首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We have shown that a Ca++-ionophore activity is present in the (Ca+++Mg++)-ATPase of rabbit skeletal muscle sarcoplasmic reticulum (A.E. Shamoo & D.H. MacLennan, 1974.Proc. Nat. Acad. Sci. USA 71:3522). Methylmercuric chloride inhibited the (Ca+++Mg++)-ATPase and Ca++ transport, but had no effect on the activity of the Ca++ ionophore. Mercuric chloride inhibited ATPase, transport and ionophore activity. The ATPase and transport functions were more sensitive to methylmercuric chloride than to mercuric chloride. The two functions were inhibited concomitantly by methylmercuric chloride but slightly lower concentrations of mercuric chloride were required to inhibit Ca++ transport than were required to inhibit ATPase. Methylmercuric chloride and mercuric chloride probably inhibited ATPase and Ca++ transport by blocking essential-SH groups. However, it appears that there are no essential-SH groups in the Ca++ ionophore and that mercuric chloride inhibited the Ca++ ionophore activity by competition with Ca++ for the ionophoric site. Blockage of Ca++ transport by mercuric chloride probably occurs both at sites of essential-SH groups and at sites of ionophoric activity. These data suggest the separate identity of the sites of ATP hydrolysis and of Ca++ ionophoric activity.  相似文献   

2.
Sarcoplasmic reticulum (SR), Ca2+ plus Mg2+-ATPase, and Ca2+-ionophore were obtained from white rabbit skeletal muscles. Methylmercury inhibited the Ca2+ plus Mg2+-ATPase and Ca2+-transport but had no effect on the Ca2+-ionophore. Mercuric chloride inhibited all three functions (i.e., ATPase, transport and ionophoric activity). The mechanism of HgCl2 inhibition of the Ca2+-ionophore was by competition with Ca2+ for Ca2+-ionophoric site whereas its inhibition of the enzyme and Ca2+-transport was due to the blockage of essential sulfhydryl (--SH) groups. Ca2+ plus Mg2+-ATPase and Ca2+-transport were more sensitive to methylmercury than to HgCl2. Acetylcholine receptor (AChR) was obtained for the electric organ of T. californica. Methylmercury inhibited the ACh binding to AChR WITH Ki = 5.7 - 10(-6) M. This effect was not due to mercuric ion alone since mercuric chloride up to 10(-4) M did not affect ACh binding to AChR. It is concluded that: the Ca2+ plus Mg2+-ATPase and Ca2+-transport contain --SH groups essential for their activity, and that the two functions are tightly coupled; the Ca2+-ionophore contains no --SH groups essential for its activity; CH3HgCl inhibition of Ca2+ plus Mg2+-ATPase and Ca2+-transport is partly due to its reactivity with --SH groups in hydrophobic environment; the Ca2+-transport is inhibited by HgCl2 through two processes, one which is the blockage of --SH groups and another which is the inhibition of the Ca2+-ionophoric site; and the inhibition of ACh binding to AChR is due to the blockage of --SH groups in hydrophobic environment, which is inaccessible to Hg2+. Our data present for the first time a molecular basis for the myopathy associated with mercurial compounds toxicity.  相似文献   

3.
The (Ca2+ + Mg2+)-dependent ATPase of sarcoplasmic reticulum has been shown to ast as a Ca2+-dependent and selective ionophore in artificial lipid bilayers. Four fragments of 55,000, 45,000, 30,000, and 20,000 daltons have been purified from tryptic digests of the enzyme and it has been shown that the 55,000- and 45,000-dalton fragments are obtained from a single cleavage of the 100,000-dalton ATPase, while the 30,000- and 20,000-dalton fragments are obtained subsequently by a cleavage of the 55,000-dalton fragment. The 55,000- and 20,000-dalton fragments have ionophore activity inhibited by ruthenium red and by mercuric chloride but not by methylmercuric chloride, an inhibitor of the hydrolytic site of the enzyme. Under standard conditions the 45,000-dalton fragment was not active as an ionophore, while the 30,000-dalton fragment acted as a nonselective ionophore. The 55,000- and 30,000-dalton fragments have been shown to contain the site of phosphorylation and of N-ethyl [2-3H]-maleimide binding indicative of the hydrolytic site in the enzyme, and this site is absent from the 20,000-dalton fragment. Therefore, the ionophoric and hydrolytic sites are localized in separate regions of the ATPase molecule and they have now been physically separated. The 20,000-dalton fragment was degraded with cyanogen bromide and fragments were separated by molecular sieving. Ionophore activity was found in fragments of molecular mass less than 2,000 daltons.  相似文献   

4.
After inhibition of the monovalent cation dependent ATPase, a (Ca++ + Mg++) and a (Mg++) dependent ATPase activity can be detected. The inhibition due to diamide on the (Mg++) ATPase, assayed in the 12.5 degrees C - 30 degrees C temperature range, is almost complete. On the contrary the diamide induced inhibition of (Ca++ + Mg++) ATPase, in the same temperature range, is not complete and the residual activity increases with temperature. The reported data indicate that the ATPase activity induced by calcium is much less diamide-sensitive and -SH-dependent than that elicited by Mg++ alone.  相似文献   

5.
Cation-dependent ATPase activities of rat liver plasmamembranes incubated "in vitro" with 4-hidroxy-2,3-nonenal (HNE, an aldehyde from peroxidative decomposition of biological membrane lipid moieties) are investigated. Mg++-ATPase activity is inhibited significantly by all the doses of HNE used (13,9, 4,1,1,2, 0,35 and 0,10 microM). Evidences for the inhibition of Mg++- Na+- K+- ATPase activity are also presented. Ca++- ATPase activity is strongly increased when rat liver plasmamembranes are incubated in presence of HNE 13,9 microM. Our results suggest that HNE may play a role in the control of intracellular cation levels acting directly on mechanisms of plasmamembranes ion transport.  相似文献   

6.
Sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase was previously shown to have Ca2+-dependent and -selective ionophoric activity when tested in oxidized cholesterol lipid bilayer membranes (Shamoo, A. E., and MacLennan, D. H. (1974) Proc. Natl. Acad. Sci. U. S. A. 71, 3522). ruthenium red, a known inhibitor of (Ca2+ + Mg2+)-ATPase, is found to inhibit the Ca2+-ionophoric activity associated with (Ca2+ + Mg2+)-ATPase. Furthermore, ruthenium red alone acts as an anion-selective ionophore in lipid bilayers with the the following selectivity sequence for anions: l- greater than Cl-, Br- greater than F- greater than NO3-. The PCl-/PNa+ ratio was approximately 4/l. The presence of ruthenium red in excess of Ca2+ ionophore in lipid bilayer experiments converts the cation selectivity of the bilayer due to Ca2+ ionophore into anion selectivity.  相似文献   

7.
Electrophorus electroplax microsomes were examined for Ca2+- and Mg2+-dependent ATPase activity. In addition to the previously reported low-affinity ATPase, a high-affinity (Ca2+,Mg2+)-ATPase was found. At low ATP and Mg2+ concentrations (200 microM or less), the high-affinity (Ca2+,Mg2+)-ATPase exhibits an activity of 18 nmol Pi mg-1 min-1 with 0.58 microM Ca2+. At higher ATP concentrations (3 mM), the low-affinity Ca2+-ATPase predominates, with an activity of 28 nmol Pi mg-1 min-1 with 1 mM Ca2+. In addition, Mg2+ can also activate the low-affinity ATPase (18 nmol Pi mg-1 min-1). The high-affinity ATPase hydrolyzes ATP at a greater rate than it does GTP, ITP, or UTP and is insensitive to ouabain, oligomycin, or dicyclohexylcarbodiimide inhibition. The high-affinity enzyme is inhibited by vanadate, trifluoperazine, and N-ethylmaleimide. Added calmodulin does not significantly stimulate enzyme activity; rinsing the microsomes with EGTA does not confer calmodulin sensitivity. Thus the high-affinity ATPase from electroplax microsomes is similar to the (Ca2+,Mg2+)-ATPase reported to be associated with Ca2+ transport, based on its affinity for calcium and its response to inhibitors. The low-affinity enzyme hydrolyzes all tested nucleoside triphosphates, as well as diphosphates, but not AMP. Vanadate and N-ethylmaleimide do not inhibit the low-affinity enzymes. The low-affinity enzyme reflects a nonspecific nucleoside triphosphatase, probably an ectoenzyme.  相似文献   

8.
Modification of histidine residues, SH- and epsilon-NH2-groups of myosin from rat sarcoma-45 by specific reagents was studied. It was shown that diethylpyrocarbonate modifies histidine residues essential for the ATPase activity. A kinetic analysis of myosin epsilon-NH2-groups modification by 2,4,6-trinitrobenzene sulfonate revealed that myosin trinitrophenylation and its inactivation by Ca2(+)-ATPase occurs in two steps: a fast and a slow (Km = 2400 and 1.7 s-1 M-1, respectively). Two essential epsilon-NH2-groups of tumour myosin active sites react in the fast reaction. The relatively low concentrations of p-chloromercuribenzoic acid activate rat sarcoma-45 myosin Ca2(+)-ATPase and Mg2(+)-ATPase, whereas higher ones inhibit the enzyme. The data obtained suggest that two SH-groups, SH1 and SH2 are essential for the tumour myosin ATPase function.  相似文献   

9.
Various ion-dependent (Na+K+, Ca++ and Mg++) ATPases activities in liver cell nuclear membrane have been determined after a single injection of different doses (0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2 and 4 micrograms/g) of L-triiodothyronine (T3) in Singi fish, Heteropneustes fossilis Bloch. Administration of T3 at a minimum effective dose of 0.05 micrograms upto 4 micrograms/g induced a rise (14 to 43% over control value) in the Na+K+-ATPase activity in a dose-dependent fashion maximum upto 1 microgram/g dose, whereas Ca++-ATPase showed a dose-dependent increase (20 to 43% over control) with 0.25-1 microgram/g of T3, although the increase in the respective enzyme activity was maintained upto 4 micrograms/g of T3 dose. Mg++-ATPase activity in liver cell nuclear membrane was found to be increased at 1 microgram-4 micrograms/g of T3 dose, showing a similar magnitude of increase (7% over the control value) with these doses of T3. Other doses of T3 (0.01 and 0.025 micrograms/g) were ineffective in altering the different ion-specific ATPase activity. Treatment of Singi fish with thiourea (1 mg/ml) for 30 days caused a significant fall in Na+K+, Ca++ and Mg++-ATPase activities upto 21%, 17% and 5%, respectively, below the euthyroid control level. A single injection of T3 at the dose of 1 microgram/g in the hypothyroid fish raised the Na+K+ and Ca++-ATPase activities to about 36% over the control value, and the Mg++-ATPase activity was restored to only the control level. Thus a dose-dependent nuclear effect of T3 is evident from the present investigation.  相似文献   

10.
The effect of Mg2+ on hepatic microsomal Ca2+ and Sr2+ transport   总被引:2,自引:0,他引:2  
The ATP-dependent uptake of Ca2+ by rat liver microsomal fraction is dependent upon Mg2+. Studies of the Mg2+ requirement of the underlying microsomal Ca2+-ATPase have been hampered by the presence of a large basal Mg2+-ATPase activity. We have examined the effect of various Mg2+ concentrations on Mg2+-ATPase activity, Ca2+ uptake, Ca2+-ATPase activity and microsomal phosphoprotein formation. Both Mg2+-ATPase activity and Ca2+ uptake were markedly stimulated by increasing Mg2+ concentration. However, the Ca2+-ATPase activity, measured concomitantly with Ca2+ uptake, was apparently unaffected by changes in the Mg2+ concentration. In order to examine the apparent paradox of Mg2+ stimulation of Ca2+ uptake but not of Ca2+-ATPase activity, we examined the formation of the Ca2+-ATPase phosphoenzyme intermediate and formation of a Mg2+-dependent phosphoprotein, which we have proposed to be an attribute of the Mg2+-ATPase activity. We found that Ca2+ apparently inhibited formation of the Mg2+-dependent phosphoprotein both in the absence and presence of exogenous Mg2+. This suggests that Ca2+ may inhibit (at least partially) the Mg2+-ATPase activity. However, inclusion of the Ca2+ inhibition of Mg2+-ATPase activity in the calculation of Ca2+-ATPase activity reveals that this effect is insufficient to totally account for the stimulation of Ca2+ uptake by Mg2+. This suggests that Mg2+, in addition to stimulation of Ca2+-ATPase activity, may have a direct stimulatory effect on Ca2+ uptake in an as yet undefined fashion. In an effort to further examine the effect of Mg2+ on the microsomal Ca2+ transport system of rat liver, the interaction of this system with Sr2+ was examined. Sr2+ was sequestered into an A23187-releasable space in an ATP-dependent manner by rat liver microsomal fraction. The uptake of Sr2+ was similar to that of Ca2+ in terms of both rate and extent. A Sr2+-dependent ATPase activity was associated with the Sr2+ uptake. Sr2+ promoted formation of a phosphoprotein which was hydroxylamine-labile and base-labile. This phosphoprotein was indistinguishable from the Ca2+-dependent ATPase phosphoenzyme intermediate. Sr2+ uptake was markedly stimulated by exogenous Mg2+, but the Sr2+-dependent ATPase activity was unaffected by increasing Mg2+ concentrations. Sr2+ uptake and Sr2+-dependent ATPase activity were concomitantly inhibited by sodium vanadate. In contrast to Ca2+, Sr2+ had no effect on Mg2+-dependent phosphoprotein formation. Taken together, these data indicate that Mg2+ stimulated Ca2+ and Sr2+ transport by increasing the Ca2+ (Sr2+)/ATP ratio.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Rough endoplasmic reticulum membranes, purified from isolated rat pancreatic acini stimulated by carbachol, had a decreased Ca2+ content and increased (Ca2+ + Mg2+)-ATPase activity. Ca2+ was regained and ATPase activity reduced to control levels only after blockade by atropine. The (Ca2+ + Mg2+)-ATPase was activated by free Ca2+ (half-maximal at 0.17 microM; maximal at 0.7 microM) over the concentration range which occurs in the cell cytoplasm. Pretreatment with EGTA, at a high concentration (5 mM), inhibited ATPase activity which, our results suggest, was due to removal of a bound activator such as calmodulin. The rate of (Ca2+ + Mg2+)-ATPase actively declined during the 10-min period over which maximal active accumulation of Ca2+ by membrane vesicles occurs. In the presence of ionophore A23187, which released actively accumulated Ca2+ and stimulated the (Ca2+ + Mg2+)-ATPase, this time-dependent decline in activity was not observed. Our data provide evidence that the activity of the Ca2+-transporting ATPase of the rough endoplasmic reticulum is regulated by both extra and intravesicular Ca2+ and is consistent with a direct role of this enzyme in the release and uptake of Ca2+ during cholinergic stimulation of pancreatic acinar cells.  相似文献   

12.
Efflux of Ca2+ from previously Ca2+-loaded heart mitochondria was measured after inhibiting respiratory activity. The efflux was increased by p-chloromercuribenzoate, methylmercuric chloride, Cu2+, Fe2+, 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole (uncoupler). 1,1,1-trifluoro-3-(2-thienylacetone and indomethacin; after such increase it could be diminished by dithiothreitol. The induced loss of the Ca2+ was accompanied by a loss of endogenous adenine nucleotide. Methylmercuric chloride was particularly effective, since it was active at ratios of about 1 nmol/mg of mitochondrial protein. The non-respiring mitochondria were found to regenerate bound thiol groups after their original complement had reacted with thiol-blocking reagent. This regeneration was diminished by the Ca2+-efflux stimulatig agents that were not themselves thiol-blocking reagents, such as thyroxine, uncoupler, trifluorothienylacetone and indomethacin. The external exposure of thiol groups was also diminished by thyroxine, uncoupler and trifluorothienylacetone. The results support the proposal made previously that the membrane is maintained in a state of low permeability by adenine nucleotide and Mg2+ being bound to thiol-dependent sites.  相似文献   

13.
Tryptic digestion of (Ca2+ + Mg2+)-ATPase from sarcoplasmic reticulum of rabbit skeletal muscle has previously been shown to cleave the enzyme initially into a 55,000-dalton fragment and a 45,000-dalton fragment. In the present study the two fragments are solubilized in sodium dodecyl sulfate (SDS) and separated by preparative polyacrylamide gel electrophoresis. The 45,000-dalton fragment is found to be a relatively nonselective, divalent cation-dependent ionophore when incorporated into an oxidized cholesterol membrane (BLM). Ionophoric activity of this fragment is inhibited by low concentrations of LaCl3, HgCl2, and various reducing agents. There appears to be one or two relatively inaccessible disulfide bonds in the 45,000-dalton fragment that are essential for transport. Addition of reducing agents inhibits the ionophoric activity of the succinylated undigested enzyme and the 45,000-dalton fragment, but has no effect on the 55,000-dalton fragment. These experiments imply that the 45,000-dalton fragment and the 55,000-dalton fragment are in a series arrangement in the membrane.  相似文献   

14.
The membrane-associated Mg(2+)-activated and Ca(2+)-activated adenosine 5'-triphosphatase (EC 3.6.1.3; ATPase) activities of Escherichia coli were further characterized. The degree of inhibition of membrane-bound Mg(2+)-(Ca(2+))-ATPase by a series of anions (i.e., sodium salts of nitrate, iodide, chloride, and acetate) was found to correlate with the relative chaotropic, or solubilizing, effectiveness of these anions. The enzyme was solubilized from washed membrane ghosts by treatment with 0.04% sodium lauryl sulfate at pH 9.0 and 37 C. Solubilized Mg(2+)-(Ca(2+))-ATPase exhibited an initial increase in activity, followed by fairly rapid inactivation, both ATPase activities being particularly cold-labile. The combined stabilizing effects of lauryl mercaptan (1-dodecanethiol), 0.01 m tris(hydroxymethyl)amino-methane-hydrochloride buffer (pH 9.0), 0.2 mm MgCl(2), and ambient temperature facilitated partial purification of the enzyme, the molecular weight of which was estimated to be approximately 100,000 by the gel filtration technique. In general, the membrane-associated Mg(2+)-(Ca(2+))-ATPase of E. coli resembles both mitochondrial membrane ATPase and the well-characterized membrane ATPases of Bacillus megaterium and Microcococcus lysodeikticus. It is of particular interest that N,N'-dicyclohexylcarbodiimide (DCCD), a known inhibitor of mitochondrial ATPase, of mitochondrial oxidative phosphorylation, and of the membrane-bound Mg(2+)-ATPase of Streptococcus faecalis was found to inhibit both the membrane-bound and the solubilized forms of E. coli Mg(2+)-(Ca(2+))-ATPase. The sensitivity of the membrane-associated Mg(2+)-(Ca(2+))-ATPase of E. coli to both anions and cations, its allotopic behavior, and its susceptibility to inhibition by DCCD favor the idea that this enzyme plays a key, probably polyfunctional, role in such biological activities of the membrane as oxidative phosphorylation and ion transport.  相似文献   

15.
It has been previously shown that local anesthetics inhibit the total Ca2+, Mg2(+)-ATPase activity of synaptosomal plasma membranes. We have carried out kinetic studies to quantify the effects of these drugs on the different Ca2(+)-dependent and Mg2(+)-dependent ATPase activities of these membranes. As a result we have found that this inhibition is not altered by washing the membranes with EDTA or EGTA. We have also found that the Ca2(+)-dependent ATPase activity is not significantly inhibited in the concentration range of these local anesthetics and under the experimental conditions used in this study. The inhibition of the Mg2(+)-dependent ATPase activities of these membranes was found to be of a noncompetitive type with respect to the substrate ATP-Mg2+, did not significantly shift the Ca2+ dependence of the Ca2+, Mg2(+)-ATPase activity, and occurred in a concentration range of local anesthetics that does not significantly alter the order parameter (fluidity) of these membranes. Modulation of this activity by the changes of the membrane potential that are associated with the adsorption of local anesthetics on the synaptosomal plasma membrane is unlikely, on the basis of the weak effect of membrane potential changes on the Ca2+,Mg2(+)-ATPase activity. It is suggested that the local anesthetics lidocaine and dibucaine inhibit the Ca2+, Mg2(+)-ATPase of the synaptosomal plasma membrane by disruption of the lipid annulus.  相似文献   

16.
These studies describe a high affinity calcium (Ca++)-dependent ATPase in purified testicular plasma membranes, which exhibits increased activity from weaning age to adulthood. Administration of human chorionic gonadotropin (hCG; 5 IU) increased enzyme activity in 21-day old and pubertal (35 to 40-day old), but not in adult mice. In pubertal mice, these increases in testicular Ca++-ATPase activity were dose-related and evident 60 min after hCG administration. A second challenge dose of 5 IU hCG administered either 24, 48 hrs, or 5 days later, had no additional effect on Ca++ ATPase in purified testicular plasma membranes in these pubertal animals. The present findings indicate that testicular plasma membrane Ca++ATPase activity exhibits a developmental pattern concomitant with increased testicular steroidogenic activity during sexual maturation. Furthermore, enzyme activity is increased by gonadotropic stimulation and exhibits a refractoriness similar to that of androgen biosynthesis to repeated hCG stimulation.  相似文献   

17.
Antibodies directed against the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase [(Ca2+ + Mg2+)-dependent ATPase] from pig erythrocytes and from smooth muscle of pig stomach (antral part) were raised in rabbits. Both the IgGs against the erythrocyte (Ca2+ + Mg2+)-ATPase and against the smooth-muscle (Ca2+ + Mg2+)-ATPase inhibited the activity of the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase from smooth muscle. Up to 85% of the total (Ca2+ + Mg2+)-ATPase activity in a preparation of KCl-extracted smooth-muscle membranes was inhibited by these antibodies. The (Ca2+ + Mg2+)-ATPase activity and the Ca2+ uptake in a plasma-membrane-enriched fraction from this smooth muscle were inhibited to the same extent, whereas in an endoplasmic-reticulum-enriched membrane fraction the (Ca2+ + Mg2+)-ATPase activity was inhibited by only 25% and no effect was observed on the oxalate-stimulated Ca2+ uptake. This supports the hypothesis that, in pig stomach smooth muscle, two separate types of Ca2+-transport ATPase exist: a calmodulin-binding ATPase located in the plasma membrane and a calmodulin-independent one present in the endoplasmic reticulum. The antibodies did not affect the stimulation of the (Ca2+ + Mg2+)-ATPase activity by calmodulin.  相似文献   

18.
The effects of bivalent (Mg2+, Ca2+, Sr2+) and monovalent (K+, Na+, NH4+) cations on the ATPase activity of subfragment 1 of myosin (SI) with a decreased Mg2+ content (EDTA-SI) were studied. Mg2+ activate the EDTA-SI ATPase, but only in the absence of other activating cations. K+, NH4+, a2+ and Sr2+ have a much stronger activating effect on EDTA-SI ATPase than on Mg-SI (SI enriched with Mg2+) ATPase. Monovalent cations inhibit Mg2+-ATPase and Ca2+-ATPase of EDTA-SI, while K+ and NH4+ activate Sr2+-ATPase of EDTA-SI. Based on experimental results and literary data, a hypothesis on the participation of the cations in the functioning of myosin ATPase was postulated. This hypothesis entails the existence of two closely interconnected cation-binding sites in the vicinity of the myosin active center (one for bivalent and one for monovalent cations); the ATPase activity of myosin is at any moment dependent on the nature of cations present in these two sites. An attempt to explain the role of the cations in the accomplishment of the ATPase reaction by myosin was made.  相似文献   

19.
AIF4- inhibits the (Ca2+ + Mg2+)-ATPase activity of the plasma-membrane and the sarcoplasmic-reticulum Ca2+-transport ATPase [Missiaen, Wuytack, De Smedt, Vrolix & Casteels (1988) Biochem. J. 253, 827-833]. The aim of the present work was to investigate this inhibition further. We now report that AIF4- inhibits not only the (Ca2+ + Mg2+)-ATPase activity, but also the ATP-dependent 45Ca2+ transport, and the formation of the phosphoprotein intermediate by these pumps. Mg2+ potentiated the effect of AIF4-, whereas K+ had no such effect. The plasma-membrane Ca2+-transport ATPase from erythrocytes was 20 times less sensitive to inhibition by AIF4- as compared with the Ca2+-transport ATPase from smooth muscle. The endoplasmic-reticulum Ca2+-transport ATPase from smooth muscle was inhibited to a greater extent than the sarcoplasmic-reticulum Ca2+-transport ATPase of slow and fast skeletal muscle.  相似文献   

20.
Mercuric chloride (Hg) in micromolar concentrations inhibited Mg(++)-dependent ATPase activity in rat brain microsomes. Inhibition was higher in oligomycin-sensitive (O.S.) than oligomycin-insensitive (O.I.) Mg(++)-ATPase. Hydrolysis of ATP with 15 and 50 micrograms of microsomal protein for 45 min without and with (2.10(-7M) Hg showed linear rates for 15-20 min. Altered pH vs activity demonstrated comparable inhibitions by Hg in buffered (neutral greater than acidic greater than basic) pH ranges. Inhibition of enzyme activity by Hg was found to be greater at 37 degrees C than at lower temperatures suggesting positive correlation trend. An uncompetitive inhibition with respect to the activation of Mg(++)-ATPase, O.S. Mg(++)-ATPase and O.I. Mg++ ATPase by ATP was indicated by a decrease in apparent Vmax and Km. Mg(++)-activation kinetic studies indicated that Hg causes uncompetitive inhibition of Mg(++)-ATPase and O.I. Mg(++)-ATPase and mixed inhibition of O.S. Mg(++)-ATPase. Inhibition was partially restored by repeated washings. These results indicate that the inhibition of microsomal Mg(++)-ATPase by Hg was pH, temperature, enzyme and Mg++ concentration dependent. Additionally, the data also suggest that O.S. compared to O.I. Mg(++)-ATPase is more sensitive to Hg toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号