首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There have been conflicting reports regarding the gene assignment of the high-molecular-mass envelope glycoprotein gp2 (gp300) of equine herpesvirus 1. Here, we provide an unequivocal demonstration that gp2 is encoded by gene 71. gp2 that was purified with a defining monoclonal antibody was cleaved internally to yield a 42-kDa protein encoded by gene 71. Amino acid composition data and N-terminal sequence analysis of a tryptic peptide identified gp2 as the product of equine herpesvirus 1 gene 71 with the SWISS-PROT database. Analysis of gp2's monosaccharide composition and the 42-kDa subunit showed that the high level of O glycosylation occurs on the serine/threonine-rich region upstream of the cleavage site.  相似文献   

2.
The sec71-1 and sec72-1 mutations were identified by a genetic assay that monitored membrane protein integration into the endoplasmic reticulum (ER) membrane of the yeast Saccharomyces cerevisiae. The mutations inhibited integration of various chimeric membrane proteins and translocation of a subset of water soluble proteins. In this paper we show that SEC71 encodes the 31.5-kDa transmembrane glycoprotein (p31.5) and SEC72 encodes the 23-kDa protein (p23) of the Sec63p-BiP complex. SEC71 is therefore identical to SEC66 (HSS1), which was previously shown to encode p31.5. DNA sequence analyses reveal that sec71-1 cells contain a nonsense mutation that removes approximately two-thirds of the cytoplasmic C-terminal domain of p31.5. The sec72-1 mutation shifts the reading frame of the gene encoding p23. Unexpectedly, the sec71-1 mutant lacks p31.5 and p23. Neither mutation is lethal, although sec71-1 cells exhibit a growth defect at 37 degrees C. These results show that p31.5 and p23 are important for the trafficking of a subset of proteins to the ER membrane.  相似文献   

3.
4.
The gene encoding a 37-kDa glycoprotein (gp37) of Orgyia pseudotsugata multinucleocapsid nuclear polyhedrosis virus (OpMNPV) was located and sequenced. gp37 of OpMNPV was found to have 62 and 37% amino acid sequence identity with gp37 of Autographa californica multinucleocapsid nuclear polyhedrosis virus (AcMNPV) and with a protein reported to be a component of occlusion bodies from Choristoneura biennis entomopoxvirus, respectively. The mRNA start site of the OpMNPV gp37 gene was mapped within a late promoter sequence (TTAAG). A TrpE fusion protein containing 55% of the OpMNPV gp37 gene amino acid sequence was used to generate a monospecific antiserum. Western immunoblot analysis of OpMNPV-infected Lymantria dispar cells detected gp37 beginning at 24 h postinfection. Immunoelectron microscopy indicated that the protein is concentrated in cytoplasmic inclusion bodies late in infection. In contrast to gp37 of AcMNPV which was present in the matrix of occlusion bodies, OpMNPV gp37 was not observed in this location. Neither OpMNPV nor AcMNPV gp37 was associated with the polyhedron envelope.  相似文献   

5.
Analysis of the fate of HIV-1 envelope protein gp160 (Env) has shown that newly synthesized proteins may be degraded within the biosynthetic pathway and that this degradation may take place in compartments other than the lysosomes. The fate of newly synthesized Env was studied in living BHK-21 cells with the recombinant vaccinia virus expression system. We found that gp160 not only undergoes physiological endoproteolytic cleavage, producing gp120, but is also degraded, producing proteolytic fragments of 120 kDa to 26 kDa in size, as determined by SDS/PAGE in non reducing conditions. Analysis of the 120-kDa proteolytic fragment, and comparison with gp120, showed that it is composed of peptides linked by disulfides bonds and lacks the V3-loop epitope and the C-terminal domain of gp120 (amino acids 506-516). A permeabilized cell system, with impaired transport of labeled Env from the endoplasmic reticulum (ER) to Golgi compartments, was developed to determine the site of degradation and to define some biochemical characteristics of the intracellular degradation process. In the semipermeable BHK-21 cells, there was: (a) no gp120 production (b), a progressive decrease in the amount of newly synthesized gp160 and a concomitant increase in the amount of a 120-kDa proteolytic fragment. This fragment had the same biochemical characteristics as the 120-kDa proteolytic fragment found in living nonpermeabilized cells, and (c) susceptibility of the V3 loop. This degradation process occurred in the ER, as shown by both biochemical and indirect immunofluorescence analysis. Furthermore, there was evidence that changes in redox state are involved in the ER-dependent envelope degradation pathway because adding reducing agents to permeabilized cells caused dose-dependent degradation of the 120-kDa proteolytic fragment and of the remaining gp160 glycoprotein. Thus our results provide direct evidence that regulated degradation of the HIV-1 envelope glycoprotein may take place in the ER of infected cells.  相似文献   

6.
Degradation of misfolded or unassembled proteins that are co-translationally inserted into the endoplasmic reticulum involves the cytosolic proteasome system. Different principles may exist for the export of proteins into the cytosol for proteasomal degradation. Here we studied the degradation pathway of the viral glycoprotein gp48, a type I transmembrane protein, encoded by the m06 gene of murine cytomegalovirus. In cells stably transfected with the cytomegalovirus m06 gene or infected with the virus itself, two populations of gp48 can be distinguished that have different fates. Complexes of gp48 and the major histocompatibility complex (MHC) class I molecule, are transported to the lysosome for degradation. Unassembled gp48 is degraded by the cytosolic proteasome. Proteasomal inhibitors stabilize the unassembled gp48 in its core-glycosylated and membrane-associated form in the endoplasmic reticulum (ER)-Golgi intermediate compartment. This implicates that both endoplasmic reticulum and ER-Golgi intermediate compartment export gp48 and that degradation is coupled to a functional proteasome. Analysis of gp48 mutants revealed that the cytosolic part of gp48 was not responsible for the proteasome-dependent substrate transport out of the ER-Golgi intermediate compartment. Thus an indirect interaction between the proteasome and its substrate has to be discussed.  相似文献   

7.
H Zhu  J Zhao  R Wang  L Zhang 《PloS one》2012,7(8):e43682
Two Cryptosporidium isolates from separate infants suffering from diarrhea were obtained from a hospital in Zhengzhou, China and were genotyped by PCR amplification and sequence analysis of the small-subunit ribosomal RNA (rRNA) (SSU rRNA), 70-kDa heat shock protein (HSP70), and actin genes. Further subtyping was performed by PCR amplification and sequence analysis of the 60-kDa glycoprotein (gp60) gene. Both the isolates were identified as Cryptosporidium hominis subtype IdA21, a rare subtype previously found only in a human immunodeficiency virus-infected child in South Africa and another child in Jordan.  相似文献   

8.
Tuberous sclerosis (TSC) is an autosomal dominant disorder characterized by a broad phenotypic spectrum that includes seizures, mental retardation, renal dysfunction and dermatological abnormalities. Mutations to either the TSC1 or TSC2 gene are responsible for the disease. The TSC1 gene encodes hamartin, a 130-kDa protein without significant homology to other known mammalian proteins. Analysis of the amino acid sequence of tuberin, the 200-kDa product of the TSC2 gene, identified a region with limited homology to GTPase-activating proteins. Previously, we demonstrated direct binding between tuberin and hamartin. Here we investigate this interaction in more detail. We show that the complex is predominantly cytosolic and may contain additional, as yet uncharacterized components alongside tuberin and hamartin. Furthermore, because oligomerization of the hamartin carboxyl-terminal coiled coil domain was inhibited by the presence of tuberin, we propose that tuberin acts as a chaperone, preventing hamartin self-aggregation.  相似文献   

9.
Several cDNA clones encoding a 46-kDa collagen-binding glycoprotein (gp46) from rat skeletal myoblasts were isolated and sequenced. The cDNA encoded a 17-amino acid signal peptide and a 400-amino acid mature protein, containing three potential N-linked oligosaccharide attachment sites. The cDNA sequence of gp46 shows 93% identity in the coding region with J6, a retinoic acid-inducible gene coding for a protein of unknown function described from embryonal carcinoma F9 cells. The first 41 NH2-terminal amino acids of the predicted J6 sequence are, however, different from the gp46 sequence as a result of a 7-base pair insertion in the gp46 cDNA. In addition, the NH2-terminal amino acid sequence of hsp47, a collagen-binding protein found in chick embryo fibroblasts, shows 64% identity to gp46 over 36 residues. Interestingly, this alignment begins 10 residues inward from the first amino acid in the mature form of gp46. A significant sequence similarity was observed between gp46 and members of the serine protease inhibitor (serpin) family. Unlike other serpins, however, gp46 is both a heat shock and a collagen-binding protein and is localized to the lumen of the endoplasmic reticulum, as suggested by the presence of the RDEL sequence at the COOH terminus. This sequence is similar to other proposed endoplasmic reticulum retention signals.  相似文献   

10.
A 65-kDa estrogen receptor (ER) protein has been demonstrated both by sucrose gradient analysis and by immunoblot, using anti-ER monoclonal antibodies (MAbs). Since the ER is denatured in many experimental situations, such as formaldehyde fixing of samples for histochemistry and electroimmunoblotting studies, in this work we used a denatured 60-70-kDa ER-rich protein preparation as antigen for mice immunization in order to raise anti-ER MAbs. That material was obtained by affinity purification on an allyl-estradiol matrix of the MCF-7 cytosolic ER, followed by further isolation and enrichment by PAGE. NS-1 myeloma cells and spleen lymphocytes from the immunized mice were fused, and resultant hybridoma colonies were screened by [125I]-estradiol-labelled nuclear ER immunoprecipitation. The isolated MAb, E476, shows a moderate ability to precipitate ER and reacts strongly with a 46-kDa antigen in Western blot assay. The 46-kDa antigen was not detectable in native cytosol but became reactive after 50% ammonium sulfate precipitation of cytosolic proteins. The 46-kDa antigen appeared concentrated in the NaSCN plus estradiol eluate of the affinity column used for cytosolic ER purification. Freshly prepared 60-70-kDa material from the preparative gel electrophoresis did not show any E476 reactivity. However, when the 60-70-kDa proteins were frozen, thawed and speed vacuum concentrated, the 46-kDa antigen became detectable. Storage increased the reactivity of the 60-70-kDa material with the E476 MAb. The 46-kDa antigen was present only in the ER positive cell lines, and was absent in all negative cell lines tested. The 46-kDa protein is also present in the ER positive human breast cancer specimens. We conclude that the 46-kDa protein identified with the E476 MAb in human breast cancer is probably a naturally occurring ER fragment.  相似文献   

11.
Sakaguchi M  Murakami H  Suzaki T 《Protist》2001,152(1):33-41
A 40-kDa glycoprotein (gp40) was identified as a Con A-binding adhesive substance of the heliozoon Actinophrys sol for immobilizing and ingesting prey flagellates. Isolation and partial characterization of gp40 showed that: 1) gp40 is a major Con A-binding protein of Actinophrys with a molecular weight of 40 kDa, and is stored in secretory granules called extrusomes; 2) gp40 was purified by Con A-affinity chromatography, and the N-terminal amino acid sequence was determined as H2N-KVLK-FEDDFDTFDLQ; 3) prey flagellates became adhered to gp40-immobilized agarose beads; 4) phagocytosis of Actinophrys was induced against gp40-immobilized agarose beads; and 5) solubilized gp40 induced exocytosis of extrusomes and cell fusion of heliozoons. These results indicate that gp40 is a multi-functional secretory protein of Actinophrys, which is required in correct targeting of the heliozoon to food organisms as well as in self-recognition.  相似文献   

12.
The alpha 2-macroglobulin (alpha 2M) receptor complex as purified by affinity chromatography contains three polypeptides: a 515-kDa heavy chain, an 85-kDa light chain, and a 39-kDa associated protein. Previous studies have established that the 515/85-kDa components are derived from a 600-kDa precursor whose complete sequence has been determined by cDNA cloning (Herz, J., Hamann, U., Rogne, S., Myklebost, O., Gassepohl, H., and Stanley, K. (1988) EMBO J. 7,4119-4127). We have now determined the primary structure of the human 39-kDa polypeptide, termed alpha 2M receptor-associated protein, by cDNA cloning. The deduced amino acid sequence contains a putative signal sequence that precedes the 323-residue mature protein. Comparative sequence analysis revealed that alpha 2M receptor-associated protein has 73% identity with a rat protein reported to be a pathogenic domain of Heymann nephritis antigen gp 330 and 77% identity to a mouse heparin-binding protein termed HBP-44. The high overall identity suggests that these molecules are interspecies homologues and indicates that the pathogenic domain, previously thought to be a portion of gp 330, is in fact a distinct protein. Further, the 120-residue carboxyl-terminal region of alpha 2M receptor-associated protein has 26% identity with a region of apolipoprotein E containing the low density lipoprotein receptor binding domain. Pulse-chase experiments revealed that the newly formed alpha 2M receptor-associated protein remains cell-associated, while surface labeling experiments followed by immunoprecipitation suggest that this protein is present on the cell surface forming a complex with the alpha 2M receptor heavy and light chains.  相似文献   

13.
GRP78, a 78-kDa protein localized in the endoplasmic reticulum (ER), has been implicated in protein processing and stress protection. Its promoter contains a 36-bp region which is conserved among GRP genes across species and has the ability to compete for trans-acting factors mediating GRP gene expression. Integration of about 800 tandem copies of this sequence into the genome of a Chinese hamster ovary cell line (DG44) results in transfectants with the following phenotypes: (i) the induction level of GRP78 by the calcium ionophore A23187 and tunicamycin is reduced 4- and 2-fold, respectively, (ii) the induction levels of two other ER luminal protein genes, GRP94 and ERp72, are simultaneously down-regulated, (iii) the growth rate of these cells is half that of transfectants without the amplified sequence, and (iv) cell viability is decreased by 25-fold after A23187 treatment. These results provide new evidence that ERp72 shares common trans-acting regulatory factors with the GRP genes and that a reduction of this set of ER proteins correlates with lower viability after ionophore treatment.  相似文献   

14.
15.
Recently, asparagine-linked oligosaccharides (N-glycans) have been found to play a pivotal role in glycoprotein quality control in the endoplasmic reticulum (ER). In order to screen proteins interacting with N-glycans, we developed affinity chromatography by conjugating synthetic N-glycans on sepharose beads. Using the affinity beads with the dodecasaccharide Glc(1)Man(9)GlcNAc(2), one structure of the N-glycans, a 75-kDa protein, was isolated from the membranous fraction including the ER in Aspergillus oryzae. By LC-MS/MS analysis using the A. oryzae genome database, the protein was identified as one (AO090009000313) sharing similarities with calnexin. Further affinity chromatographic experiments suggested that the protein specifically bound to Glc(1)Man(9)GlcNAc(2), similarly to mammalian calnexins. We designated the gene AoclxA and expressed it as a fusion gene with egfp, revealing the ER localization of the AoClxA protein. Our results suggest that our affinity chromatography with synthetic N-glycans might help in biological analysis of glycoprotein quality control in the ER.  相似文献   

16.
Most equine herpesvirus 1 (EHV-1) strains, including the naturally occurring virulent RacL11 isolate, encode a large glycoprotein, gp2 (250 kDa), which is expressed from gene 71. Besides other alterations in the viral genome, the avirulent strain KyA harbors an in-frame deletion of 1,242 nucleotides in gene 71. To examine the contributions of gp2 variation to virus growth and virulence, mutant RacL11 and KyA viruses expressing full-length or truncated gp2 were generated. Western blot analyses demonstrated expression of a 250-kDa gp2 in cells infected with RacL11 virus or a mutant KyA virus harboring full-length gene 71, whereas a 75- to 80-kDa gp2 was detected in cells infected with KyA or mutant RacL11 virus expressing KyA gp2. The RacL11 gp2 precursor of 250 kDa in size and its truncated KyA counterpart of 80 kDa, as well as the 42-kDa carboxy-terminal gp2 subunit, were incorporated into virus particles. Absence of gp2 in RacL11 resulted in a 6-fold reduction of extracellular virus titers and a 13% reduction of plaque diameters, whereas gp2-negative KyA exhibited a 55% reduction in plaque diameter and a 51-fold decrease in extracellular virus titers. The massive growth defects of gp2-negative KyA could be restored by reinsertion of the truncated but not the full-length gp2 gene. The virulence of the generated gp2 mutant viruses was compared to the virulence of KyA and RacL11 in a murine infection model. RacL11 lacking gp2 was apathogenic for BALB/c mice, and insertion of the truncated KyA gp2 gene into RacL11 was unable to restore virulence. Similarly, replacement in the KyA genome of the truncated with the full-length RacL11 gene 71 did not result in the generation of virulent virus. From the results we conclude that full-length and truncated EHV-1 gp2 are not functionally equivalent and cannot compensate for the action of their homologues in allogeneic virus backgrounds.  相似文献   

17.
In a natural context, membrane fusion mediated by the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins involves both the exterior envelope glycoprotein (gp120) and the transmembrane glycoprotein (gp41). Perez et al. (J. Virol. 66:4134-4143, 1992) reported that a mutant HIV-1 envelope glycoprotein containing only the signal peptide and carboxyl terminus of the gp120 exterior glycoprotein fused to the complete gp41 glycoprotein was properly cleaved and that the resultant gp41 glycoprotein was able to induce the fusion of even CD4-negative cells. In the studies reported herein, mutant proteins identical or similar to those studied by Perez et al. lacked detectable cell fusion activity. The proteolytic processing of these proteins was very inefficient, and one processed product identified by Perez et al. as the authentic gp41 glycoprotein was shown to contain carboxyl-terminal gp120 sequences. Furthermore, no fusion activity was observed for gp41 glycoproteins exposed after shedding of the gp120 glycoprotein by soluble CD4. Thus, evidence supporting a gp120-independent cell fusion activity for the HIV-1 gp41 glycoprotein is currently lacking.  相似文献   

18.
SEC72 encodes the 23-kD subunit of the Sec63p complex, an integral ER membrane protein complex that is required for translocation of presecretory proteins into the ER of Saccharomyces cerevisiae. DNA sequence analysis of SEC72 predicts a 21.6-kD protein with neither a signal peptide nor any transmembrane domains. Antibodies directed against a carboxyl-terminal peptide of Sec72p were used to confirm the membrane location of the protein. SEC72 is not essential for yeast cell growth, although an sec72 null mutant accumulates a subset of secretory precursors in vivo. Experiments using signal peptide chimeric proteins demonstrate that the sec72 translocation defect is associated with the signal peptide rather than with the mature region of the secretory precursor.  相似文献   

19.
Wang S  York J  Shu W  Stoller MO  Nunberg JH  Lu M 《Biochemistry》2002,41(23):7283-7292
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein complex (gp120-gp41) promotes viral entry by mediating the fusion of viral and cellular membranes. Formation of a stable trimer-of-hairpins structure in the gp41 ectodomain brings the two membranes into proximity, leading to membrane fusion. The core of this hairpin structure is a six-helix bundle in which three carboxyl-terminal outer helices pack against an inner trimeric coiled coil. Here we investigate the role of these conserved interhelical interactions on the structure and function of both the envelope glycoprotein and the gp41 core. We have replaced each of the eight amino acids at the buried face of the carboxyl-terminal helix with a representative amino acid, alanine. Structural and physicochemical characterization of the alanine mutants shows that hydrophobic interactions are a dominant factor in the stabilization of the six-helix bundle. Alanine substitutions at the Trp628, Trp631, Ile635, and Ile642 residues also affected envelope processing and/or gp120-gp41 association and abrogated the ability of the envelope glycoprotein to mediate cell-cell fusion. These results suggest that the amino-terminal region of the gp41 outer-layer alpha-helix plays a key role in the sequence of events associated with HIV-1 entry and have implications for the development of antibodies and small-molecule inhibitors of this conserved element.  相似文献   

20.
All gammaherpesviruses encode a glycoprotein positionally homologous to the Epstein-Barr virus gp350 and the Kaposi's sarcoma-associated herpesvirus (KSHV) K8.1. In this study, we characterized the positional homologous glycoprotein of bovine herpesvirus 4 (BoHV-4), encoded by the Bo10 gene. We identified a 180-kDa gene product, gp180, that was incorporated into the virion envelope. A Bo10 deletion virus was viable but showed a growth deficit associated with reduced binding to epithelial cells. This seemed to reflect an interaction of gp180 with glycosaminoglycans (GAGs), since compared to the wild-type virus, the Bo10 mutant virus was both less infectious for GAG-positive (GAG(+)) cells and more infectious for GAG-negative (GAG(-)) cells. However, we could not identify a direct interaction between gp180 and GAGs, implying that any direct interaction must be of low affinity. This function of gp180 was very similar to that previously identified for the murid herpesvirus 4 gp150 and also to that of the Epstein-Barr virus gp350 that promotes CD21(+) cell infection and inhibits CD21(-) cell infection. We propose that such proteins generally regulate virion attachment both by binding to cells and by covering another receptor-binding protein until they are displaced. Thus, they regulate viral tropism both positively and negatively depending upon the presence or absence of their receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号