首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rezaie AR 《IUBMB life》2011,63(6):390-396
Several recent studies have demonstrated that the activation of protease-activated receptor 1 (PAR-1) by thrombin and activated protein C (APC) on cultured vascular endothelial cells elicits paradoxical proinflammatory and antiinflammatory responses, respectively. Noting that the protective intracellular signaling activity of APC requires the interaction of the protease with its receptor, endothelial protein C receptor (EPCR), we recently hypothesized that the occupancy of EPCR by protein C may also change the PAR-1-dependent signaling specificity of thrombin. In support of this hypothesis, we demonstrated that EPCR is associated with caveolin-1 in lipid rafts of endothelial cells and that the occupancy of EPCR by the Gla-domain of protein C/APC leads to its dissociation from caveolin-1 and recruitment of PAR-1 to a protective signaling pathway through the coupling of PAR-1 to the pertussis toxin sensitive G(i) -protein. Thus, when EPCR is bound by protein C, a PAR-1-dependent protective signaling response in cultured endothelial cells can be mediated by either thrombin or APC. This article will briefly review the mechanism by which the occupancy of EPCR by its natural ligand modulates the PAR-1-dependent signaling specificity of coagulation proteases.  相似文献   

2.
Activated protein C (APC), a natural anticoagulant protease, can trigger cellular responses via protease-activated receptor-1 (PAR1), a G protein-coupled receptor for thrombin. Whether this phenomenon contributes to the physiological effects of APC is unknown. Toward answering this question, we compared the kinetics of PAR1 cleavage on endothelial cells by APC versus thrombin. APC did cleave PAR1 on the endothelial surface, and antibodies to the endothelial protein C receptor inhibited such cleavage. Importantly, however, APC was approximately 10(4)-fold less potent than thrombin in this setting. APC and thrombin both triggered PAR1-mediated responses in endothelial cells including expression of antiapoptotic (tumor necrosis factor-alpha-induced a20 and iap-1) and chemokine (interleukin-8 (il-8) and cxcl3) genes, but again, APC was approximately 10(4)-fold less potent than thrombin. The addition of zymogen protein C to endothelial cultures did not alter the rate of PAR1 cleavage at low or high concentrations of thrombin, and PAR1 cleavage was substantial at thrombin concentrations too low to trigger detectable conversion of protein C to APC. Thus, locally generated APC did not contribute to PAR1 cleavage beyond that effected by thrombin in this system. Although consistent with reports that sufficiently high concentrations of APC can cleave and activate PAR1 in culture, our data suggest that a significant physiological role for PAR1 activation by APC is unlikely.  相似文献   

3.
4.
Key hemostatic serine proteases such as thrombin and activated protein C (APC) are signaling molecules controlling blood coagulation and inflammation, tissue regeneration, neurodegeneration, and some other processes. By interacting with protease-activated receptors (PARs), these enzymes cleave a receptor exodomain and liberate new amino acid sequence known as a tethered ligand, which then activates the initial receptor and induces multiple signaling pathways and cell responses. Among four PAR family members, APC and thrombin mainly act via PAR1, and they trigger divergent effects. APC is an anticoagulant with antiinflammatory and cytoprotective activity, whereas thrombin is a protease with procoagulant and proinflammatory effects. Hallmark features of APC-induced effects result from acting via different pathways: limited proteolysis of PAR1 localized in membrane caveolae with coreceptor (endothelial protein C receptor) as well as its targeted proteolytic action at a receptor exodomain site differing from the canonical thrombin cleavage site. Hence, a new noncanonical tethered PAR1 agonist peptide (PAR1-AP) is formed, whose effects are poorly investigated in inflammation, tissue regeneration, and neurotoxicity. In this review, a concept about a role of biased agonism in effects exerted by APC and PAR1-AP via PAR1 on cells involved in inflammation and related processes is developed. New evidence showing a role for a biased agonism in activating PAR1 both by APC and PAR1-AP as well as induction of antiinflammatory and cytoprotective cellular responses in experimental inflammation, wound healing, and excitotoxicity is presented. It seems that synthetic PAR1 peptide-agonists may compete with APC in controlling some inflammatory and neurodegenerative diseases.  相似文献   

5.
Activated protein C(APC) is a physiological anticoagulant, derived from its precursor protein C(PC). Independent of its anticoagulation, APC possesses strong anti-inflammatory, anti-apoptotic and barrier protective properties which appear to be protective in a number of disorders including chronic wound healing. The epidermis is the outermost skin layer and provides the first line of defence against the external environment. Keratinocytes are the most predominant cells in the epidermis and play a critical role in maintaining epidermal barrier function. PC/APC and its receptor, endothelial protein C receptor(EPCR), once thought to be restricted to the endothelium, are abundantly expressed by skin epidermal keratinocytes. These cells respond to APC by upregulating proliferation, migration and matrix metalloproteinase-2 activity and inhibiting apoptosis/inflammation leading to a wound healing phenotype. APC also increases barrier function of keratinocyte monolayers by promoting the expression of tight junction proteins and re-distributing them to cell-cell contacts. These cytoprotective properties of APC are mediated through EPCR, protease-activated receptors, epidermal growth factor receptor or Tie2. Future preventive and therapeutic uses of APC in skin disorders associated with disruption of barrier function and inflammation look promising. This review will focus on APC's function in skin epidermis/keratinocytes and its therapeutical potential in skin inflammatory conditions.  相似文献   

6.
Activated protein C (APC) reduces mortality in severe sepsis patients and exhibits beneficial effects in multiple animal injury models. APC anticoagulant activity involves inactivation of factors Va and VIIIa, whereas APC cytoprotective activities involve the endothelial protein C receptor and protease-activated receptor-1 (PAR-1). The relative importance of the anticoagulant activity of APC versus the direct cytoprotective effects of APC on cells for the in vivo benefits is unclear. To distinguish cytoprotective from the anticoagulant activities of APC, a protease domain mutant, 5A-APC (RR229/230AA and KKK191-193AAA), was made and compared with recombinant wild-type (rwt)-APC. This mutant had minimal anticoagulant activity but normal cytoprotective activities that were dependent on endothelial protein C receptor and protease-activated receptor-1. Whereas anticoagulantly active rwt-APC inhibited secondary-extended thrombin generation and concomitant thrombin-dependent activation of thrombin activable fibrinolysis inhibitor (TAFI) in plasma, secondary-extended thrombin generation and the activation of TAFI were essentially unopposed by 5A-APC due to its low anticoagulant activity. Compared with rwt-APC, 5A-APC had minimal profibrinolytic activity and preserved TAFI-mediated anti-inflammatory carboxypeptidase activities toward bradykinin and presumably toward the anaphlatoxins, C3a and C5a, which are well known pathological mediators in sepsis. Thus, genetic engineering can selectively alter the multiple activities of APC and provide APC mutants that retain the beneficial cytoprotective effects of APC while diminishing bleeding risk due to reduction in APC's anticoagulant and APC-dependent profibrinolytic activities.  相似文献   

7.
Activated protein C (APC) has endothelial barrier protective effects that require binding to endothelial protein C receptor (EPCR) and cleavage of protease activated receptor-1 (PAR1) and that may play a role in the anti-inflammatory action of APC. In this study we investigated whether protein C (PC) activation by thrombin on the endothelial cell surface may be linked to efficient protective signaling. To minimize direct thrombin effects on endothelial permeability we used the anticoagulant double mutant thrombin W215A/E217A (WE). Activation of PC by WE on the endothelial cell surface generated APC with high barrier protective activity. Comparable barrier protective effects by exogenous APC required a 4-fold higher concentration of APC. To demonstrate conclusively that protective effects in the presence of WE are mediated by APC generation and not direct signaling by WE, we used a PC variant with a substitution of the active site serine with alanine (PC S360A). Barrier protective effects of a low concentration of exogenous APC were blocked by both wildtype PC and PC S360A, consistent with their expected role as competitive inhibitors for APC binding to EPCR. WE induced protective signaling only in the presence of wild type PC but not PC S360A and PAR1 cleavage was required for these protective effects. These data demonstrate that the endogenous PC activation pathway on the endothelial cell surface is mechanistically linked to PAR1-dependent autocrine barrier protective signaling by the generated APC. WE may have powerful protective effects in systemic inflammation through signaling by the endogenously generated APC.  相似文献   

8.
Plasmodium falciparum‐infected erythrocytes (IRBC) expressing the domain cassettes (DC) 8 and 13 of the cytoadherent ligand P. falciparum erythrocyte membrane protein 1 adhere to the endothelial protein C receptor (EPCR). By interfering with EPCR anti‐coagulant and pro‐endothelial barrier functions, IRBC adhesion could promote coagulation and vascular permeability that contribute to the pathogenesis of cerebral malaria. In this study, we examined the adhesion of DC8‐ and DC13‐expressing parasite lines to endothelial cells from different microvasculature, and the consequences of EPCR engagement on endothelial cell function. We found that IRBC from IT4var19 (DC8) and IT4var07 (DC13) parasite lines adhered to human brain, lung and dermal endothelial cells under shear stress. However, the relative contribution of EPCR to parasite cytoadherence on different types of endothelial cell varied. We also observed divergent functional outcomes for DC8 cysteine‐rich interdomain region (CIDR)α1.1 and DC13 CIDRα1.4 domains. IT4var07 CIDRα1.4 inhibited generation of activated protein C (APC) on lung and dermal endothelial cells and blocked the APC–EPCR binding interaction on brain endothelial cells. IT4var19 CIDRα1.1 inhibited thrombin‐induced endothelial barrier dysfunction in lung endothelial cells, whereas IT4var07 CIDRα1.4 inhibited the protective effect of APC on thrombin‐induced permeability. Overall, these findings reveal a much greater complexity of how CIDRα1‐expressing parasites may modulate malaria pathogenesis through EPCR adhesion.  相似文献   

9.
The use of targeted therapeutics to replenish pathologically deficient proteins on the luminal endothelial membrane has the potential to revolutionize emergency and cardiovascular medicine. Untargeted recombinant proteins, like activated protein C (APC) and thrombomodulin (TM), have demonstrated beneficial effects in acute vascular disorders, but have failed to have a major impact on clinical care. We recently reported that TM fused with an scFv antibody fragment to platelet endothelial cell adhesion molecule-1 (PECAM-1) exerts therapeutic effects superior to untargeted TM. PECAM-1 is localized to cell-cell junctions, however, whereas the endothelial protein C receptor (EPCR), the key co-factor of TM/APC, is exposed in the apical membrane. Here we tested whether anchoring TM to the intercellular adhesion molecule (ICAM-1) favors scFv/TM collaboration with EPCR. Indeed: i) endothelial targeting scFv/TM to ICAM-1 provides ∼15-fold greater activation of protein C than its PECAM-targeted counterpart; ii) blocking EPCR reduces protein C activation by scFv/TM anchored to endothelial ICAM-1, but not PECAM-1; and iii) anti-ICAM scFv/TM fusion provides more profound anti-inflammatory effects than anti-PECAM scFv/TM in a mouse model of acute lung injury. These findings, obtained using new translational constructs, emphasize the importance of targeting protein therapeutics to the proper surface determinant, in order to optimize their microenvironment and beneficial effects.  相似文献   

10.
By monitoring the activation of protein C and the regulation of factor Xa-catalyzed thrombin formation by the activated protein C (APC) on the surface of human umbilical vein endothelial cells (HUVEC), we found that functional protein C was synthesized in cultured HUVEC and expressed thereon in the presence of vitamin K. Furthermore, without exogenously added protein S, time-dependent and saturable accumulation of APC (20 fmol APC/10(5) cells) on the surface of HUVEC was observed. During prothrombin activation by the complex of membrane-bound factor Xa and endogenous factor Va formed on the surface of HUVEC, APC was generated, and the rate of thrombin formation decreased. Treatment of HUVEC with an antibody that inhibits the APC-catalyzed inactivation of endogenous factor Va clearly quenched the activity of surface-associated APC. Immunostaining of HUVEC with a horseradish peroxidase (HRP)-conjugated antibody that solely recognizes human protein C confirmed the presence of protein C on the surface of HUVEC. Northern blot analysis revealed that an about 1.8 kb mRNA species derived from HUVEC was hybridized with 32P-labeled protein C cDNA, as in the case of those from HepG2, which are known to synthesize normal protein C. The increase in the amount of protein C mRNA in HUVEC in parallel with cell growth provided supporting evidence for the synthesis of protein C during the culture of HUVEC. These results indicate that blood coagulation is regulated by endogenously generated and activated protein C, together with or without protein S, through inactivation of factor Va on the surface of endothelial cells.  相似文献   

11.
Zinc is an essential trace element for human nutrition and is critical to the structure, stability, and function of many proteins. Zinc ions were shown to enhance activation of the intrinsic pathway of coagulation but down-regulate the extrinsic pathway of coagulation. The protein C pathway plays a key role in blood coagulation and inflammation. At present there is no information on whether zinc modulates the protein C pathway. In the present study we found that Zn2+ enhanced the binding of protein C/activated protein C (APC) to endothelial cell protein C receptor (EPCR) on endothelial cells. Binding kinetics revealed that Zn2+ increased the binding affinities of protein C/APC to EPCR. Equilibrium dialysis with 65Zn2+ revealed that Zn2+ bound to the Gla domain as well as sites outside of the Gla domain of protein C/APC. Intrinsic fluorescence measurements suggested that Zn2+ binding induces conformational changes in protein C/APC. Zn2+ binding to APC inhibited the amidolytic activity of APC, but the inhibition was reversed by Ca2+. Zn2+ increased the rate of APC generation on endothelial cells in the presence of physiological concentrations of Ca2+ but did not further enhance increased APC generation obtained in the presence of physiological concentrations of Mg2+ with Ca2+. Zn2+ had no effect on the anticoagulant activity of APC. Zn2+ enhanced APC-mediated activation of protease activated receptor 1 and p44/42 MAPK. Overall, our data show that Zn2+ binds to protein C/APC, which results in conformational changes in protein C/APC that favor their binding to EPCR.  相似文献   

12.
Activated protein C (APC) has an anticoagulant action and plays an important role in blood coagulation homeostasis. In addition to its anticoagulant action, APC is known to have cytoprotective effects, such as anti‐apoptotic action and endothelial barrier protection, on vascular endothelial cells and monocytes. However, the effects of APC on DCs have not been clarified. To investigate the effects of APC on human DCs, monocytes were isolated from peripheral blood and DC differentiation induced with LPS. APC significantly inhibited the production of inflammatory cytokines TNF‐α and IL‐6 during differentiation of immature DCs to mature DCs, but did not inhibit the production of IL‐12 and anti‐inflammatory cytokine IL‐10. Interestingly, treatment with 5 μg/mL, but not 25 μg/mL, of APC significantly enhanced production of IL‐10. In addition, protein C, which is the zymogen of APC, did not affect production of these cytokines. On the other hand, flow cytometric analysis of DC's surface molecules indicated that APC does not significantly affect expression of CD83, a marker of mDC differentiation, and the co‐stimulatory molecules CD40, CD80 and CD86. These results suggest that APC has anti‐inflammatory effects on human DCs and may be effective against some inflammatory diseases in which the pathogenesis involves TNF‐α and/or IL‐6 production.  相似文献   

13.
Uniquely amongst vitamin K-dependent coagulation proteins, protein C interacts via its Gla domain both with a receptor, the endothelial cell protein C receptor (EPCR), and with phospholipids. We have studied naturally occurring and recombinant protein C Gla domain variants for soluble (s)EPCR binding, cell surface activation to activated protein C (APC) by the thrombin-thrombomodulin complex, and phospholipid dependent factor Va (FVa) inactivation by APC, to establish if these functions are concordant. Wild-type protein C binding to sEPCR was characterized with surface plasmon resonance to have an association rate constant of 5.23 x 10(5) m(-1).s(-1), a dissociation rate constant of 7.61 x 10(-2) s(-1) and equilibrium binding constant (K(D)) of 147 nm. It was activated by thrombin over endothelial cells with a K(m) of 213 nm and once activated to APC, rapidly inactivated FVa. Each of these interactions was dramatically reduced for variants causing gross Gla domain misfolding (R-1L, R-1C, E16D and E26K). Recombinant variants Q32A, V34A and D35A had essentially normal functions. However, R9H and H10Q/S11G/S12N/D23S/Q32E/N33D/H44Y (QGNSEDY) variants had slightly reduced (< twofold) binding to sEPCR, arising from an increased rate of dissociation, and increased K(m) (358 nm for QGNSEDY) for endothelial cell surface activation by thrombin. Interestingly, these variants had greatly reduced (R9H) or greatly enhanced (QGNSEDY) ability to inactivate FVa. Therefore, protein C binding to sEPCR and phospholipids is broadly dependent on correct Gla domain folding, but can be selectively influenced by judicious mutation.  相似文献   

14.
Activated protein C (APC) is an anticoagulant and anti-inflammatory factor that acts via endothelial protein C receptor (EPCR). Interestingly, APC also exhibits neuroprotective activities. In the present study, we demonstrate for the first time expression of EPCR, the receptor for APC, in rat cortical and hippocampal neurons. Moreover, exposing the neurons to glutamate excitotoxicity we studied the functional consequence of the expression of EPCR. By cytotoxicity assay we showed that EPCR was necessary for the APC-mediated protective effect in both neuronal cell types in culture. The effect of APC was abrogated in the presence of blocking EPCR antibodies. Analysis of neuronal death by cell labelling with dyes which allow distinguishing living and dead cells confirmed that the anti-apoptotic effect of APC was dependent on both EPCR and protease-activated receptor-1. Thus, we suggest that binding of APC to EPCR on neurons and subsequent activation of protease-activated receptor-1 by the complex of APC-EPCR promotes survival mechanisms after exposure of neurons to damaging factors.  相似文献   

15.
Tendon injuries cause considerable morbidity in the general adult population. The tenocytes within the tendon have the full capacity to heal the tendon intrinsically. Activated protein C (APC) plays an important role in coagulation and inflammation and more recently has been shown to promote cutaneous wound healing. In this study we examined whether APC can induce a wound healing phenotype in tenocytes. Sheep tenocytes were treated with APC, endothelial protein C receptor (EPCR) blocking antibody (RCR252) and/or EPCR small interfering (si)RNA. Cell proliferation and migration were measured by crystal violet assay and a scratch wounding assay, respectively. The expression of EPCR, matrix metalloproteinase (MMP)-2, type I collagen and MAP kinase activity were detected by real time PCR, zymography, immunofluorescence, immunohistochemistry and Western blotting. APC stimulated proliferation, MMP-2 activity and type I collagen deposition in a dose-dependent manner and promoted migration of cultured tenocytes. APC dose-dependently stimulated phosphorylated (P)-ERK2 and inhibited P-p38. Interestingly, tenocytes expressed EPCR protein, which was up-regulated by APC. When tenocytes were pre-treated with RCR252 or EPCR siRNA the effect of APC on proliferation, MMP-2 and type 1 collagen synthesis and MAP kinases was blocked. APC promotes the growth, MMP-2 activity, type I collagen deposition and migration of tenocytes. Furthermore, EPCR is expressed by tenocytes and mediates the actions of APC, at least partly by signalling through selective MAP kinases. These data implicate APC as a potential healing agent for injured tendons.  相似文献   

16.
Coagulation activation accompanied by reduced anticoagulant activity is a key characteristic of patients with idiopathic pulmonary fibrosis (IPF). Although the importance of coagulation activation in IPF is well studied, the potential relevance of endogenous anticoagulant activity in IPF progression remains elusive. We assess the importance of the endogenous anticoagulant protein C pathway on disease progression during bleomycin‐induced pulmonary fibrosis. Wild‐type mice and mice with high endogenous activated protein C APC levels (APChigh) were subjected to bleomycin‐induced pulmonary fibrosis. Fibrosis was assesses by hydroxyproline and histochemical analysis. Macrophage recruitment was assessed immunohistochemically. In vitro, macrophage migration was analysed by transwell migration assays. Fourteen days after bleomycin instillation, APChigh mice developed pulmonary fibrosis to a similar degree as wild‐type mice. Interestingly, Aschcroft scores as well as lung hydroxyproline levels were significantly lower in APChigh mice than in wild‐type mice on day 28. The reduction in fibrosis in APChigh mice was accompanied by reduced macrophage numbers in their lungs and subsequent in vitro experiments showed that APC inhibits thrombin‐dependent macrophage migration. Our data suggest that high endogenous APC levels inhibit the progression of bleomycin‐induced pulmonary fibrosis and that APC modifies pulmonary fibrosis by limiting thrombin‐dependent macrophage recruitment.  相似文献   

17.
In addition to its role in blood coagulation, thrombin directly stimulates protease-activated receptors (PAR) or interacts with thrombomodulin (THBD) to activate membrane-bound protein C which stimulates PAR1 and PAR4 receptors to promote downstream pleiotropic effects. Our DNA microarray, RT-PCR, and immunostaining analyses demonstrated ovarian expression of THBD, activated protein C (APC) receptor [endothelial protein C receptor (EPCR)], as well as PAR1 and PAR4 receptors in mice. After treatment of gonadotropin-primed immature mice with an ovulatory dose of human chorionic gonadotropin (hCG) (a LH surrogate), major increases in the expression of THBD, EPCR, PAR1, and PAR4 were detected in granulosa and cumulus cells of preovulatory follicles. Immunoassay analyses demonstrated sustained increases in ovarian prothrombin and APC levels after hCG stimulation. We obtained luteinizing granulosa cells from mice treated sequentially with equine CG and hCG. Treatment of these cells with thrombin or agonists for PAR1 or PAR4 decreased basal and forskolin-induced cAMP biosynthesis and suppressed hCG-stimulated progesterone production. In cultured preovulatory follicles, treatment with hirudin (a thrombin antagonist) and SCH79797 (a PAR1 antagonist) augmented hCG-stimulated progesterone biosynthesis, suggesting a suppressive role of endogenous thrombin in steroidogenesis. Furthermore, intrabursal injection with hirudin or SCH79797 led to ipsilateral increases in ovarian progesterone content. Our findings demonstrated increased ovarian expression of key components of the thrombin-APC-PAR1/4 signaling system after LH/hCG stimulation, and this signaling pathway may allow optimal luteinization of preovulatory follicles. In addition to assessing the role of thrombin and associated genes in progesterone production by the periovulatory ovary, these findings provide a model with which to study molecular mechanisms underlying thrombin-APC-PAR1/4 signaling.  相似文献   

18.
Protein C (PC) pathway homeostasis is implicated in heat stress (HS). This study determines whether cooling could improve the PC pathway in HS. Fifty-six anesthetized rats were warmed to achieve HS (rectal temperature [Tr] 42°C). These rats were divided into seven groups: (a) control group:sacrifice immediately 15 min after HS; (b) HS+I:sacrifice immediately after 15 min ice-water treatment or (c) 3 hr after HS; (d) HS+C:sacrifice immediately after 15-min cold-water treatment or (e) 3 hr after HS; (f) HS: sacrifice immediately 15 min after HS or (g) 3 hr after HS. Plasma PC, activated protein C (APC), and soluble thrombomodulin (sTM) levels were tested at both time points. After cooling, Tr in the HS+I and HS+C groups significantly decreased, when compared with the HS group, and Tr was significantly lower in the HS+I group than in the HS+C group ( p < 0.05). Furthermore, sTM levels were highest in the HS group among the groups at both time points. Plasma PC and APC levels increased after HS. In the HS+I and HS+C groups, plasma APC levels and the APC/PC ratio significantly increased at both time points. The proportions were significantly higher in the HS+I group than in the HS+C group, and there was no significant increase in APC/PC ratio in the HS group. Cooling exerts an anticoagulant effect following HS by increasing APC levels. Ice-water blanket therapy is more effective than cold-water blanket therapy in increasing APC levels.  相似文献   

19.
Activated protein C (APC) is a serine protease that regulates thrombin (IIa) production through inactivation of blood coagulation factors Va and VIIIa. APC also has non-hemostatic functions related to inflammation, proliferation, and apoptosis through various mechanisms. Using two breast cancer cell lines, MDA-MB-231 and MDA-MB-435, we investigated the role of APC in cell chemotaxis and invasion. Treatment of cells with increasing APC concentrations (1-50 microg/ml) increased invasion and chemotaxis in a concentration-dependent manner. Only the active form of APC increased invasion and chemotaxis of the MDA-MB-231 cells when compared to 3 inactive APC derivatives. Using a modified "checkerboard" analysis, APC was shown to only affect migration when plated with the cells; therefore, APC is not a chemoattractant. Blocking antibodies to endothelial protein C receptor (EPCR) and protease-activated receptor-1 (PAR-1) attenuated the effects of APC on chemotaxis in the MDA-MB-231 cells. Finally, treatment of the MDA-MB-231 cells with the proliferation inhibitor, Na butyrate, showed that APC did not increase migration by increasing cell number. Therefore, APC increases invasion and chemotaxis of cells by binding to the cell surface and activating specific signaling pathways through EPCR and PAR-1.  相似文献   

20.
Activated protein C (APC) exerts its physiologic anticoagulant role by proteolytic inactivation of the blood coagulation cofactors Va and VIIIa. The synthetic peptide-(311-325) (KRNRTFVLNFIKIPV), derived from the heavy chain sequence of APC, potently inhibited APC anticoagulant activity in activated partial thromboplastin time (APTT) and Xa-1-stage coagulation assays in normal and in protein S-depleted plasma with 50% inhibition at 13 microM peptide. In a system using purified clotting factors, peptide-(311-325) inhibited APC-catalyzed inactivation of factor Va in the presence or absence of phospholipids with 50% inhibition at 6 microM peptide. However, peptide-(311-325) had no effect on APC amidolytic activity or on the reaction of APC with the serpin, recombinant [Arg358]alpha 1-antitrypsin. Peptide-(311-325) surprisingly inhibited factor Xa clotting activity in normal plasma, and in a purified system it inhibited prothrombinase activity in the presence but not in the absence of factor Va with 50% inhibition at 8 microM peptide. The peptide had no significant effect on factor Xa or thrombin amidolytic activity and no effect on the clotting of purified fibrinogen by thrombin, suggesting it does not directly inhibit these enzymes. Factor Va bound in a dose-dependent manner to immobilized peptide-(311-325). Peptide-(311-315) inhibited the binding of factor Va to immobilized APC or factor Xa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号