首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hamster cell line CLAC1 originated from a tumor induced by injecting human adenovirus type 12 (Ad12) into newborn hamsters. Each cell contained about 12 copies of viral DNA colinearly integrated at two or three different sites. We have cloned and sequenced a DNA fragment comprising the site of junction between the left terminus of Ad12 DNA and cellular DNA. The first 174 nucleotides of Ad12 DNA were deleted at the site of junction. Within 40 nucleotides, there were one tri-, two tetra-, one penta-, and one heptanucleotide which were identical in the 174 deleted viral nucleotides and the cellular sequence replacing them. In addition, there were patch-type homologies ranging from octa- to decanucleotides between viral and cellular sequences. There is no evidence for a model assuming adenovirus DNA to integrate at identical cellular sites. The cellular DNA sequence corresponding to the junction fragment was cloned also from BHK21 (B3) hamster cells and sequenced. Up to the site of linkage with viral DNA, this middle repetitive cellular DNA sequence was almost identical with the equivalent sequence from CLAC1 hamster cells. Taken together with the results of previously published analyses (11, 12), the data suggest a model of viral (foreign) DNA integration by multiple short sequence homologies. Multiple sets of short patch homologies might be recognized as patterns in independent integration events. The model also accounts for the loss of terminal viral DNA sequences.  相似文献   

2.
The hamster cell line HE5 has been derived from primary hamster embryo cells by transformation with human adenovirus type 2 (Ad2). Each cell contains 2-3 copies of Ad2 DNA inserted into host DNA at apparently identical sites. The site of the junction between the right terminus of Ad2 DNA and hamster cell DNA was cloned and sequenced. The eight [corrected] right terminal nucleotides of Ad2 DNA were deleted. The unoccupied cellular DNA sequence in cell line HE5 , corresponding to the site of the junction between Ad2 and hamster cell DNA, was also cloned; 120-130 nucleotides in the cellular DNA were found to be identical to the cellular DNA sequence in the cloned junction DNA fragment, up to the site of the junction. The unoccupied and the occupied cellular DNAs and the adjacent viral DNA exhibited a few short nucleotide homologies. Patch homologies ranging in length from dodeca - to octanucleotides were detected by computer analyses at locations more remote from the junction site. When the right terminal nucleotide sequence of Ad2 DNA was matched to randomly selected sequences of 401 nucleotides from vertebrate or prokaryotic DNA, similar homologies were observed. It is likely that foreign (viral) DNA can be inserted via short sequence homologies at many different sites of cellular DNA.  相似文献   

3.
The adenovirus type 12 (Ad12)-induced mouse tumor CBA-12-1-T contains greater than 30 copies of viral DNA integrated into cellular DNA. One of the sites of linkage between the left terminus of Ad12 DNA and mouse DNA was cloned, mapped and sequenced by using conventional techniques. The preinsertion sequence was also cloned from normal CBA/J mouse DNA and sequenced. The sequence data and blotting analyses demonstrated that at the site of linkage nine nucleotide pairs of viral DNA and at least 1500 to 1600 nucleotide pairs of cellular DNA were deleted. Up to the site of linkage, the cellular DNA sequence in CBA-12-1-T tumor DNA and the preinsertion sequence in CBA/J mouse cells were identical. The site of Ad12 DNA integration was found to be located close to a site of transition from unique to repetitive cellular DNA sequences. The nucleotide sequence at the site of linkage and at the preinsertion site revealed palindromic stretches of 5 and 10 nucleotides pairs, respectively. Scattered patch homologies (8-10 nucleotide pairs long) were observed between adenoviral and cellular DNAs. A hypothetical model for DNA arrangements at the site of recombination is presented.  相似文献   

4.
5.
6.
Hamster cell line HE5 has been established from primary LSH hamster embryo cells by transformation with adenovirus type 2 (Ad2) (1). Each cell contains two to three copies of integrated Ad2 DNA (2, 3). We cloned and sequenced the sites of junction between viral and cellular DNAs. The terminal 10 and 8 nucleotides of Ad2 DNA were deleted at the left and right sites of junction, respectively. The integrated viral DNA had an internal deletion between map units 35 and 82 on the Ad2 genome. At the internal site of deletion, the remaining viral sequences were linked via a GT dinucleotide of unknown origin. From HE5 DNA, the unoccupied sequence corresponding to the site of insertion was also cloned and sequenced. Part of this sequence was shown to be expressed as cytoplasmic RNA in HE5 and primary LSH hamster embryo cells. The viral DNA had been inserted into cellular DNA without deletions, rearrangements or duplications of cellular nucleotides at the site of insertion. Thus, insertion of Ad2 DNA appeared to have been effected by a mechanism different from that of bacteriophage lambda in Escherichia coli and from that of retroviral genomes in vertebrates. It was conceivable that the terminal viral protein (4) was somehow involved in integration either on a linear or a circularized viral DNA molecule.  相似文献   

7.
R Gahlmann  M Schulz    W Doefler 《The EMBO journal》1984,3(13):3263-3269
The adenovirus type 2 (Ad2)-transformed hamster cell line HE5 contains one or very few integrated copies of Ad2 DNA. At the site of insertion of Ad2 DNA, the cellular DNA sequence has been completely preserved and has homologies to small unpolyadenylated, cytoplasmic RNAs of 300 nucleotides in length and to minority populations of smaller RNAs present in HE5 cells and in normal hamster cells. The 300-nucleotide RNA is present on average in approximately 20 copies per cell. This RNA, and shorter RNAs, reveal homologies to the hamster DNA sequence of approximately 400 nucleotides to the right of the site of insertion of Ad2 DNA, which is present in one or very few copies per genome. The nucleotide sequence of the DNA segment homologous to this RNA does not contain open reading frames in excess of a sequence encoding 18 amino acids. Thus, it is unlikely that the small RNAs are actually translated and their function is unknown. The nucleotide sequence does not exhibit similarities to known low mol. wt. RNAs of eukaryotic origin. The low mol. wt. cellular RNA has been found in HE5 cells, in other hamster cell lines and organs, and also in mouse cells. There are differences with respect to size and abundance in the RNAs smaller than 300 nucleotides between HE5 cells and LSH hamster embryo cells. The adenovirus type 12 (Ad12)-induced mouse tumor CBA-12-1-T carries greater than 30 copies of integrated Ad12 DNA. The cellular DNA sequence at the site of Ad12 DNA insertion exhibits homologies to small RNAs (approximately 300 nucleotides long) from mouse cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The adenovirus type 12 (Ad12) early region 1 (E1) gene was introduced into KB cells by using a dominant selection vector, pSV2-gpt, and over 80 Gpt+ KB cell clones were established. Three types of recombinant DNAs (gAE1A, gARC, and gABA) were constructed. They contained the AccI-H, EcoRI-C, and BamHI-A fragments, respectively, of Ad12 DNA in pSV2-gpt. Five of 50 (10%) gABA-transformed cell clones, 12 of 18 (67%) gAE1A-transformed cell clones, and 10 of 18 (56%) gARC-transformed cell clones complemented the growth of Ad5 dl312 (deletion in E1A) and were designated as Gpt+ Ad+ cell clones. In these cell clones at their early passages, recombinant genome sequences were detected in cellular DNA and were expressed. T antigen g (the E1A gene product) was detected by immunofluorescence. The Gpt+ Ad+ cell clones supported the growth of Ad5 deletion mutants in parallel with the expression of Ad12 E1A or E1A plus E1B genes. After infection of Gpt+ Ad+ cell clones with Ad5 dl312, the early genes of dl312 were efficiently transcribed, indicating the expression of the pre-early function of the Ad12 E1A gene. Two clones each from gAE1A-,gARC-, and gABA-transformed cells were subcultured for a long period to determine the stability of the transfecting DNAs. Subculture in a nonselective medium resulted in cells which lost the transfecting DNAs. Subculture in a selective medium resulted in the selection of cells which maintained the gpt gene expression but lost the Ad12 gene expression. These results indicate that the transfecting DNA is present in an unstable state in KB cells.  相似文献   

9.
Human fibroblasts transformed with an adenovirus-5/simian virus 40 recombinant construct (Ad5/SV40) were analyzed to determine the chromosomal site(s) of virus integration. This was firstly done by in situ hybridization using metaphase and prometaphase chromosomes and 125I-labeled Ad5 DNA. Out of seven transformed cell lines (six of clonal origin and one uncloned), six were proven to have integrated the viral genome at the short- or the long-subtelomeric regions of autosome 1, two regions known to include chromosomal modification sites induced by acute infection with Ad12. Characterization of the integration sites was carried out by restriction analysis. Transformed cell lines with the same major chromosomal integration site were found to have the viral genome inserted in restriction fragments of different size, indicating that viral integration has occurred at different sites within a relatively small chromosomal region. Molecular studies carried out on one of the transformed cell lines (H13.1) gave an independent confirmation of the viral integration at the subterminal region of autosome 1 short arm. Nucleotide sequencing at this cellular-viral junction has shown that the virus has integrated within tandemly repeated Alu-like elements and that the cellular flanking sequences have several homologies with variable number of tandem repeats core sequences. Many possible open reading frames were identified in the DNA segment adjacent to the Alu-like elements.  相似文献   

10.
The patterns of integration of adenovirus type 12 (Ad12) DNA in 39 virus-induced hamster tumors were determined. Both the amount of Ad12 DNA persisting and the apparent sites of insertion differed from tumor to tumor. In 30 tumors, the intact Ad12 genome persisted in colinear arrangement and in multiple copies. In nine tumors, only the left- or the left- and right-hand parts of the Ad12 genome persisted in the tumor cells. In three other cell lines the Ad12 genomes were lost completely during continuous passage in culture. A shift from epithelioid to fibroblastic morphology correlated with loss of Adl2 genomes. The cell line H1111(1) derived from an Ad12-induced tumor had lost all viral DNA by the thirteenth subpassage, but was still oncogenic when reinjected into animals. This finding raises the question, to what extent persistence of the Ad12 genome is essential for the oncogenic phenotype. Tumor cells could be detected histologically inside local lymphatic vessels. In those experiments in which Ad12 preparations were used which contained sizeable proportions of the symmetric recombinant between Ad12 and KB cellular DNA (Deuring et al., 1981), tumors were observed in the nuchal region of the animals.  相似文献   

11.
We have previously described a cell-free recombination system derived from hamster cell nuclear extracts in which the in vitro recombination between a hamster preinsertion sequence, the cloned 1768 base-pair p7 fragment, and adenovirus type 12 (Ad12) DNA has been demonstrated. The nuclear extracts have now been subfractionated by gel filtration on a Sephacryl S-300 column. The activity promoting cell-free recombination elutes from the Sephacryl S-300 matrix with the shoulder and not the peak fractions of the absorbancy profile. By using these protein subfractions, in vitro recombinants have been generated between the p7 preinsertion sequence and the 60 to 70 map unit fragment of Ad12 DNA, which has previously shown high recombination frequency. In all of the analyzed recombinants thus produced in vitro, striking patchy homologies have been observed between the p7 and Ad12 junction sequences, and between Ad12 DNA or p7 DNA and pBR322 DNA. The patchy homologies are similar to those found earlier during the analyses of some of the junction sequences in integrated Ad12 genomes in Ad12-induced hamster tumor cell lines. Proteins in the shoulder fractions of the gel-filtration experiment can form specific complexes with double-stranded synthetic oligodeoxyribonucleotides corresponding to several p7 and Ad12 DNA sequences. These sequences participate in the recombination reactions catalyzed by the same column fractions in the shoulder of the absorbancy profile. Such proteins have not been found in the peak fractions. Further work will be required to ascertain that the cell-free recombination system mimics certain elements of the mechanisms of integrative recombination and to purify the cellular components essential for recombination.  相似文献   

12.
The insertion stability and DNA methylation patterns of integrated adenovirus type 12 (Ad12) genomes were investigated in Ad12-induced tumors and in tumor cell lines established from them as a function of time of passage under culture conditions. Upon subcultivation of cells from some of the tumors, the viral genomes were eliminated, apparently in a stepwise process with segments of the left termini of Ad12 DNAs persisting the longest. Morphological variants of these tumor cells lost all viral DNA and yet retained the oncogenic phenotype. All 13 independently isolated clones from one revertant line were devoid of Ad12 DNA. It could not be ruled out that very short sequence elements of viral DNA, such as promoters or enhancing sequences, could have persisted in these variants. The extent of viral DNA methylation was minimal in Ad12-induced tumors, although the viral genome was not extensively expressed, if at all. Upon passage in culture, the levels of viral DNA methylation increased. It was interesting that establishment of the final methylation pattern of integrated Ad12 DNAs required many cell generations after the fixation of foreign DNA in the host genome. The shift in methylation was nonrandom. The late parts of the inserted viral genomes became methylated more extensively than did the early gene segments.  相似文献   

13.
14.
A nondefective recombinant between adenovirus type 5 (Ad5) and type 12 (Ad12), rc-1 (Ad5 dl312, carrying the Ad12 E1A gene), was isolated from hamster cell foci transformed by a defective recombinant, rcB-1 (dl312, carrying the Ad12 E1 gene). The recombinant rc-1 grew in human embryo kidney and KB cells in the absence of helper and synthesized Ad12 T antigen g, the product of the E1A gene. The genome of rc-1 has a deletion between 79.9 and 82.5 map units of Ad5 dl312 DNA with an insertion of 0.1 to 5.5 map units of Ad12 DNA at the deletion site. The mRNAs of Ad12 E1A were transcribed from the Ad12 E1A promoter, and unusual RNAs were abundantly transcribed from the Ad5 E3 promoter on the opposite strand. The frequency of cell transformation with rc-1 was lower than those with Ad5 and Ad12 wild types.  相似文献   

15.
16.
J Hotta  L Shi    H S Ginsberg 《Journal of virology》1994,68(11):7284-7291
The gene encoding the CD4 receptor was introduced into KB cells to establish the KBT4 cell line, a cell line susceptible to infection with human immunodeficiency virus type 1. Adenovirus replication was found to be significantly less in these cells than in the parental KB cells. Similar decreased adenovirus type 5 (Ad5) replication occurred in HeLaT4 cells compared with the original HeLa cells. The presence of CD4 did not alter the cell surface population of KB cell adenovirus receptors, since viral adsorption was similar in the two cell lines. Moreover, addition of soluble CD4 did not reduce viral replication in either KB or KBT4 infected cells. Uncoating of viral DNA was also unchanged in KBT4 cells compared with the parental KB cells. In contrast, migration to or entrance of viral DNA into nuclei and synthesis of early viral RNAs was delayed and reduced in KBT4 cells. These effects were more pronounced for Ad7 than for Ad5. The yields of infectious viruses were the same in both cell lines, however, after transfection of naked viral DNAs to initiate infection. These results imply that the expression of the CD4 gene in KBT4 cells interfered with passage of uncoated virus across endosomal vesicles and/or transfer of uncoated core viral DNA into the nucleus.  相似文献   

17.
A DNA segment carrying viral DNA was cloned from a rat cell line transformed by the cloned EcoRI-C fragment (0 to 16.4 map units) of human adenovirus type 12(Ad12), and the viral sequence in the clone was analysed. The cloned segment contained the region from nucleotide positions 118 to 3520 of the Ad12 genome in the middle. No unique structure was found at the viral and non-viral DNA junctions. When examined the transforming activity, the conserved viral sequence was able to transform rat 3Y1 cells efficiently. Southern blotting analysis of the viral sequence in five re-transformed cell lines showed that the viral sequence was inserted at different sites of cellular DNA. These results indicate that (I) the Ad12 DNA moiety from the enhancer-promoter region of the E1A gene to the end of the E1B gene contains enough information for efficient transformation of the rat cell, and (II) integration of the viral sequence at unique cellular sites is not prerequisite for transformation.  相似文献   

18.
A fraction with the ability to bind the terminal fragment of equine adenovirus (EAd) DNA was prepared from MDBK cell nuclei. The fraction (MDBK nuclear factor) bound to the terminal fragment of all human and animal adenovirus DNAs examined except avian adenovirus EDS-76. However, the terminal fragments of two animal adenoviruses, EAd and bovine adenovirus type 3 (BAd3), showed higher affinity for the nuclear factor than the others. The MDBK nuclear factor-binding site determined by footprinting analysis was the sequence located between nucleotides 22 and 46 in EAd, between 36 and 53 in canine adenovirus type 2, and between 20 and 46 in BAd3, counting from the terminus. The respective binding site contained a sequence resembling the consensus sequence. The binding site of Ad4 DNA was not within the inverted terminal repetition, but was located at least 550 base pairs apart from the terminus.  相似文献   

19.
Three species of unintegrated viral DNAs were found in permissive cells infected with baboon type C virus. The major species was a 9.0-kilobase (kb) linear DNA that was infectious. A restriction endonuclease map of this DNA was constructed and oriented with respect to the viral RNA. The linear DNA had a 0.6-kb sequence repeated at each terminus. These terminal repeat sequences were required for infectivity of the viral DNA. The minor species of the unintegrated viral DNAs were covalently closed circles of 9.0 and 8.4 kb. The smaller circle was in two- to threefold excess over the larger circle. The difference appeared to be that the smaller circle lacked one of the two 0.6-kb repeat sequences found in the larger circle. Restriction endonuclease maps of the integrated viral DNAs were constructed, and the sequences on both viral DNA and cellular DNA that are involved in integration were determined. The integrated viral DNA map was identical to that of the unintegrated infectious 9.0-kb linear DNA. Therefore, a specific site in the terminal repeat sequence of the viral DNA was used to integrate with the host cell DNA. The sizes of the cellular DNA fragments were different from clone to clone but stable with cell passage. Therefore, many sites in the cell DNA can recombine with the viral DNA.  相似文献   

20.
Template requirements for in vivo replication of adenovirus DNA.   总被引:3,自引:1,他引:2       下载免费PDF全文
The adenovirus (Ad) DNA origin of replication was defined through an analysis of the DNA sequences necessary for the replication of plasmid DNAs with purified viral and cellular proteins. Results from several laboratories have shown that the origin consists of two functionally distinct domains: a 10-base-pair sequence present in the inverted terminal repetition (ITR) of all human serotypes and an adjacent sequence constituting the binding site for a cellular protein, nuclear factor I. To determine whether the same nucleotide sequences are necessary for origin function in vivo, we developed an assay for the replication of plasmid DNAs transfected into Ad5-infected cells. The assay is similar to that described by Hay et al. (J. Mol. Biol. 175:493-510, 1984). With this assay, plasmid DNA replication is dependent upon prior infection of cells with virus and only occurs with linear DNA molecules containing viral terminal sequences at each end. Replicated DNA is resistant to digestion with lambda-exonuclease, suggesting that a protein is covalently bound at both termini. A plasmid containing only the first 67 base pairs of the Ad2 ITR replicates as well as plasmids containing the entire ITR. Deletions or point mutations which reduce the binding of nuclear factor I to DNA in vitro reduce the efficiency of plasmid replication in vivo. A point mutation within the 10-base-pair conserved sequence has a similar effect upon replication. These results suggest that the two sequence domains of the Ad origin identified by in vitro studies are in fact important for viral DNA replication in infected cells. In addition, we found that two separate point mutations which lie outside these two sequence domains, and which have little or no effect upon DNA replication in vitro, also reduce the apparent efficiency of plasmid replication in vivo. Thus, there may be elements of the Ad DNA origin of replication which have not yet been identified by in vitro studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号