首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenotypic plasticity and developmental instability in leaf traits are common in oak species but the role of environmental factors is not well understood. To decipher possible correlations between different leaf traits and effects of the position of leaves within the tree canopy, we quantified the plasticity of three leaf traits of 30 trees of Quercus alba L., Quercus palustris Muench and Quercus velutina Lam. We hypothesized that trees could modify the shape of their leaves for better adaptation to the variable microclimate within the canopy. Our results demonstrated that the south and north outer leaves were significantly smaller, more lobed and denser than those situated in the inner canopy. The order of leaves on the branch accounted for the plasticity of leaf traits in Q. alba only. Plasticity of lobing in Q. alba and Q. velutina depended on the height of the trees. We detected fluctuating asymmetry (FA) in all three species, but the source of variation depended on branch position in Q. velutina only. FA was more pronounced in north-facing leaves. Plasticity of the leaf traits ranged from small to medium. Plasticity of leaf area and leaf mass per area (LMA) depended on the branch position. However, the plasticity of lobation was not affected by the location of a branch within the tree canopy. Quercus alba and Q. palustris had similar plastic responses but the plasticity of Q. velutina was significantly smaller. We concluded that individual plants detect and cope with environmental stress through vegetative organ modification.  相似文献   

2.
Woody plants, as sessile and long-lived organisms, are expected to have effective mechanisms for dealing with recurrent environmental stresses. In the present study, we hypothesized that phenotypic plasticity (the ability to express alternative phenotypes) and integration (covariation among functionally related traits) are elicited in plants under stressful wind speed conditions. We investigated the within-crown variation of nine vegetative traits of a tree species (Olea europaea subsp. guanchica) in six populations that represented a gradient of wind speed exposures. Wind-exposed twigs in outer-canopy layers had smaller leaves; thinner, lighter, and shorter internodes; and a larger internode cross-sectional area to leaf area ratio. Comparison between field and greenhouse trials revealed that field differences among populations were mediated by phenotypic plasticity. Outer-canopy twigs expressed plastic responses in populations exposed to high wind speeds, whereas inner-canopy twigs displayed high phenotypic convergence among populations. In addition, phenotypic integration increased with wind exposure (outer canopy > inner canopy > greenhouse) and was consequently affected by canopy openness. We conclude that exposure to wind above a certain speed threshold in this woody species elicits a plastic response that is associated with increased integration among traits and involves mechanical and hydraulic rearrangements in more exposed parts of the trees.  相似文献   

3.
The variation in stomatal activity within the crowns ofAcer campestre, Carpinus betulus andQuercus cerris was measured by vapour exchange porometer on several summer days in an oak-hornbeam forest, in SW Slovakia, Czechoslovakia. Variation resulted from crown position in the forest stand and from leaf position within the canopy. The highest stomatal conductance was in sunlit sun leaves in the upper part of the canopy. Stomatal conductance decreased with increasing depth in the canopy. The steepest decrease was in the upper canopy, in the intermediate zone between fully sunlit and fully shaded leaves, and was caused by the decline in leaf irradiance and in stomatal density. In codominant trees, the conductance in shade leaves at the base of the crown was significantly lower than in the sun leaves at the top of the crown. In a dominant tree,Q. cerris, the differences in stomatal conductance were small and most frequently insignificant. Variation in incident light also determined the diurnal variation of stomatal conductance with respect to crown aspect. Differences between sun leaves on the east and west facing aspects of the overstory crown ofQ. cerris were demonstrated for several days.  相似文献   

4.
Background The spatial arrangement and expression of foliar syndromes within tree crowns can reflect the coupling between crown form and function in a given environment. Isolated trees subjected to high irradiance and concomitant stress may adjust leaf phenotypes to cope with environmental gradients that are heterogeneous in space and time within the tree crown. The distinct expression of leaf phenotypes among crown positions could lead to complementary patterns in light interception at the crown scale.Methods We quantified eight light-related leaf traits across 12 crown positions of ten isolated Olea europaea trees in the field. Specifically, we investigated whether the phenotypic expression of foliar traits differed among crown sectors and layers and five periods of the day from sunrise to sunset. We investigated the consequences in terms of the exposed area of the leaves at the tree scale during a single day.Key Results All traits differed among crown positions except the length-to-width ratio of the leaves. We found a strong complementarity in the patterns of the potential exposed area of the leaves among day periods as a result of a non-random distribution of leaf angles across the crown. Leaf exposure at the outer layer was below 60 % of the displayed surface, reaching maximum interception during morning periods. Daily interception increased towards the inner layer, achieving consecutive maximization from east to west positions within the crown, matching the sun’s trajectory.Conclusions The expression of leaf traits within isolated trees of O. europaea varies continuously through the crown in a gradient of leaf morphotypes and leaf angles depending on the exposure and location of individual leaves. The distribution of light-related traits within the crown and the complementarity in the potential exposure patterns of the leaves during the day challenges the assumption of low trait variability within individuals.  相似文献   

5.
Adaptive plasticity is expected to be important when the grain of environmental variation is encompassed in offspring dispersal distance. We investigated patterns of local adaptation, selection and plasticity in an association of plant morphology with fine-scale habitat shifts from oak canopy understory to adjacent grassland habitat in Claytonia perfoliata. Populations from beneath the canopy of oak trees were >90 % broad leaved and large seeded, while plants from adjacent grassland habitat were >90 % linear-leaved and small seeded. In a 2-year study, we used reciprocal transplants and phenotypic selection analysis to investigate local adaptation, selection, plasticity and maternal effects in this trait-environment association. Transgenerational effects were studied by planting offspring of inbred maternal families grown in both environments across the same environments in the second year. Reciprocal transplants revealed local adaptation to habitat type: broad-leaved forms had higher fitness in oak understory and linear-leaved plants had higher fitness in open grassland habitat. Phenotypic selection analyses indicated selection for narrower leaves and lower SLA in open habitat, and selection for broad leaves and intermediate values of SLA in understory. Both plant morphs exhibited plastic responses in traits in the same direction as selection on traits (narrower leaves and lower SLA in open habitat) suggesting that plasticity is adaptive. We detected an adaptive transgenerational effect in which maternal environment influenced offspring fitness; offspring of grassland-reared plants had higher fitness than understory-reared plants when grown in grassland. We did not detect costs of plasticity, but did find a positive association between leaf shape plasticity and fitness in linear-leaved plants in grassland habitat. Together, these findings indicate that fixed differences in trait values corresponding to selection across habitat contribute to local adaptation, but that plasticity and maternal environmental effects may be favored through promotion of survival across heterogeneous environments.  相似文献   

6.
The shrub Encelia farinosa (Asteraceae) exhibits geographic variation in aboveground architecture and leaf traits in parallel with environmental variation in temperature and moisture. Measurements of plants occurring across a natural gradient demonstrated that plants in desert populations produce smaller, more pubescent leaves and are more compact and branched than plants in more mesic coastal environments. This phenotypic variation is interpreted in part as adaptive genetic differentiation; small size and pubescence reduce leaf temperature and thus increase water-use efficiency but at the cost of lower photosynthetic rate, which results in slower growth and more compact growth form. We explored the basis of phenotypic variation by planting seed offspring from coastal and desert populations in common gardens in both environments. Phenotypic differences among populations persisted in both common gardens, suggesting a genetic basis for trait variation. Desert offspring outperformed coastal offspring in the desert garden, suggesting superior adaptation to hot, dry conditions. Herbivore damage was greater for all offspring in the coastal garden. Phenotypic characters also showed plastic responses; all offspring had smaller, more pubescent leaves and more compact growth form in the desert garden. Our results confirm that leaf size and pubescence are heritable characters associated with pronounced variation in plant architecture.  相似文献   

7.
冠层位置对5种阔叶树叶片解剖结构与氮含量的影响   总被引:1,自引:0,他引:1  
不同树冠位置的叶片为了达到功能的最大化,形成了不同的结构与功能的特征。然而,在相同的环境条件下,不同树种之间叶片对环境的反应是否存在一致规律,我们仍然缺乏了解。本研究采用石蜡切片和化学分析方法,对东北林区5个常见阔叶树种(蒙古栎、白桦、水曲柳、胡桃楸和黄波罗)不同树冠位置叶片的形态(叶厚度)、解剖(气孔密度、保卫细胞长度、栅栏和海绵组织厚度)和氮(N)含量特征进行了研究。结果表明:叶片的特征在种间和种内不同树冠位置均存在明显差异,并存在较强的规律性。在种内,5个树种的叶片和栅栏组织厚度均是上层外部最大,而保卫细胞和海绵组织的变化不明显,N含量的变异与树种有关。叶片所处的树冠高度和暴露程度对叶片的结构与N含量变异有重要影响。树种之间,蒙古栎的气孔密度最大,叶片厚度和海绵组织厚度最小,保卫细胞最短,黄波罗恰恰相反。结果表明,为了更好地执行整个树冠的功能,不同树种叶片均出现了与冠层位置有关的结构特征适应。  相似文献   

8.
表型可塑性是生物变异中由环境引起的一种变异,是植物适应的一种重要方式。对沙参属这样一个形态上复杂多变、分类上很难处理的类群,研究其表型可塑性不仅为探讨性状变异、判断其系统学意义及选择可靠的分类性状提供了有益的资料,而且有助于揭示沙参属植物变异、适应和进化的机制。本文从泡沙参复合体中选择了6个居群,利用播种和移栽试验,通过对不同个体和居群在一致条件下的表现及野外和移栽后的对比,对根、茎、叶、花和果等形态性状的表型可塑性进行了初步的观测分析。结果表明,一些叶片、花部和果实性状具有较大的发育可塑性,尤其是叶形、花萼裂片不仅发育变化大,而且随发育过程定向变化。环境可塑性较大的性状主要是根、茎、花序分枝等性状,而叶片、花部、果实和种子性状的环境饰变能力都较小。最后,对泡沙参复合体形态性状的变异从发育可塑性和环境可塑性的角度进行了讨论。  相似文献   

9.
Phenotypic plasticity is the environmental modification of genotypic expression and an important means by which individual plants respond to environmental heterogeneity. The study of phenotypic plasticity in the genus Adenophora, which is very complicated taxo nomically because of great morphological variation, proves to be helpful in both investigating the phenotypic variation so as to evaluate potential taxonomic value of their characters and providing important sources of information on the variation, adaptation and evolution of the genus. Twenty-three populations representing all the six species in Adenophora potaninii complex were transplanted into the garden. Of them six populations were selected for study ing their performance in the field and in the garden, in addition to cultivation experiment under different treatments. The results show that there exists considerable developmental plasticity in some leaf, floral and capsule characters. In particular, the leaf shape and length of calyx lobe display significant developmental variation with the maximum being three times as great as the minimum, which is noteworthy because they were previously considered as diagnostic. The characters of root, caudex, stem and inflorescence are found to be very plastic, especially the root diameter, the number of stems, stem height and inflorescence length with great environmental plasticity. In addition, the populations from different habi tats show distinct amounts of plasticity. On the contrary, the characters of leaf, floral, cap sule and seed are less influenced by environments. It seems that the considerable variation in the characters of leaf is attributed mainly to genetic differences. Finally, the phenotypic plasticity of morphological characters of A. potaninii complex and its taxonomic significanceis discussed.  相似文献   

10.
《Journal of bryology》2013,35(2):148-153
Abstract

Phenotypic variation occurs in many populations of plants. When this variation occurs along an environmental gradient, the immediate question is whether the variation is attributed to phenotypic plasticity, ecotypes, or some combination of the two. The moss Syntrichia caninervis appears morphologically variable along an environmental gradient changing rapidly from low light, low temperature, and high moisture levels in the understory microhabitat to high light, high temperature, and low moisture levels in the intershrub microhabitat. We tested for the presence of physiological variation using recovery from a heat-shock event in a mimicked microhabitat light environment, and for morphological variation using a common garden with the ultimate goal of attributing observed variation to plasticity, genetic variation, or a combination. The results suggest that plasticity plays a large role in trait variation. Photosynthetic recovery depended on the current light levels of an environment and not the original microhabitat. The supposed morphological variation in the field was not reflected in the test traits (awn length, leaf area, and shoot volume) and further growth in a common garden continued to show no variation between microhabitats.  相似文献   

11.
Phenotypic plasticity in response to light in the coffee tree   总被引:2,自引:0,他引:2  
Phenotypic plasticity to light availability was examined at the leaf level in field-grown coffee trees (Coffea arabica). This species has been traditionally considered as shade-demanding, although it performs well without shade and even out-yields shaded coffee. Specifically, we focused our attention on the morpho-anatomical plasticity, the balance between light capture and excess light energy dissipation, as well as on physiological traits associated with carbon gain. A wide natural light gradient, i.e., a diurnal intercepted photon irradiance differing by a factor of 25 between the deepest shade leaves and the more exposed leaves in the canopy, was explored. Responses of most traits to light were non-linear, revealing the classic leaf sun vs. leaf shade dichotomy (e.g., compared with sun leaves, shade leaves had a lower stomatal density, a thinner palisade mesophyll, a higher specific leaf area, an improved light capture, a lower respiration rate, a lower light compensating point and a limited capacity for photoprotection). The light-saturated rates of net photosynthesis were higher in sunlit than in shade leaves, although sun leaves were not efficient enough to use the extra light supply. However, sun leaves showed well-developed photoprotection mechanisms in comparison to shade leaves, which proved sufficient for avoiding photoinhibition. Specifically, a higher non-photochemical quenching coefficient was found in parallel to increases in: (i) zeaxanthin pools, (ii) de-epoxidation state of the xanthophyll cycle, and (iii) activities of some antioxidant enzymes. Intracanopy plasticity depended on the suite of traits considered, and was high for some physiological traits associated with photoprotection and maintenance of a positive carbon balance under low light, but low for most morpho-anatomical features. Our data largely explain the successful cultivation of the coffee tree in both exposed and shade environments, although with a poor resource-use efficiency in high light.  相似文献   

12.
杨树新无性系冠层特性及叶片的空间分布   总被引:14,自引:0,他引:14  
对11个5年生黑杨无性系的冠层特性进行了研究,供试无性系的冠层特性不存在显着差异。但在不同层次、不同部位间差异显着。垂直分布上的差异主要体现于叶片大小上,而水平分布的的差异则主要体现于叶片数目上。群体总的冠层分布模式为叶面积从上至下,从内到外逐渐增加。  相似文献   

13.
Ülo Niinemets 《Plant Ecology》1996,124(2):145-153
Variation in leaf size (area per leaf) and leaf dry weight per area (LWA) in relation to species shade- and drought-tolerance, characterised by Ellenberg's light (ELD) and water demand (EWD) values, respectively, were examined in 60 temperate woody taxa at constant relative irradiance. LWA was independent of plant size, but leaf size increased with total plant height at constant ELD. Canopy position also affected leaf morphology: leaves from the upper crown third had higher LWA and were larger than leaves from the lower third. Leaf size and LWA were negatively correlated, and leaf size decreased and LWA increased with decreasing species shade-tolerance. Mean LWA was similar for trees and shrubs, but trees had larger leaves than shrubs. Furthermore, all relationships were altered by plant growth-form: none of the qualitative tendencies was significant for trees. This implies the considerably lower plasticity of foliar parameters in trees than those in shrubs. Accordingly, shade-tolerance of trees, having relatively constant leaf structure, may be most affected by the variability in biomass partitioning and crown geometry which influence foliage distribution and spacing and finally determine canopy light absorptance. Alteration of leaf form and investment pattern for construction of unit foliar surface area which change the efficiency of light interception per unit biomass investment in leaves, is a competitive strategy inherent to shrubs. EWD as well as wood anatomy did not control LWA and leaf size, though there was a trend of ring-porous tree species to be more shade-tolerant than diffuse-porous trees. Since ring-porous species are more vulnerable to cavitation than diffuse-porous species, they may be constrained to environments where irradiances and consequently evaporative demand is lower.  相似文献   

14.
Phenotypic plasticity allows plants to cope with environmental heterogeneity. Environmental variation among populations may select for differentiation in plasticity. To test this idea, we used the annual plant Geranium carolinianum, which inhabits old fields that are densely vegetated and lack canopy cover and wood margins with tree shade but less neighbor shade. Individuals from three populations of each habitat were planted in natural low and high light environments, and morphological traits important for light acquisition were measured. Old-field plants were more plastic, with greater elongation of petioles and internodes in low light than those from wood margins. This larger shade avoidance response suggests evolution of greater plasticity to neighbor shade than to the tree canopy. Fitness of old-field plants was high across both light environments, whereas fitness of wood-margin plants was reduced in low light. Selection favored longer internodes in low than high light. Finally, plasticity for internode length was negatively associated with fitness in high light, suggesting a cost of plasticity for this trait. Together these results indicate that shade-avoidance plasticity of petiole and internode length is adaptive. However, greater elongation of internode length may be constrained by the cost of plasticity expressed in high light. The evolution of plasticity appears to reflect a balance between its adaptive nature and its cost to fitness.  相似文献   

15.
Plant populations may show differentiation in phenotypic plasticity, and theory predicts that greater levels of environmental heterogeneity should select for higher magnitudes of phenotypic plasticity. We evaluated phenotypic responses to reduced soil moisture in plants of Convolvulus chilensis grown in a greenhouse from seeds collected in three natural populations that differ in environmental heterogeneity (precipitation regime). Among several morphological and ecophysiological traits evaluated, only four traits showed differentiation among populations in plasticity to soil moisture: leaf area, leaf shape, leaf area ratio (LAR), and foliar trichome density. In all of these traits plasticity to drought was greatest in plants from the population with the highest interannual variation in precipitation. We further tested the adaptive nature of these plastic responses by evaluating the relationship between phenotypic traits and total biomass, as a proxy for plant fitness, in the low water environment. Foliar trichome density appears to be the only trait that shows adaptive patterns of plasticity to drought. Plants from populations showing plasticity had higher trichome density when growing in soils with reduced moisture, and foliar trichome density was positively associated with total biomass. Co-ordinating editor: F. Stuefer  相似文献   

16.
为深入了解树冠位置对植物叶形态性状的影响,在常绿乔木香樟树冠上下2层和东南西北4个方位开展调查取样,系统分析了不同树冠位置间叶形态性状(叶长、叶宽、叶厚、叶柄长、叶柄直径和叶形指数)及其异速生长关系的差异性。结果表明,叶形态性状在不同树冠方位间均差异显著,但上下2层变化趋势不完全一致。在树冠上层,除叶形指数和叶炳长外,其余4个性状均表现为东侧最大。在树冠下层,除叶形指数外,其余5个性状指标均表现为东侧最小。在同一方位上,叶形态性状在上下2层间也存在一定差异,其中叶形指数多为下层高于上层,而其他形态性状多呈相反趋势。此外,树冠层次和方位的交互作用对叶片长、叶片厚、叶柄长和叶柄直径有显著影响。各层次和各方位叶形态性状间多为异速生长关系(即异速生长指数不等于1),且多无显著差异。在所有树冠层次和树冠方位,叶宽与叶厚、叶宽与叶炳长、叶长与叶厚及叶长与叶柄长之间均呈异速生长关系。可见,树冠位置对香樟叶形态性状的影响较大,但形态性状间的异速生长关系相对稳定,这是香樟叶形态性状表型可塑性和内在关系稳定性的重要体现。  相似文献   

17.
Measurements of light variation among leaves within crowns of five Piper species were compared with estimates of spatial variation in light within understory, forest edge, and clearing habitats to estimate the extent to which crown structure contributes to variation in leaf light environment. Daily photon flux density (PFD) varied greatly within and among crowns. Coefficients of variation for daily PFD among sensors within a single crown ranged from 26 to 79%. Within a single crown located in a clearing, the range in daily PFD among leaves was nearly as great as the range over the entire sample of plants. In the understory, localized sunfleck activity contributed to a high degree of spatial variation in instantaneous and total PFD among leaves within individual crowns. Much of the microsite variation in sunfleck activity, however, reflected environmental conditions within the understory habitat. Within an array of sensors placed next to Piper crowns in the understory, correlations were poor for light sensors spaced only 0.2 m apart, and only 8% of the variance in light readings was explained by measurements made 0.5 m away. In the clearing habitats, microsite heterogeneity among leaves was more strongly influenced by leaf positions within crowns and leaf angles than by spatial heterogeneity within the habitat.  相似文献   

18.
Phenotypic plasticity is central to the persistence of populations and a key element in the evolution of species and ecological interactions, but its mechanistic basis is poorly understood. This article examines the hypothesis that epigenetic variation caused by changes in DNA methylation are related to phenotypic plasticity in a heterophyllous tree producing two contrasting leaf types. The relationship between mammalian browsing and the production of prickly leaves was studied in a population of Ilex aquifolium (Aquifoliaceae). DNA methylation profiles of contiguous prickly and nonprickly leaves on heterophyllous branchlets were compared using a methylation‐sensitive amplified polymorphism (MSAP) method. Browsing and the production of prickly leaves were correlated across trees. Within heterophyllous branchlets, pairs of contiguous prickly and nonprickly leaves differed in genome‐wide DNA methylation. The mean per‐marker probability of methylation declined significantly from nonprickly to prickly leaves. Methylation differences between leaf types did not occur randomly across the genome, but affected predominantly certain specific markers. The results of this study, although correlative in nature, support the emerging three‐way link between herbivory, phenotypic plasticity and epigenetic changes in plants, and also contribute to the crystallization of the consensus that epigenetic variation can complement genetic variation as a source of phenotypic variation in natural plant populations. © 2012 The Linnean Society of London  相似文献   

19.
BACKGROUND AND AIMS: Growth in trunk height in canopy openings is important for saplings. How saplings increase height growth in canopy openings may relate to crown architectural constraints. Responses of crown development to canopy openings in relation to trunk height growth were studied for saplings (0.2-2.5 m tall) of eight tropical submontane forest tree species in Indonesia. The results of this study were also compared with those of temperate trees in northern Japan. METHODS: The crown architecture differed among the eight tropical species, i.e. they had sparsely to highly developed branching structures. Crown allometry was compared among the eight species in each canopy condition (closed canopy or canopy openings), and between closed canopy and canopy openings within a species. A general linear regression model was used to analyse how each species increases height growth rate in canopy openings. Crown allometry and its plasticity were compared between tropical and temperate trees by a nested analysis of covariance. KEY RESULTS: Tropical submontane trees had responses similar to cool-temperate trees, showing an increase in height in canopy openings, i.e. taller saplings of sparsely branched species increase height growth rates by increasing the sapling leaf area. Cool-temperate trees have a wider crown projection area and a smaller leaf area per crown projection area to avoid self-shading within a crown compared with tropical submontane trees. Plasticity of the crown projection area is greater in cool-temperate trees than in tropical submontane trees, probably because of the difference in leaf longevity. CONCLUSIONS: This study concluded that interspecific variation in the responses of crown development to canopy openings in regard to increasing height related to the species' branching structure, and that different life-forms, such as evergreen and deciduous trees, had different crown allometry and plasticity.  相似文献   

20.
Leaf cytokinins (CKs) were profiled within four locations throughout the inner and outer layers of a mature sugar maple (Acer saccharum) canopy. Leaf CK was associated with leaf gas exchange activity and some corresponding microclimate variables. Both inner and outer layers in the upper canopy had higher concentrations of leaf CKs than the lower canopy layers and the difference was comprised primarily by riboside forms of CK. Transpiration (E) showed a similar pattern to leaf CK content, with significantly higher rates in the upper canopy. There was, however, no clear pattern discernable in stomatal conductance (gs), other than it tended to be higher in the outer canopy layers. The upper/outer canopy showed a significantly different environment than all other canopy positions with higher photosynthetically active radiation (PAR), ultra-violet light (UV-B) and leaf temperature. Simple linear regression analysis showed that the nucleotide CK group (including iPNT, cis- and trans-[9RMP]Z, [9RMP]DZ) was positively related to PAR. Exogenous applications of benzylaminopurine (BAP), showed that low concentrations of BAP reduced E and g s, and indicated that CK may help regulate stomatal aperture. The similar patterns in E and CK content suggest that CKs and leaf gas exchange are functionally connected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号