首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ketopantoyl lactone reductase is a conjugated polyketone reductase   总被引:1,自引:0,他引:1  
Ketopantoyl lactone reductase (EC 1.1.1.168) of Saccharomyces cerevisiae was found to catalyze the reduction of a variety of natural and unnatural conjugated polyketone compounds and quinones, such as isatin, ninhydrin, camphorquinone and beta-naphthoquinone in the presence of NADPH. 5-Bromoisatin is the best substrate for the enzyme (Km = 3.1 mM; Vmax = 650 mumol/min/mg). The enzyme is inhibited by quercetin, and several polyketones. These results suggest that ketopantoyl lactone reductase is a carbonyl reductase which specifically catalyzes the reduction of conjugated polyketones.  相似文献   

2.
A protein encoded in the gene Cbr4 on human chromosome 4q32.3 belongs to the short-chain dehydrogenase/reductase family. Contrary to the functional annotation as carbonyl reductase 4 (CBR4), we show that the recombinant tetrameric protein, composed of 25-kDa subunits, exhibits NADPH-dependent reductase activity for o- and p-quinones, but not for other aldehydes and ketones. The enzyme was insensitive to dicumarol and quercetin, potent inhibitors of cytosolic quinone reductases. The 25-kDa CBR4 was detected in human liver, kidney and cell lines on Western blotting using anti-CBR4 antibodies. The overexpression of CBR4 in bovine endothelial cells reveals that the enzyme has a non-cleavable mitochondrial targeting signal. We further demonstrate that the in vitro quinone reduction by CBR4 generates superoxide through the redox cycling, and suggest that the enzyme may be involved in the induction of apoptosis by cytotoxic 9,10-phenanthrenequinone.  相似文献   

3.
A homogeneous preparation of sepiapterin reductase, an enzyme involved in the biosynthesis of tetrahydrobiopterin, from rat erythrocytes was found to be responsible for the reduction with NADPH of various carbonyl compounds of non-pteridine derivatives including some vicinal dicarbonyl compounds which were reported in the previous paper (Katoh, S. and Sueoka, T. (1984) Biochem. Biophys. Res. Commun. 118, 859–866) in addition to the general substrate, sepiapterin (2-amino-4-hydroxy-6-lactoyl-7,8-dihydropteridine). The compounds sensitive as substrates of the enzyme were quinones, e.g., p-quinone and menadione; other vicinal dicarbonyls, e.g., methylglyoxal and phenylglyoxal; monoaldehydes, e.g., p-nitrobenzaldehyde; and monoketones, e.g., acetophenone, acetoin, propiophenone and benzylacetone. Rutin, dicoumarol, indomethacin, and ethacrynic acid inhibited the enzyme activity toward either a carbonyl compound of a non-pteridine derivative or sepiapterin as substrate. Sepiapterin reductase is quite similar to general aldo-keto reductases, especially to carbonyl reductase.  相似文献   

4.
Effect of high intracellular concentrations of the antioxidants ascorbate and glutathione on the extractable activity of the reducting enzymes dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase were investigated with spinach cells ( Spinacia oleracea ). An elevated ascorbate concentration was obtained by treatment with the ascorbate biosynthesis precursor L-galactono-1,4-lactone (GAL). To increase the intracellular level of glutathione, cells were treated with the 5-oxo-L-proline analog L-2-oxothiazolidin-4-carboxylate (OTC), or with the peroxidative herbicide acifluorfen (sodium 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid). Extractable monodehydroascorbate reductase activity increased in the presence of a high level of ascorbate or glutathione, and enzyme activity was at maximum when cells were treated with acifluorfen + OTC, or acifluorfen + GAL. Extractable dehydroascorbate reductase activity decreased when the intracellular concentration of glutathione was high and non-enzymatic reduction of dehydroascorbate by glutathione was the dominant reaction. Maximal decrease of enzyme activity was found in cells treated with acifluorfen + OTC. Extractable activity of glutathione reductase (GR) increased after treatment of cells with acifluorfen alone, or acifluorfen + OTC, but enzyme activity was unaffected by a high intracellular concentration of glutathione obtained by treatment of cells with OTC alone, or by treatment with acifluorfen + GAL. The degree of GR activation seemed to be controlled by several factors including inhibition by a high concentration of glutathione and possibly oxidative damage to the enzyme. Overall, the enzymes tested in this study, which provide the reduced forms of ascorbate and glutathione, were differently affected by high antioxidant levels.  相似文献   

5.
Activity of the pterin- and folate-salvaging enzymes pteridine reductase 1 (PTR1) and dihydrofolate reductase-thymidylate synthetase (DHFR-TS) is commonly measured as a decrease in absorbance at 340 nm, corresponding to oxidation of nicotinamide adenine dinucleotide phosphate (NADPH). Although this assay has been adequate to study the biology of these enzymes, it is not amenable to support any degree of routine inhibitor assessment because its restricted linearity is incompatible with enhanced throughput microtiter plate screening. In this article, we report the development and validation of a nonenzymatically coupled screening assay in which the product of the enzymatic reaction reduces cytochrome c, causing an increase in absorbance at 550 nm. We demonstrate this assay to be robust and accurate, and we describe its utility in supporting a structure-based design, small-molecule inhibitor campaign against Trypanosoma brucei PTR1 and DHFR-TS.  相似文献   

6.
Plants are exposed to various environmental stresses and have therefore developed antioxidant enzymes and molecules to protect their cellular components against toxicity derived from reactive oxygen species (ROS). Ascorbate is a very important antioxidant molecule in plants, and monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) and dehydroascorbate reductase (DHAR; EC 1.8.5.1) are essential to regeneration of ascorbate for maintenance of ROS scavenging ability. The MDHAR and DHAR genes from Brassica rapa were cloned, transgenic plants overexpressing either BrMDHAR and BrDHAR were established, and then, each transgenic plant was hybridized to examine the effects of co-expression of both genes conferring tolerance to freezing. Transgenic plants co-overexpressing BrMDHAR and BrDHAR showed activated expression of relative antioxidant enzymes, and enhanced levels of glutathione and phenolics under freezing condition. Then, these alteration caused by co-expression led to alleviated redox status and lipid peroxidation and consequently conferred improved tolerance against severe freezing stress compared to transgenic plants overexpressing single gene. The results of this study suggested that although each expression of BrMDHAR or BrDHAR was available to according tolerance to freezing, the simultaneous expression of two genes generated synergistic effects conferring improved tolerance more effectively even severe freezing.  相似文献   

7.
Summary The synthesis of a series of symmetrical disulfides as potential substrates of trypanothione reductase and glutathione reductase was described. The key intermediate in the synthetic approach was the choice of S-tbutylmercapto-L-cysteine (1). The spermidine ring in the native substrate, trypanothione disulfide (TSST), was replaced with 3-dimethyl-aminopropylamine (DMAPA), while the-Glu moiety was replaced by phenylalanyl or tryptophanyl residues. The same modifications in the-Glu moiety of glutathione disulfide (GSSG) were applied.  相似文献   

8.
Summary The synthesis of asymmetrical disulfides, based on Zervas' inter-mediate, monocarbobenzoxy-L-cystine, has been developed. A series of substrate analogues of trypanothione disulfide (TSST) and glutathione disulfide (GSSG) are described, where the spermidine ring of (TSST) has been replaced by 3-dimethylaminopropylamine (DMAPA). The free amino group in Zervas' product was condensed with phenylalanyl, tryptophanyl or glutamyl residues, while the carbobenzoxy group was unaffected under the reaction conditions employed. The same synthetic approach was applied in the design of analogues of glutathione disulfide (GSSG).  相似文献   

9.
BACKGROUND AND AIMS: Most Vaccinium species have strict soil requirements for optimal growth, requiring low pH, high iron availability and nitrogen primarily in the ammonium form. These soils are limited and are often located near wetlands. Vaccinium arboreum is a wild species adapted to a wide range of soils, including high pH, low iron, and nitrate-containing soils. This broader soil adaptation in V. arboreum may be related to increased efficiency of iron or nitrate uptake compared with the cultivated Vaccinium species. METHODS: Nitrate, ammonium and iron uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in two Vaccinium species grown hydroponically in either nitrate or ammonia, with or without iron. The species studied were the wild V. arboreum and the cultivated V. corymbosum interspecific hybrid, which exhibits the strict soil requirements of most Vaccinium species. RESULTS: Ammonium uptake was significantly greater than nitrate uptake in both species, while nitrate uptake was greater in the wild species, V. arboreum, compared with the cultivated species, V. corymbosum. The increased nitrate uptake in V. arboreum was correlated with increased root NR activity compared with V. corymbosum. The lower nitrate uptake in V. corymbosum was reflected in decreased plant dry weight in this species compared with V. arboreum. Root FCR activity increased significantly in V. corymbosum grown under iron-deficient conditions, compared with the same species grown under iron-sufficient conditions or with V. arboreum grown under either iron condition. CONCLUSIONS: V. arboreum appears to be more efficient in acquiring nitrate compared with V. corymbosum, possibly due to increased NR activity and this may partially explain the wider soil adaptation of V. arboreum.  相似文献   

10.
Nitrate reductase A has been solubilized from purified cytoplasmic membranes by extraction with terl-amyl alcohol. The resulting aqueous solution contained monomeric reductase which polymerized slowly to dimers and tetramers with sedimentation coefficients of respectively 10.5, 16 and 23 Svedbergunits. The polymerization could be stopped to some extent by addition of a small amount of Triton X-100. These distinct entities of nitrate reductase A were separable on electro-focusing, DEAE-column chromatography and polyacrylamide gel electrophoresis, and have been proved to consist of similar subunits with molecular weights of 104000, 63000, and 56000 daltons. The molecular weights of monomeric nitrate reductase A was found to be about 240000 daltons.Chlorate reductase C has been solubilized by a similar procedure, resulting in only monomeric enzyme. Chlorate reductase C exhibited a sedimentation coefficient of 7.7 Svedbergunits, an isoelectric point of pH=4.55 and a molecular weight of approx. 180000 daltons. It was found to consist of three subunits with molecular weights of 75000, 63000 and 56000 daltons. The latter two subunits are most probably common in nitrate reductase A and chlorate reductase C.  相似文献   

11.
The complete mRNA sequences of two soybean (glycine max) genes-vestitone reductase and chalcone reductase, were amplified using the rapid amplification of cDNA ends methods. The sequence analysis of these two genes revealed that soybean vestitone reductase gene encodes a protein of 327 amino acids which has high homology with the vestitone reductase of Medicago sativa (77%). The soybean chalcone reductase gene encodes a protein of 314 amino acids that has high homology with the chalcone reductase of kudzu vine (88%) and medicago sativa (83%). The expression profiles of the soybean vestitone reductase and chalcone reductase genes were studied and the results indicated that these two soybean genes were differentially expressed in detected soybean tissues including leaves, stems, roots, inflorescences, embryos and endosperm. Our experiment established the foundation for further research on these two soybean genes.  相似文献   

12.
The relation between nitrate reductase (NR; EC 1.6.6.1) activity, activation state and NR protein in leaves of barley (Hordeum vulgare L.) seedlings was investigated. Maximum NR activity (NRAmax) and NR protein content (Western blotting) were modified by growing plants hydroponically at low (0.3 mM) or high (10 mM) nitrate supply. In addition, plants were kept under short-day (8 h light/16 h dark) or long-day (16 h light/8 h dark) conditions in order to manipulate the concentration of nitrate stored in the leaves during the dark phase, and the concentrations of sugars and amino acids accumulated during the light phase, which are potential signalling compounds. Plants were also grown under phosphate deficiency in order to modify their glucose-6-phosphate content. In high-nitrate/long-day conditions, NRAmax and NR protein were almost constant during the whole light period. Low-nitrate/long-day plants had only about 30% of the NRAmax and NR protein of high-nitrate plants. In low-nitrate/long-day plants, NRAmax and NR protein decreased strongly during the second half of the light phase. The decrease was preceded by a strong decrease in the leaf nitrate content. Short daylength generally led to higher nitrate concentrations in leaves. Under short-day/low-nitrate conditions, NRAmax was slightly higher than under long-day conditions and remained almost constant during the day. This correlated with maintenance of higher nitrate concentrations during the short light period. The NR activation state in the light was very similar in high-nitrate and low-nitrate plants, but dark inactivation was twice as high in the high-nitrate plants. Thus, the low NRAmax in low-nitrate/long-day plants was slightly compensated by a higher activation state of NR. Such a partial compensation of a low NRmax by a higher dark activation state was not observed with phosphate-depleted plants. Total leaf concentrations of sugars, of glutamine and glutamate and of glucose-6-phosphate did not correlate with the NR activation state nor with NRAmax. Received: 24 March 1999 / Accepted: 31 May 1999  相似文献   

13.
Three nitrate reductase activities were detected in Alcaligenes eutrophus strain H16 by physiological and mutant analysis. The first (NAS) was subject to repression by ammonia and not affected by oxygen indicating a nitrate assimilatory function. The second (NAR) membrane-bound activity was only formed in the absence of oxygen and was insensitive to ammonia repression indicating a nitrate respiratory function. The third (NAP) activity of potential respiratory function occurred in the soluble fraction of cells grown to the stationary phase of growth. In contrast to NAR and NAS, expression of NAP did not require nitrate for induction and was independent of the rpoN gene product. Genes for the three reductases map at different loci. NAR and NAS are chromosomally encoded whereas NAP is a megaplasmid-borne activity in A. eutrophus.  相似文献   

14.
Deoxyribonucleosides were separated from ribonucleosides by chromatography on polyethyleneimine cellulose columns (Pasteur pipettes. The deoxyribonucleosides were quantitatively eluted with 25 mM boric acid in less than 10 ml while the ribonucleosides were retained. The ribonucleosides were eluted with 1 M NaCl. This method was utilized to assay for GDP, UDP, ADP, and CDP reductase activities after hydrolysis of the substrate and product nucleotides to the corresponding nucleosides. All four reductase activities were assayed using identical conditions of column size, eluting solution (25 mM boric acid), and elution volume. The use of polyethyleneimine cellulose columns with boric acid can be adapted to other enzyme assays such as purine nucleoside phosphorylase and for the isolation of deoxyribonucleotides from cellular extracts.  相似文献   

15.
The localization of APS reductase and bisulfite reductase in Desulfovibrio gigas, D. vulgaris Hildenborough and D. thermophilus was studied by immunoelectron microscopy. Polyclonal antibodies were raised against the purified enzymes from each strain. Cells fixed with formaldehyde/glutaraldehyde were embedded and ultrathin sections were incubated with antibodies and subsequently labeled with protein A-gold. The bisulfite reductase in all three strains and APS reductase in d. gigas and D. vulgaris were found in the cytoplasm. The labeling of d. thermophilus with APS reductase antibodies resulted in a distribution of gold particles over the cytoplasmic membrane region. The localization of the two enzymes is discussed with respect to the mechanism and energetics of dissimilatory sulfate reduction.  相似文献   

16.
Recent efforts to develop cure for chronic diabetic complications have led to the discovery of potent inhibitors against aldose reductase (AKR1B1, EC 1.1.1.21) whose role in diabetes is well-evident. In the present work, two new natural products were isolated from the ariel part of Ocimum basilicum; 7-(3-hydroxypropyl)-3-methyl-8-β-O-d-glucoside-2H-chromen-2-one (1) and E-4-(6′-hydroxyhex-3′-en-1-yl)phenyl propionate (2) and confirmed their structures with different spectroscopic techniques including NMR spectroscopy etc. The isolated compounds (1, 2) were evaluated for in vitro inhibitory activity against aldose reductase (AKR1B1) and aldehyde reductase (AKR1A1). The natural product (1) showed better inhibitory activity for AKR1B1 with IC50 value of 2.095 ± 0.77 µM compare to standard sorbinil (IC50 = 3.14 ± 0.02 µM). Moreover, the compound (1) also showed multifolds higher activity (IC50 = 0.783 ± 0.07 µM) against AKR1A1 as compared to standard valproic acid (IC50 = 57.4 ± 0.89 µM). However, the natural product (2) showed slightly lower activity for AKR1B1 (IC50 = 4.324 ± 1.25 µM). Moreover, the molecular docking studies of the potent inhibitors were also performed to identify the putative binding modes within the active site of aldose/aldehyde reductases.  相似文献   

17.
Polymorphisms in genes involved in folate metabolism may modulate the risk of colorectal cancer (CRC), but data from published studies are conflicting. The current meta-analysis was performed to address a more accurate estimation. A total of 41 (17,552 cases and 26,238 controls), 24(8,263 cases and 12,033 controls), 12(3,758 cases and 5,646 controls), and 13 (5,511 cases and 7,265 controls) studies were finally included for the association between methylenetetrahydrofolate reductase (MTHFR) C677T and A1289C, methione synthase reductase (MTRR) A66G, methionine synthase (MTR) A2756G polymorphisms and the risk of CRC, respectively. The data showed that the MTHFR 677T allele was significantly associated with reduced risk of CRC (OR = 0.93, 95%CI 0.90-0.96), while the MTRR 66G allele was significantly associated with increased risk of CRC (OR = 1.11, 95%CI 1.01-1.18). Sub-group analysis by ethnicity revealed that MTHFR C677T polymorphism was significantly associated with reduced risk of CRC in Asians (OR = 0.80, 95%CI 0.72-0.89) and Caucasians (OR = 0.84, 95%CI 0.76-0.93) in recessive genetic model, while the MTRR 66GG genotype was found to significantly increase the risk of CRC in Caucasians (GG vs. AA: OR = 1.18, 95%CI 1.03-1.36). No significant association was found between MTHFR A1298C and MTR A2756G polymorphisms and the risk of CRC. Cumulative meta-analysis showed no particular time trend existed in the summary estimate. Probability of publication bias was low across all comparisons illustrated by the funnel plots and Egger's test. Collectively, this meta-analysis suggested that MTHFR 677T allele might provide protection against CRC in worldwide populations, while MTRR 66G allele might increase the risk of CRC in Caucasians. Since potential confounders could not be ruled out completely, further studies were needed to confirm these results.  相似文献   

18.
Abstract Neisseria gonorrhoeae is unable to grow with sulfate but can use thiosulfate as sole source of sulfur.
Thiosulfate sulfur transferase (TST) (rhodanese) activity was present in the cytoplasmic soluble fraction. In the same extract, thiosulfate reductase (TSR), trithionate reductase and tetrathionate reductase activities were also detected using hydrogen as electron donor in the presence of viologen dyes and hydrogenase from Desulfovibrio gigas .
The significance of and the possible relationship between these different activities are discussed.  相似文献   

19.
Starting from a common tyrosine, yeast xylose reductases (XRs) contain two conserved sequence motifs corresponding to the catalytic signatures of single-domain reductases/epimerases/dehydrogenases (Tyrn-(X)3-Lysn+4) and aldo/keto reductases (AKRs) (Tyrn-(X)28-Lysn+29). Tyr51, Lys55 and Lys80 of XR from Candida tenuis were replaced by site-directed mutagenesis. The purified Tyr51→ Phe and Lys80→Ala mutants showed turnover numbers and catalytic efficiencies for NADH-dependent reduction of -xylose between 2500- and 5000-fold below wild-type levels, suggesting a catalytic role of both residues. Replacing Lys55 by Asn, a substitution found in other AKRs, did not detectably affect binding of coenzymes, and enzymatic catalysis to carbonyl/alcohol interconversion. The contribution of Tyr51 to rate enhancement of aldehyde reduction conforms with expectations for the general acid catalyst of the enzymatic reaction.  相似文献   

20.
In excised wheat leaves, the activity of nitrate reductase was enhanced by a brief pulse of red light and this increase was reversed by far-red light irradiation. Even under continuous far-red light, nitrate reductase activity increased by 258% after 18 h. When leaves were kept in distilled water during exposure to red light and then transferred to potassium nitrate, there was no difference in endogenous nitrate concentration. The nitrate reductase activity was the same whether leaves were floated in potassium nitrate or in distilled water during irradiation. Partial to complete inhibition of enzyme activity was observed when leaves were incubated in actinomycin-D and cycloheximide respectively, following 4 h of red light irradiation.In vitro irradiation of extract had no significant effect on nitrate reductase activity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号