首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Zebra mussel filtration rates and regulating factors have been addressed earlier in a number of studies. Still, only a few of them have taken into consideration the refiltration phenomenon, and therefore the direct extrapolation of experimental results may only give the potential filtering capacity, and hence, over- or underestimate the actual amount of seston being removed by zebra mussels in an ecosystem. The current experimental study aimed to gain insight into the refiltration effect on the clearance rate of the zebra mussels at relatively high seston concentrations, and its potential role in controlling the filtration efficiency of the zebra mussel population. The experiment was conducted in a laboratory flume following the Latin squares design with one fixed (mussel density) and three random factors (initial total particulate matter (TPM) concentration, flume “wall effect” and distance from the flume inflow area) considered. The results showed the significant effects of mussel density and the TPM concentration on the effective clearance rate (ECR) of zebra mussels. The higher ECR values were obtained at denser mussel clumps and lower TPM concentrations. The flume “wall effect” had no significant effect on the ECR, whereas the distance from the flume inflow area appeared to have a significant impact. A positive relationship between ECR and the zebra mussel density was most evident in the proximity of the TPM source. Based on the results, we assume that at high TPM concentration, refiltration may assert itself by the elevated net clearance rate of mussels within dense clumps compared to that of mussels at relatively low individual densities. This should be taken into consideration while modelling and assessing the role of the zebra mussel in energy flow and redistribution of organic matter in an ecosystem.  相似文献   

2.
1. Selective grazing of adults and larvae of the zebra mussel (Dreissena polymorpha) on phytoplankton and detritus from both laboratory cultures and natural seston was quantified using flow cytometry. 2. Mean clearance rate of adult zebra mussels was higher on a mixture of the green alga Scenedesmus and the cyanobacterium Microcystis than when Scenedesmus was offered as single food, suggesting selective feeding by the mussels. 3. Feeding on lake seston both adults and larvae showed a higher clearance rate on phytoplankton than on detritus particles, suggesting that zebra mussels select for phytoplankton. Furthermore, it was noted that adults preferred seston particles in the 0–1 and 30–100 μm size ranges. 4. In our study, zebra mussels did not discriminate against cyanobacteria, and our results indicate that they may even ingest them preferentially.  相似文献   

3.
Biomanipulation measures in lakes, taken to diminish algal blooms, have mainly been restricted to the reduction of zooplanktivorous fish with the aim to stimulate the grazing pressure by native filter feeders such as Daphnia. However, larger filter feeders like the exotic zebra mussel, Dreissena polymorpha, have been suggested as an optional tool because of their high filtering capacity. We compared grazing by two filter feeders, D. polymorpha and Daphnia galeata, offered seston from Lake IJsselmeer, the Netherlands in two consecutive years: 2002 and 2003. The seston in both years was dominated by the colony-forming cyanobacterium Microcystis aeruginosa. The grazing studies were performed under controlled conditions in the laboratory and samples were analyzed on a flow cytometer, making it possible to quantify grazing on different seston components and size fractions, including cyanobacteria, other phytoplankton (green algae, diatoms, etc.), and detritus. No differences in clearance rates, on a per weight basis, were found between the two grazer species. The clearance rate on cyanobacteria (especially <20 μm) was lower in 2003 than in 2002. In 2003, the microcystin concentration of cyanobacteria was higher than in 2002, suggesting that the observed lower clearance rate in 2003 was due to the enhanced toxin content of the cyanobacteria. Zebra mussels, although indiscriminately filtering all seston groups out of the water, positively selected for phytoplankton in their mantle cavity, irrespective of its toxicity, and rejected detritus. Since no differences in clearance rates were found between the two grazer species, we conclude that for biomanipulation purposes of shallow lakes, native species like the daphnids should be preferred over exotic species like zebra mussels. When the seston is dominated by phytoplankton that cannot be filtered out of the water column by Daphnia, however, the use of zebra mussels may be considered. Care should be taken, however, in the choice of the lakes since the mussels may have severe ecological and economic impacts.  相似文献   

4.
Suppression of microzooplankton by zebra mussels: importance of mussel size   总被引:3,自引:0,他引:3  
1. The zebra mussel (Dreissena polymorpha) is amongst the most recent species to invade the Great Lakes. We explored the suppressive capabilities of mussels 6–22-mm in size on Lake St Clair microzooplankton (< 240)μm) in laboratory experiments. 2. Absolute suppression of rotifers and Dreissena veliger larvae was proportional to mussel shell length for individuals larger than 10 mm; larger zooplankton, mainly copepod nauplii and Cladocera, were not affected. Mussel clearance rates on rotifers generally exceeded those on veligers, although rates for both increased with increasing mussel size. Rotifer-based clearance rates of large (22 mm) mussels approached published values for phytoplankton food. 3. Most zooplankton taxa, particularly rotifers, declined significantly in western Lake Erie during the late 1980s concomitant with the establishment and population growth of zebra mussels in the basin. Densities of some taxa subsequently increased, although rotifers and copepod nauplii densities remained suppressed through 1993. Available evidence indicates that direct suppression by Dreissena coupled with food limitation provides the most parsimonious explanation for these patterns.  相似文献   

5.
Nonindigenous species may exert strong effects on ecosystem structure and function. The zebra mussel (Dreissena polymorpha) has been attributed with profound changes in invaded ecosystems across eastern North America. We explored vertical profiles of water flow velocity and chlorophyll a concentration in western Lake Erie, over rocky substrates encrusted with Dreissena, to assess the extent to which mussels influence coupling between benthic and pelagic regions of the lake. Flow velocity was always low at surveyed sites (less than or equal to 2.9 cm s-1) and declined in direct proximity to the lakebed. Mean chlorophyll a concentration was also low (less than 5μg L-1) at all sites and depths. Chlorophyll a concentration was positively correlated with distance above lakebed and was lowest (0.3μg L-1) directly adjacent to the lakebed. Spatial patterns of zooplankton grazers could not explain observed vertical gradients in chlorophyll concentration. Hydrodynamic modeling revealed that filtering effects of Dreissena in a nonstratified, shallow basin depend mainly on upstream chlorophyll concentration, intensity of turbulent diffusion, feeding efficiency of the mussel colony, and the distance downstream from the leading edge of the mussel colony. In contrast to widespread perceptions that molluscs reduce phytoplankton concentration only adjacent to the lakebed, modeling scenarios indicated that depletion occurs throughout the water column. Depletion was, however, inversely proportional to distance above the lakebed. Simulation results are consistent with field-based observations made in shallow water habitats populated by large Dreissena populations in the Great Lakes and elsewhere. Results from this study indicate that zebra mussels strongly enhance coupling between pelagic and benthic regions in shallow lakes. Enhanced coupling between these regions explains, in part, high population densities of Dreissena and of many benthic invertebrates in ecosystems invaded by zebra mussels. Received 14 July 1998; accepted 25 March 1999.  相似文献   

6.
Feeding processes and energetic balance of zebra mussels were both related to the quantity and quality of natural seston. Filtration rate and pseudofeces production increased while clearance rate remained constant with increasing seston concentration. Ingestion rate, assimilation efficiency, and assimilation rate all increased with increasing food quality, measured as the ratio of organic to inorganic material in the seston. Respiration rate did not change with either food quantity or quality. As a result, scope for growth declined with decreasing food quality, and fell below 0 cal mg−1 h−1 at an organic:inorganic ratio of 0.5. The association between feeding processes and food quality appears related to a breakdown in the ability of zebra mussels to selectively ingest high-quality organic particles when the organic content of the seston is low. Ingestion, assimilation efficiency, assimilation rate and scope for growth were all higher when seston was amended with an addition of a natural assemblage of algae. Food quality may be a better indicator of environmental conditions suitable for growth than food quantity. These results suggest that the conditions of high suspended inorganic sediment concentrations in large turbid rivers represent a difficult growth environment for the zebra mussel. Received: 12 May 1997 / Accepted: 7 July 1998  相似文献   

7.
In order to calibrate carrying capacity models, investigations were conducted into the effects of food concentration and food quality on the feeding rates of small (25–50 mm), medium (60–85 mm) and large (90–115 mm) Greenshell mussels (Perna canaliculus). Experimental diets varying from 3.3 to 6.0 μg l−1 chlorophyll a concentration and 12–25% organic content were fed to mussels housed in individual flow through chambers. Not surprisingly, this study found that the main factor affecting feeding rates is mussel size. Small mussels were observed to maintain a constant filtration rate of approximately 20 mg h−1 irrespective of food concentration or quality, whereas mussels of greater than 60 mm length had more variable filtration rates between 30 and 80 mg h−1. The filtration rates of these large mussels were also observed to increase positively with organic content, and showed no sign of levelling out, even at the highest organic content tested (25%). Highest rejection rates (50–70 mg h−1) were observed when the organic content of the available seston was low, suggesting that P. canaliculus are able to selectively reject organic material, thereby organically enriching their diet. It appears that the organic content of the seston is the primary determinant of the net efficiency with which food is selected from the available seston by the mussel. The present study shows that P. canaliculus of all sizes are capable of adapting their feeding behaviour to compensate for changes in the food supply, which may occur over relatively short time periods, in the culture environment.  相似文献   

8.

Predicting the ecosystem effects of invasive species and the best control strategies requires understanding population dynamics and population regulation. Invasive bivalves zebra and quagga mussels (Dreissena spp.) are considered the most aggressive invaders in freshwaters and have become major drivers of ecosystem processes in the Laurentian Great Lakes. Combining all lake-wide studies of Dreissena spp. conducted in the Great Lakes, we found that invasion dynamics are largely governed by lake morphometry. Where both species are present, quagga mussels generally become dominant in 8–13 years. Thereafter, zebra mussels remain common in shallow lakes and embayments and lake-wide Dreissena density may remain similar, while in deep lakes quagga led to a near-complete displacement of zebra mussels and an ensuing dramatic increase in overall dreissenid density. In deep lakes, overall Dreissena biomass peaked later and achieved?~?threefold higher levels than in shallow lakes. Comparison with 21 waterbodies in North America and Europe colonized by both dreissenids confirmed that patterns of invasion dynamics found in the Great Lakes are very consistent with other waterbodies, and thus can be generalized to other lakes. Our biophysical model predicted that the long-term reduction in primary producers by mussel grazing may be fourfold less in deep compared to shallow lakes due to thermal stratification and a smaller proportion of the epilimnion in contact with the bottom. While this impact remains greatest in shallow areas, we show that when lakes are vertically well-mixed, dreissenid grazing impact may be greatest offshore, revealing a potentially strong offshore carbon and phosphorus sink.

  相似文献   

9.
Summary We assessed the feeding biology of veliger larvae of the introduced zebra mussel (Dreissena polymorpha Pallas) in laboratory experiments using inert microspheres as food analogues. Mean clearance rate on 2.87-m beads ranged between 247 and 420 L veliger–1 day–1. Clearance rate was unrelated to bead concentration up to 100 beads L–1, but was positively correlated with veliger shell length. Clearance rates of Dreissena veligers are within the range of those reported for marine bivalve veligers of similar size and for herbivorous Great Lakes microzooplankton, but are orders of magnitude lower than those of settled, conspecific adults. The impact of settled zebra mussel grazing activities on phytoplankton stocks may be up to 1162 times greater than that exerted by veliger populations in western Lake Erie. Based on 1990 size-frequency distributions and associated literature-derived clearance rates, reef-associated Dreissena populations in western Lake Erie (mean depth 7 m) possess a tremendous potential to filter the water column (up to 132 m3 m–2 day–1) and redirect energy from pelagic to benthic foodwebs. Preliminary analyses indicate that chlorophyll a concentration is strongly depleted (<1 g L–1) above Dreissena beds in western Lake Erie.  相似文献   

10.
The role of the zebra mussel Dreissena polymorpha in redistribution of total particulate material (TPM) between the water column and bottom sediment was estimated using the TPM budget for a mussel bed in the Curonian lagoon, the Baltic Sea. Seasonal clearance rates were derived from the TPM budget assuming two resuspension scenarios: no resuspension and full resuspension of biodeposits. Estimated clearance rates for both scenarios were compared with the rates calculated from the population clearance rate model. Seasonal clearance rates estimated using the population model (1.1 and 11.8 l g−1 SFDW day−1) fitted well into the interval of seasonal clearance rates calculated from TPM budgets assuming no resuspension of biodeposits (3.2 and 21.4 l g SFDW−1 day−1). In the scenario with biodeposits resuspension clearance rates were much higher (57.4 and 148.9 g SFDW−1 day−1). The ratio of clearance to residence time was highly dependent on the fate of biodeposits. Therefore its use in interpretation of the species impact on TPM was limited. An alternative measure based on the ratio of the amount of TPM biodeposited to TPM transported into the bed was used. It was found that zebra mussels are able to deposit between 10 and 30% of the incoming TPM, and the amount of biodeposited material was correlated with water residence time. Results indicate that the impact of zebra mussels on TPM in the lagoon is small relative to the high transport rates of TPM over the bed. However, annual biosedimentation rate (~590 g m−2) in the mussel bed was higher than physical deposition rate (~380 g m−2) in accumulation areas devoid of large suspension feeders. We suggest that a local impact due to enhanced availability of organic material to other trophic groups of associated benthic organisms may be more significant than effects on TPM pathways at an ecosystem scale.  相似文献   

11.
Colony forming and toxic cyanobacteria form a problem in surfacewaters of shallow lakes, both for recreation and wildlife. Zebramussels, Dreissena polymorpha, have been employed to help torestore shallow lakes in the Netherlands, dominated by cyanobacteria,to their former clear state. Zebra mussels have been presentin these lakes since they were created in the 19th century bythe excavation of peat and are usually not considered to bean invasive species. Most grazing experiments using Dreissenahave been performed with uni-cellular phytoplankton laboratorystrains and information on grazing of larger phytoplankton taxahardly exists. To gain more insight in to whether D. polymorphais indeed able to decrease cyanobacteria in the phytoplankton,we therefore performed grazing experiments with zebra musselsand two species of cyanobacteria, that greatly differ in shape:colony forming strains of Microcystis aeruginosa and the filamentousspecies Planktothrix agardhii. For both species a toxic anda non-toxic strain was selected. We found that zebra musselscleared toxic Planktothrix at a higher rate than non-toxic Planktothrix,toxic or non-toxic Microcystis. Clearance rates between theother strains were not significantly different. Both phytoplanktonspecies, regardless of toxicity, size and shape, were foundin equal amounts (based on chlorophyll concentrations) in theexcreted products of the mussels (pseudofaeces). The resultsshow that zebra mussels are capable of removing colonial andfilamentous cyanobacteria from the water, regardless of whetherthe cyanobacteria are toxic or not. This implies that the musselsmay be used as a biofilter for the removal of harmful cyanobacterialblooms in shallow (Dutch) lakes where the mussels are alreadypresent and not a nuisance. Providing more suitable substratefor zebra mussel attachment may lead to appropriate mussel densitiescapable of filtering large quantities of cyanobacteria.  相似文献   

12.
The purpose of this study was to determine how zebra mussels affected cladoceran community structure under eutrophic conditions. We conducted a mesocosm study where we manipulated the presence of zebra mussels and the presence of large-bodied Daphnia (Daphnia magna and Daphnia pulicaria). We also conducted a complimentary life-table experiment to determine how water from the zebra mussel treatment affected the life history characteristics of the cladoceran species. We anticipated that small- and large-bodied cladoceran species would respond differently to changes in algal quality and quantity under the effects of zebra mussels. Large-bodied Daphnia successfully established in the zebra mussel treatment but failed to grow in the control. We did not observe positive relationships between food concentrations and cladoceran abundances. However, the phosphorus content in the seston indicated that food quality was below the threshold level for large-bodied cladocerans at the beginning of the experiment. We believe that zebra mussels quickly enhanced the phosphorus content in the seston due to the excretion of inorganic phosphorus, thus facilitating the development of large-bodied Daphnia. In conclusion, our results suggest that zebra mussels can alter the phosphorus content of seston in lakes and this can affect the dynamics of crustacean zooplankton.  相似文献   

13.
The suspension feeding of Bithynia tentaculata was tested in laboratory experiments. The animals were fed in 1-1 aerated glass beakers, and filtration rates were calculated from changes in cell concentrations during the 6-h experiment. Temperature influenced the filtering rate, with minimum values of 5ml · ind–1 · h–1 at 5° C and maxima of 17.2 ml · ind–1 · h–1 at 18° C. Three food species of different size, motility and cell surface characteristics (Chlamydomonas reinhardii, Chlorella vulgaris and Chlorogonium elongatum) did not affect filtration rates. Suspension feeding increased with increasing food concentrations up to 12 nl · ml–1, above which feeding rate was kept constant by lowering the filtering rates. Even the smallest animals tested (<4 mm body length) were found to be feeding on suspended food at a rate of 2.7 ml · ind–1 · h–1, and increasing rates up to 8.4 ml were found in the 6–7 mm size class. All size classes of Bithynia showed a circannual fluctuation of their filtration rates. The ecological consequences of Bithynia's ability to switch between two feeding modes, grazing and suspension feeding, are discussed.  相似文献   

14.
15.
The Chinese pond mussel (Sinanodonta woodiana Lea, 1834) is a benthic filter-feeder that prefers soft-bottomed freshwater habitats and has successfully spread into both tropical and temperate water bodies outside its natural Southeast Asian range. Due to its preference for nutrient-rich waters with high levels of suspended food particles, the capacity of S. woodiana to influence natural seston concentrations is thought to be relatively low in comparison to that of other invasive bivalves. The experimental quantification of seston removal efficiency reported here demonstrates that S. woodiana is able to reduce seston loads to levels comparable to those by the control native freshwater mussel species Unio tumidus Philipsson, 1788. Moreover, increasing food depletion did not cause detectable changes in the filtration regime of S. woodiana, although the activity of native U. tumidus was significantly reduced. The seston clearance rate (volume of water cleared of particles per unit time) of S. woodiana averaged 9.3 ± 4.0 mL g?1 wet mass h?1, which corresponds to the total daily volume of water filtered being up to several hundreds to thousands L m?2 at the maximal S. woodiana population densities reported in the literature. The observed filtration capacity of S. woodiana and its current invasional spread into areas inhabited by endangered freshwater mussels call for more careful consideration of filter-feeding interactions with native mussels. The potential impacts of S. woodiana should be studied in more detail with respect to available food resources and long-term nutritional needs of native species and reflected in management strategies in the invaded range.  相似文献   

16.
  • 1 Zebra mussels (Dreissena polymorpha) are successful colonisers of lake littoral habitats and they interact strongly with littoral benthos. Previous research suggests that localised areas colonised by zebra mussels may be hotspots of nitrogen (N) cycling.
  • 2 The effects of zebra mussels on nitrification and denitrification rates were examined approximately every other month for 1 year in Gull Lake, Michigan, U.S.A. Littoral sediment was collected from an area free of zebra mussels and distributed into shallow trays; rocks colonised with zebra mussels were placed in half of the trays, while uncolonised rocks were placed in the remaining trays. After an incubation period of 6–8 weeks in the lake, sediment and zebra mussels were collected from the trays, replaced with new sediment and zebra mussels, and placed in the lake for the next interval. In the laboratory, sediment nitrification and denitrification rates were measured for each tray.
  • 3 Sediment nitrification rates did not increase in the presence of zebra mussels; instead nitrification rates were sensitive to changes in water temperature and increased with increasing exchangeable sediment ammonium. In contrast, denitrification rates increased in sediment trays with zebra mussels in the winter when nitrate (NO3) availability was high and when Chara did not grow in the trays.
  • 4 Sediment denitrification was NO3‐limited in all seasons, regardless of zebra mussel treatment. However, sediment in the presence of zebra mussels responded less to NO3 addition, suggesting that NO3 limitation of denitrification can be reduced by zebra mussel activity. Zebra mussels have a seasonally variable impact on sediment denitrification rates, and this may translate into altered seasonal patterns of N cycling in localised areas of lakes where they are particularly abundant.
  相似文献   

17.
Wellington Harbour supports large populations of the mussels Aulacomya maoriana, Mytilus galloprovincialis and Perna canaliculus that are almost entirely absent from nearby coastal locations in Cook Strait. We calculated scope for growth (SFG) using ambient Cook Strait water over a broad temporal scale and a broad range of seston conditions to determine if negative SFG explains this phenomenon. Although all three mussel species had positive mean SFG values, variation in SFG was high and negative values often occurred: A. maoriana 19.1 J g−1 h−1, 43% of mussels showed negative SFG; M. galloprovincialis 1.26, 52% negative SFG; P. canaliculus 45.6, 27% negative SFG. Negative SFG was most often due to negative absorption efficiency caused by metabolic faecal loss that is characteristic of mussels feeding in environments with low seston quality. From our ecophysiology data we constructed a model to estimate SFG based on physiological responses to the narrow range of seston conditions typical of Cook Strait (Model One), and a model to estimate SFG based on physiological responses of mussels to the broad range of seston conditions typical of Wellington Harbour and Cook Strait (Model Two). We used seston data collected over an 18-month period from sites in Wellington Harbour and Cook Strait to derive 159 estimates of species-specific mussel SFG from both models. Both models produced higher estimates of SFG for mussels in the Harbour compared with those at Cook Strait sites. This was consistent with elevated particulate concentrations in the Harbour than at Cook Strait sites, and in agreement with previous studies. For Cook Strait mussels, both models produced negative estimates of net energy balance for long periods of time (several months), whereas for Harbour mussels negative SFG estimates were generally short in duration. We conclude that our short-term laboratory-based determinations of SFG and our long-term bioenergetics modelling estimates do not conclusively support the hypothesis of food limitation for three coexisting taxa of mussels in the intertidal region of Cook Strait, New Zealand. Handling editor: P. Viaroli  相似文献   

18.
1. Dreissena polymorpha is an extraordinarily successful invasive species that shows high recruitment of small juvenile mussels on established mussel banks. Such juvenile settlement on, and overgrowth of, large adult mussels; however, leads to competition with adults, and often at high densities and low‐food concentrations. 2. The concept of food thresholds for zero growth has been a powerful approach to explaining size‐related exploitative competition in different zooplankton species. We applied it to investigate whether food threshold concentrations for zero growth (C0) differ between juvenile and adult zebra mussels. 3. By determining body mass growth at various concentrations of a diet mixture (Nannochloropsis limnetica and Isochrysis aff. galbana) we demonstrate that the threshold food concentration for growth of juvenile mussels (C0 = 0.08 mg C L−1) is substantially lower than that for adults (C0 = 0.36 mg C L−1). 4. This indicates that, at low food availability, juvenile zebra mussels are competitively superior to their larger conspecifics. Within zebra mussel banks plankton food is substantially depleted and so the observed mechanism might ensure juvenile success and therefore the regeneration of mussel banks in nature.  相似文献   

19.
Fish feed waste enhancement of the particulate food supply and performance of mussels Mytilus edulis suspended near salmon cages at an integrated multi-trophic aquaculture (IMTA) site was assessed using a multi-indicator approach. Dietary indicators included bulk measurements of seston quantity and nutritional quality, proximate analysis (PA), fatty acid (FA) and stable isotope (SI) composition. Mussel tissue indicators consisted of PA and FA composition. Mussel performance was assessed from physiological integrations (scope for growth, SFG), growth efficiency (K2) and condition index (CI). All measurements were made over 2 days at a commercial IMTA farm and a monoculture mussel farm in the Bay of Fundy (Canada). Significant differences detected in seston quantity and quality were within the range of natural spatial variability. The SFG of IMTA mussels was lower (28.71 J h−1) than monoculture mussels (38.71 J h−1) and reflected site differences in natural food availability and composition that affected absorption rate. PA of mussel organs didn't reflect a significant fish feed contribution to the mussel diet. However, dietary enhancement and assimilation of fish feed waste was demonstrated by significantly higher levels of feed FA biomarkers 20:1ω9, 18:2ω6, 18:1ω9 and low ω3/ω6 ratio in seston, mussel tissues and feces at the IMTA site than at the mussel farm. SI (δ13C and δ15N) in seston and mussel feces significantly differed among sites and IMTA mussels had significantly higher CI (21%) than monoculture individuals (16%). It was concluded that bulk indicators of the diet, short-term physiological integrations, and PA of mussel tissues have a limited capacity to detect dietary enhancement at IMTA sites. FA and SI tracers of fish feed waste were shown to be more sensitive for detecting the low-levels of diet enhancement within the large range of natural seston variation.  相似文献   

20.
Beekey MA  McCabe DJ  Marsden JE 《Oecologia》2004,141(1):164-170
The introduction of zebra mussels (Dreissena spp.) to North America has resulted in dramatic changes to the complexity of benthic habitats. Changes in habitat complexity may have profound effects on predator-prey interactions in aquatic communities. Increased habitat complexity may affect prey and predator dynamics by reducing encounter rates and foraging success. Zebra mussels form thick contiguous colonies on both hard and soft substrates. While the colonization of substrata by zebra mussels has generally resulted in an increase in both the abundance and diversity of benthic invertebrate communities, it is not well known how these changes affect the foraging efficiencies of predators that prey on benthic invertebrates. We examined the effect of zebra mussels on the foraging success of four benthic predators with diverse prey-detection modalities that commonly forage in soft substrates: slimy sculpin (Cottus cognatus), brown bullhead (Ameirus nebulosus), log perch (Percina caprodes), and crayfish (Orconectes propinquus). We conducted laboratory experiments to assess the impact of zebra mussels on the foraging success of predators using a variety of prey species. We also examined habitat use by each predator over different time periods. Zebra mussel colonization of soft sediments significantly reduced the foraging efficiencies of all predators. However, the effect was dependent upon prey type. All four predators spent more time in zebra mussel habitat than in either gravel or bare sand. The overall effect of zebra mussels on benthic-feeding fishes is likely to involve a trade-off between the advantages of increased density of some prey types balanced against the reduction in foraging success resulting from potential refugia offered in the complex habitat created by zebra mussels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号