. Surprisingly, the SH3 domain-binding site was mapped to the microtubule-binding domain that contains no PXXP motif. Src bound primarily the soluble, non-microtubule-associated MAP2c in vitro. This specific MAP2/SH3 domain interaction was inhibited by phosphorylation of MAP2c by the mitogen-activated protein kinase extracellular signal-regulated kinase 2 but not by protein kinase A. This phosphorylation-regulated association of MAP2 with proteins of intracellular signal transduction pathways suggests a possible link between cellular signaling and neuronal cytoskeleton, with MAP2 perhaps acting as a molecular scaffold upon which cytoskeleton-modifying proteins assemble and dissociate in response to neuronal activity.  相似文献   

4.
The ERKs are a subfamily of the MAPKs that have been implicated in cell growth and differentiation. By using the rat ERK7 cDNA to screen a human multiple tissue cDNA library, we identified a new member of the ERK family, ERK8, that shares 69% amino acid sequence identity with ERK7. Northern analysis demonstrates that ERK8 is present in a number of tissues with maximal expression in the lung and kidney. Fluorescence in situ hybridization localized the ERK8 gene to chromosome 8, band q24.3. Expression of ERK8 in COS cells and bacteria indicates that, in contrast to constitutively active ERK7, ERK8 has minimal basal kinase activity and a unique substrate profile. ERK8, which contains two SH3-binding motifs in its C-terminal region, associates with the c-Src SH3 domain in vitro and co-immunoprecipitates with c-Src in vivo. Co-transfection with either v-Src or a constitutively active c-Src increases ERK8 activation indicating that ERK8 can be activated downstream of c-Src. ERK8 is also activated following serum stimulation, and the extent of this activation is reduced by pretreatment with the specific Src family inhibitor PP2. The ERK8 activation by serum or Src was not affected by the MEK inhibitor U0126 indicating that activation of ERK8 does not require MEK1, MEK2, or MEK5. Although most closely related to ERK7, the relatively low sequence identity, minimal basal activity, and different substrate profile identify ERK8 as a distinct member of the MAPK family that is activated by an Src-dependent signaling pathway.  相似文献   

5.
Integrins facilitate cell attachment to the extracellular matrix, and these interactions generate cell survival, proliferation, and motility signals. Integrin signals are relayed in part by focal adhesion kinase (FAK) activation and the formation of a transient signaling complex initiated by Src homology 2 (SH2)-dependent binding of Src family protein-tyrosine kinases to the FAK Tyr-397 autophosphorylation site. Here we show that in viral Src (v-Src)-transformed NIH3T3 fibroblasts, an adhesion-independent FAK-Src signaling complex occurs. Co-expression studies in human 293T cells showed that v-Src could associate with and phosphorylate a Phe-397 FAK mutant at Tyr-925 promoting Grb2 binding to FAK in suspended cells. In vitro, glutathione S-transferase fusion proteins of the v-Src SH3 but not c-Src SH3 domain bound to FAK in lysates of NIH3T3 fibroblasts. The v-Src SH3-binding sites were mapped to known proline-X-X-proline (PXXP) SH3-binding motifs in the FAK N- (residues 371-377) and C-terminal domains (residues 712-718 and 871-882) by in vitro pull-down assays, and these sites are composed of a PXXPXXPhi (where Phi is a hydrophobic residue) v-Src SH3 binding consensus. Sequence comparisons show that residues in the RT loop region of the c-Src and v-Src SH3 domains differ. Substitution of c-Src RT loop residues (Arg-97 and Thr-98) for those found in the v-Src SH3 domain (Trp-97 and Ile-98) enhanced the binding of distinct NIH3T3 cellular proteins to a glutathione S-transferase fusion protein of the c-Src (Trp-97 + Ile-98) SH3 domain. FAK was identified as a c-Src (Trp-97 + Ile-98) SH3 domain target in fibroblasts, and co-expression studies in 293T cells showed that full-length c-Src (Trp-97 + Ile-98) could associate in vivo with Phe-397 FAK in an SH2-independent manner. These studies establish a functional role for the v-Src SH3 domain in stabilizing an adhesion-independent signaling complex with FAK.  相似文献   

6.
The focal adhesion kinase (FAK), a protein-tyrosine kinase (PTK), associates with integrin receptors and is activated by cell binding to extracellular matrix proteins, such as fibronectin (FN). FAK autophosphorylation at Tyr-397 promotes Src homology 2 (SH2) domain binding of Src family PTKs, and c-Src phosphorylation of FAK at Tyr-925 creates an SH2 binding site for the Grb2 SH2-SH3 adaptor protein. FN-stimulated Grb2 binding to FAK may facilitate intracellular signaling to targets such as ERK2-mitogen-activated protein kinase. We examined FN-stimulated signaling to ERK2 and found that ERK2 activation was reduced 10-fold in Src- fibroblasts, compared to that of Src- fibroblasts stably reexpressing wild-type c-Src. FN-stimulated FAK phosphotyrosine (P.Tyr) and Grb2 binding to FAK were reduced, whereas the tyrosine phosphorylation of another signaling protein, p130cas, was not detected in the Src- cells. Stable expression of residues 1 to 298 of Src (Src 1-298, which encompass the SH3 and SH2 domains of c-Src) in the Src- cells blocked Grb2 binding to FAK; but surprisingly, Src 1-298 expression also resulted in elevated p130cas P.Tyr levels and a two- to threefold increase in FN-stimulated ERK2 activity compared to levels in Src- cells. Src 1-298 bound to both FAK and p130cas and promoted FAK association with p130cas in vivo. FAK was observed to phosphorylate p130cas in vitro and could thus phosphorylate p130cas upon FN stimulation of the Src 1-298-expressing cells. FAK-induced phosphorylation of p130cas in the Src 1-298 cells promoted the SH2 domain-dependent binding of the Nck adaptor protein to p130cas, which may facilitate signaling to ERK2. These results show that there are additional FN-stimulated pathways to ERK2 that do not involve Grb2 binding to FAK.  相似文献   

7.
Adapter proteins such as Grb2 play a central role in the formation of signaling complexes through their association with multiple protein binding partners. These interactions are mediated by specialized domains such as the well-characterized Src homology SH2 and SH3 motifs. Using yeast three-hybrid technology, we have identified a novel adapter protein, expressed predominantly in T lymphocytes, that associates with the activated form of the costimulatory receptor, CD28. The protein is a member of the Grb2 family of adapter proteins and contains an SH3-SH2-SH3 domain structure. A unique glutamine/proline-rich domain (insert domain) of unknown function is situated between the SH2 and N-terminal SH3 domains. We term this protein GRID for Grb2-related protein with insert domain. GRID coimmunoprecipitates with CD28 from Jurkat cell lysates following activation of CD28. Using mutants of CD28 and GRID, we demonstrate that interaction between the proteins is dependent on phosphorylation of CD28 at tyrosine 173 and integrity of the GRID SH2 domain, although there are also subsidiary stabilizing contacts between the PXXP motifs of CD28 and the GRID C-terminal SH3 domain. In addition to CD28, GRID interacts with a number of other T cell signaling proteins, including SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa), p62dok, and RACK-1 (receptor for activated protein kinase C-1). These findings suggest that GRID functions as an adapter protein in the CD28-mediated costimulatory pathway in T cells.  相似文献   

8.
beta-Arrestins can act as adapter molecules, coupling G-protein-coupled receptors to proteins involved in mitogenic as well as endocytic pathways. We have previously identified c-SRC as a molecule that is rapidly recruited to the beta2-adrenergic receptor in a beta-arrestin1-dependent manner. Recruitment of c-SRC to the receptor appears to be involved in pathways leading to receptor internalization and mitogen-activated protein kinase activation. This recruitment of c-SRC to the receptor involves an interaction between the amino-terminal proline-rich region of beta-arrestin1 and the Src homology 3 (SH3) domain of c-SRC, but deletion of the proline-rich domain does not totally ablate the interaction. We have found that a major interaction also exists between beta-arrestin1 and the catalytic or kinase domain (SH1) of c-SRC. We therefore hypothesized that a catalytically inactive mutant of the isolated catalytic subunit, SH1(kinase dead) (SH1(KD)), would specifically block those cellular actions of c-SRC that are mediated by beta-arrestin1 recruitment to the G-protein-coupled receptor. In contrast, the majority of cellular phosphorylations catalyzed by c-SRC, which do not involve interaction with the SH1 domain, would be predicted to be unaffected. The SH1(KD) mutant did indeed block beta2-adrenergic receptor internalization and receptor-stimulated tyrosine phosphorylation of dynamin, actions previously shown to be c-SRC-dependent. In contrast, SAM-68 and whole cell tyrosine phosphorylation by c-SRC was unaffected, indicating that the SH1(KD) mutant did not inhibit c-SRC tyrosine kinase activity in general. These results not only clarify the nature of the beta-arrestin1/c-SRC interaction but also implicate beta-arrestin1 as an important mediator of receptor internalization by recruiting tyrosine kinase activity to the cell surface to phosphorylate key endocytic intermediates, such as dynamin.  相似文献   

9.
10.
Beta-arrestin mediates desensitization and internalization of beta-adrenergic receptors (betaARs), but also acts as a scaffold protein in extracellular signal-regulated kinase (ERK) cascade. Thus, we have examined the role of beta-arrestin2 in the betaAR-mediated ERK signaling pathways. Isoproterenol stimulation equally activated cytoplasmic and nuclear ERK in COS-7 cells expressing beta1AR or beta2AR. However, the activity of nuclear ERK was enhanced by co-expression of beta-arrestin2 in beta2AR-but not beta1AR-expressing cells. Pertussis toxin treatment and blockade of Gbetagamma action inhibited beta-arrestin2-enhanced nuclear activation of ERK, suggesting that beta-arrestin2 promotes nuclear ERK localization in a Gbetagamma dependent mechanism upon receptor stimulation. beta2AR containing the carboxyl terminal region of beta1AR lost the beta-arrestin2-promoted nuclear translocation. As the carboxyl terminal region is important for beta-arrestin binding, these results demonstrate that recruitment of beta-arrestin2 to carboxyl terminal region of beta2AR is important for ERK localization to the nucleus.  相似文献   

11.
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that activates Src family kinases via SH2- and SH3-mediated interactions. Specific FAK isoforms (FAK+), responsive to depolarization and neurotransmitters, are enriched in neurons. We analyzed the interactions of endogenous FAK+ and recombinant FAK+ isoforms containing amino acid insertions (boxes 6,7,28) with an array of SH3 domains and the c-Src SH2/SH3 domain tandem. Endogenous FAK+ bound specifically to the SH3 domains of c-Src (but not n-Src), Fyn, Yes, phosphtidylinositol-3 kinase, amphiphysin II, amphiphysin I, phospholipase Cgamma and NH2-terminal Grb2. The inclusion of boxes 6,7 was associated with a significant decrease in the binding of FAK+ to the c-Src and Fyn SH3 domains, and a significant increase in the binding to the Src SH2 domain, as a consequence of the higher phosphorylation of Tyr-397. The novel interaction with the amphiphysin SH3 domain, involving the COOH-terminal proline-rich region of FAK, was confirmed by coimmunoprecipitation of the two proteins and a closely similar response to stimuli affecting the actin cytoskeleton. Moreover, an impairment of endocytosis was observed in synaptosomes after internalization of a proline-rich peptide corresponding to the site of interaction. The data account for the different subcellular distribution of FAK and Src kinases and the specific regulation of the transduction pathways linked to FAK activation in the brain and implicate FAK in the regulation of membrane trafficking in nerve terminals.  相似文献   

12.
13.
Many G protein-coupled receptors activate growth factor receptors, although the mechanisms controlling this transactivation are unclear. We have identified two proline-rich, SH3 binding sites (PXXP) in the carboxyl-terminal tail of the human P2Y(2) nucleotide receptor that directly associate with the tyrosine kinase Src in protein binding assays. Furthermore, Src co-precipitated with the P2Y(2) receptor in 1321N1 astrocytoma cells stimulated with the P2Y(2) receptor agonist UTP. A mutant P2Y(2) receptor lacking the PXXP motifs was found to stimulate calcium mobilization and serine/threonine phosphorylation of the Erk1/2 mitogen-activated protein kinases, like the wild-type receptor, but was defective in its ability to stimulate tyrosine phosphorylation of Src and Src-dependent tyrosine phosphorylation of the proline-rich tyrosine kinase 2, epidermal growth factor receptor (EGFR), and platelet-derived growth factor receptor. Dual immunofluorescence labeling of the P2Y(2) receptor and the EGFR indicated that UTP caused an increase in the co-localization of these receptors in the plasma membrane that was prevented by the Src inhibitor PP2. Together, these data suggest that agonist-induced binding of Src to the SH3 binding sites in the P2Y(2) receptor facilitates Src activation, which recruits the EGFR into a protein complex with the P2Y(2) receptor and allows Src to efficiently phosphorylate the EGFR.  相似文献   

14.
The hemopoietic-specific Gads (Grb2-related adaptor downstream of Shc) adaptor protein possesses amino- and carboxyl-terminal Src homology 3 (SH3) domains flanking a central SH2 domain and a unique region rich in glutamine and proline residues. Gads functions to couple the activated TCR to distal signaling events through its interactions with the leukocyte-specific signaling proteins SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) and LAT (linker for activated T cells). Expression library screening for additional Gads-interacting molecules identified the hemopoietic progenitor kinase-1 (HPK1), and we investigated the HPK1-Gads interaction within the DO11.10 murine T cell hybridoma system. Our results demonstrate that HPK1 inducibly associates with Gads and becomes tyrosine phosphorylated following TCR activation. HPK1 kinase activity is up-regulated in response to activation of the TCR and requires the presence of its proline-rich motifs. Mapping experiments have revealed that the carboxyl-terminal SH3 domain of Gads and the fourth proline-rich region of HPK1 are essential for their interaction. Deletion of the fourth proline-rich region of HPK1 or expression of a Gads SH2 mutant in T cells inhibits TCR-induced HPK1 tyrosine phosphorylation. Together, these data suggest that HPK1 is involved in signaling downstream from the TCR, and that SH2/SH3 domain-containing adaptor proteins, such as Gads, may function to recruit HPK1 to the activated TCR complex.  相似文献   

15.
The domain organization of Acanthamoeba myosin-I, an oligomodular motor protein, includes a potentially important protein interaction module that is mostly uncharacterized. The Src homology 3, SH3, domain of myosin-I binds Acan125, a protein containing at least two consensus ligand binding domains: C-terminal SH3 binding motifs (PXXP) and N-terminal leucine-rich repeats. We report the first affinities determined for an SH3 domain of any myosin, namely, K(d) = 7 microM for a 21-residue synthetic peptide based on the PXXP domain sequence and K(d) = 0.15 microM for the PXXP domain included in the C-terminus of Acan125. These values are consistent with affinities reported for peptides and proteins that associate with SH3. By deletional analysis we show that only the PXXP domain is required for Acan125 to interact with the SH3 domain of Acanthamoeba myosin-IC (AmyoC(SH3)). The synthetic peptide described above at a concentration near the K(d) for SH3 binding blocked the interaction between native AmyoC and Acan125, mapping the interaction to the PXXP domain of Acan125 and the SH3 domain of myosin-I. These results are consistent with prototypical SH3 binding and suggest that a PXXP module is both necessary and sufficient to interact with an SH3 module of myosin-I.  相似文献   

16.
RANK ligand (RANKL), by mechanisms unknown, directly activates osteoclasts to resorb bone. Because c-Src is key to organizing the cell's cytoskeleton, we asked if the tyrosine kinase also mediates RANKL-stimulated osteoclast activity. RANKL induces c-Src to associate with RANK(369-373) in an αvβ3-dependent manner. Furthermore, RANK(369-373) is the only one of six putative TRAF binding motifs sufficient to generate actin rings and activate the same cytoskeleton-organizing proteins as the integrin. While c-Src organizes the cell's cytoskeleton in response to the cytokine, it does not participate in RANKL-stimulated osteoclast formation. Attesting to their collaboration, αvβ3 and activated RANK coprecipitate, but only in the presence of c-Src. c-Src binds activated RANK via its Src homology 2 (SH2) domain and αvβ3 via its SH3 domain, suggesting the kinase links the two receptors. Supporting this hypothesis, deletion or inactivating point mutation of either the c-Src SH2 or SH3 domain obviates the RANK/αvβ3 association. Thus, activated RANK prompts two distinct signaling pathways; one promotes osteoclast formation, and the other, in collaboration with c-Src-mediated linkage to αvβ3, organizes the cell's cytoskeleton.  相似文献   

17.
The cAMP-specific phosphodiesterase PDE4D5 can interact with the signalling scaffold proteins RACK (receptors for activated C-kinase) 1 and beta-arrestin. Two-hybrid and co-immunoprecipitation analyses showed that RACK1 and beta-arrestin interact with PDE4D5 in a mutually exclusive manner. Overlay studies with PDE4D5 scanning peptide array libraries showed that RACK1 and beta-arrestin interact at overlapping sites within the unique N-terminal region of PDE4D5 and at distinct sites within the conserved PDE4 catalytic domain. Screening scanning alanine substitution peptide arrays, coupled with mutagenesis and truncation studies, allowed definition of RACK1 and beta-arrestin interaction sites. Modelled on the PDE4D catalytic domain, these form distinct well-defined surface-exposed patches on helices-15-16, for RACK1, and helix-17 for beta-arrestin. siRNA (small interfering RNA)-mediated knockdown of RACK1 in HEK-293 (human embryonic kidney) B2 cells increased beta-arrestin-scaffolded PDE4D5 approx. 5-fold, increased PDE4D5 recruited to the beta2AR (beta2-adrenergic receptor) upon isoproterenol challenge approx. 4-fold and severely attenuated (approx. 4-5 fold) both isoproterenol-stimulated PKA (protein kinase A) phosphorylation of the beta2AR and activation of ERK (extracellular-signal-regulated kinase). The ability of a catalytically inactive form of PDE4D5 to exert a dominant negative effect in amplifying isoproterenol-stimulated ERK activation was ablated by a mutation that blocked the interaction of PDE4D5 with beta-arrestin. In the present study, we show that the signalling scaffold proteins RACK1 and beta-arrestin compete to sequester distinct 'pools' of PDE4D5. In this fashion, alterations in the level of RACK1 expression may act to modulate signal transduction mediated by the beta2AR.  相似文献   

18.
The Src homology (SH) 3 domain has been shown recently to bind peptide sequences that lack the canonical PXXP motif. The diverse specificity in ligand recognition for a group of 15 SH3 domains has now been investigated using arrays of peptides derived from the proline-rich region of the SH2 domain-containing leukocyte protein of 76 kDa (SLP-76). A screen of the peptide arrays using individual or mixed SH3 domains has allowed the identification of a number of candidate SH3-binding peptides. Although some peptides contain the conventional PXXP motif, most are devoid of such a motif and are instead enriched in basic residues. Fluorescent polarization measurements using soluble peptides and purified SH3 domains demonstrated that several SH3 domains, including those from growth factor receptor-bound protein 2 (Grb2), NCK, and phospholipase C (PLC)-gamma1, bound with moderate affinities (10-100 microm) to a group of non-conventional peptides. Of particular interest, the PLC-gamma1 SH3 domain was found to associate with SLP-76 through at least three distinct sites, two of which bore a novel KKPP motif and the other contained the classic PXXP sequence. Intriguingly mutation of critical residues for the three sites not only affected binding of SLP-76 to the PLC-gamma1 SH3 domain but also to the Grb2 C-terminal SH3 domain, indicating that the binding sites in SLP-76 for the two SH3 domains are overlapped. Our studies suggest that the SH3 domain is an inherently promiscuous interaction module capable of binding to peptides that may or may not contain a PXXP motif. Furthermore the identification of numerous non-conventional SH3-binding peptides in SLP-76 implies that the global ligand pool for SH3 domains in a mammalian proteome may be significantly greater than previously acknowledged.  相似文献   

19.
Kuo FT  Lu TL  Fu HW 《Cellular signalling》2006,18(11):1914-1923
Protease-activated receptor 1 (PAR1), a G protein-coupled receptor for thrombin, is irreversibly proteolytically activated. beta-Arrestin1 and beta-arrestin2 have been reported to have different effects on signal desensitization and transduction of PAR1. In this study, we investigated whether beta-arrestin1 and beta-arrestin2 regulate Src-dependent activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) induced by PAR1 in HEK 293 cells. Our results show that PAR1-mediated activation of Src and ERK1/2 in HEK 293 cells was increased with overexpression of beta-arrestin1 or depletion of beta-arrestin2. PAR1-mediated activation of Src and ERK1/2 in HEK 293 cells was decreased or eliminated with depletion of beta-arrestin1 or overexpression of beta-arrestin2. Furthermore, depletion of beta-arrestin2 blocked PAR1-induced degradation of Src. Thus, beta-arrestin1 and beta-arrestin2 have opposing roles in regulating the activation of Src induced by PAR1. beta-Arrestin2 also appears to promote PAR1-induced degradation of Src. This degradation of Src provides a possible mechanism for terminating PAR1 signaling.  相似文献   

20.
beta-Arrestins are multifunctional proteins identified on the basis of their ability to bind and uncouple G protein-coupled receptors (GPCR) from heterotrimeric G proteins. In addition, beta-arrestins play a central role in mediating GPCR endocytosis, a key regulatory step in receptor resensitization. In this study, we visualize the intracellular trafficking of beta-arrestin2 in response to activation of several distinct GPCRs including the beta2-adrenergic receptor (beta2AR), angiotensin II type 1A receptor (AT1AR), dopamine D1A receptor (D1AR), endothelin type A receptor (ETAR), and neurotensin receptor (NTR). Our results reveal that in response to beta2AR activation, beta-arrestin2 translocation to the plasma membrane shares the same pharmacological profile as described for receptor activation and sequestration, consistent with a role for beta-arrestin as the agonist-driven switch initiating receptor endocytosis. Whereas redistributed beta-arrestins are confined to the periphery of cells and do not traffic along with activated beta2AR, D1AR, and ETAR in endocytic vesicles, activation of AT1AR and NTR triggers a clear time-dependent redistribution of beta-arrestins to intracellular vesicular compartments where they colocalize with internalized receptors. Activation of a chimeric AT1AR with the beta2AR carboxyl-terminal tail results in a beta-arrestin membrane localization pattern similar to that observed in response to beta2AR activation. In contrast, the corresponding chimeric beta2AR with the AT1AR carboxyl-terminal tail gains the ability to translocate beta-arrestin to intracellular vesicles. These results demonstrate that the cellular trafficking of beta-arrestin proteins is differentially regulated by the activation of distinct GPCRs. Furthermore, they suggest that the carboxyl-tail of the receptors might be involved in determining the stability of receptor/betaarrestin complexes and cellular distribution of beta-arrestins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号