首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Ataxia-telangiectasia (A-T) is an autosomal recessive disease involving chromosomal instability, susceptibility to cancer and X-ray hypersensitivity. The latter two features are expressed to a limited extent in the heterozygous carriers of A-T mutations. Although fibroblast lines from A-T heterozygotes clearly show increased susceptibility to the lethal effect of X-irradiation, the difference in post-irradiation survival between cell lines and normal controls is not always large enough to allow the use of X-ray sensitivity as a laboratory assay for carrier detection in A-T. Recently, we have shown in a blind study, that the extent of chromatid damage induced in the G2 phase of the cell cycle by moderate doses of X-rays is markedly higher in A-T heterozygous cells than in normal controls. We have now applied this test to 6 additional obligatory heterozygotes and 24 individuals with different risks of being A-T carriers, from three Israeli A-T families. All 6 cell lines from the obligatory heterozygotes showed the typical hypersensitivity to the clastogenic action of X-rays in G2; of the 24 cell lines with unknown A-T genotype, 16 showed the same hypersensitivity, and 8 responded in a normal way. The proportion of cell lines showing the A-T-heterozygous phenotype was in accord with the expected value, based on Mendelian chance calculations. Since these observations were made, a daughter of two hypersensitive parents in one of these families has been diagnosed as having A-T. This confirmed the presumed A-T heterozygosity of the parents, as indicated by the laboratory assay.  相似文献   

2.
In the present study, both post-irradiation DNA synthesis and G1 phase accumulation were analyzed in lymphoblastoid cell lines (LCLs) and fibroblast cell strains derived from (Saudi) patients with non-Hodgkin's lymphoma (NHL), ataxia telangiectasia (AT), AT heterozygotes and normal subjects. A comparison of the percent DNA synthesis inhibition (assayed by 3H-thymidine uptake 30 min after irradiation), and a 24 h post-irradiation G2 phase accumulation determined by flow cytometry placed the AT heterozygotes and the NHL patients in an intermediate position between the normal subjects (with maximum DNA synthesis inhibition and minimum G2 phase accumulation) and the AT homozygotes (with minimum DNA synthesis inhibition and maximum G2 accumulation). The similarity between AT heterozygotes and the NHL patients with respect to the two parameters studied after irradiation was statistically significant. The data indicating a moderate abnormality in the control of cell cycle progression after irradiation in the LCLs and fibroblasts from NHL patients may explain the enhanced cellular and chromosomal radiosensitivity in these patients reported by us earlier. In addition to demonstrating a link between cell cyle abnormality and radiosensitivity as a possible basis for cancer susceptibility, particularly in the NHL patients, the present studies emphasized the usefulness of the assay for 24 h post-irradiation G2 phase accumulation developed by Lavin et al. (1992) in characterizing AT heterozygote-like cell cycle anomally in cancer patients irrespective of whether they carried the AT gene or any other affecting the cell cycle.  相似文献   

3.
The genetic determinants for most breast cancer cases remain elusive. Whilst mutations in BRCA1 and BRCA2 significantly contribute to familial breast cancer risk, their contribution to sporadic breast cancer is low. In such cases genes frequently altered in the general population, such as the gene mutated in Ataxia telangiectasia (AT), ATM may be important risk factors. The initial interest in studying ATM heterozygosity in breast cancer arose from the findings of epidemiological studies of AT families in which AT heterozygote women had an increased risk of breast cancer and estimations that 1% of the population are AT heterozygotes. One of the clinical features of AT patients is extreme cellular sensitivity to ionising radiation. This observation, together with the finding that a significant proportion of breast cancer patients show an exaggerated acute or late normal tissue reactions after radiotherapy, has lead to the suggestion that AT heterozygosity plays a role in radiosensitivity and breast cancer development. Loss of heterozygosity in the region of the ATM gene on chromosome 11, has been found in about 40% of sporadic breast tumours. However, screening for ATM mutations in sporadic breast cancer cases, showing or not adverse effects to radiotherapy, has not revealed the magnitude of involvement of the ATM gene expected. Their size and the use of the protein truncation test to identify mutations limit many of these studies. This latter parameter is critical as the profile of mutations in AT patients may not be representative of the ATM mutations in other diseases. The potential role of rare sequence variants within the ATM gene, sometimes reported as polymorphisms, also needs to be fully assessed in larger cohorts of breast cancer patients and controls in order to determine whether they represent cancer and/or radiation sensitivity predisposing mutations.  相似文献   

4.
Ataxia-telangiectasia (A-T) is a rare human autosomal recessive disorder characterized by, among other symptoms, catastrophic reaction to conventional radiotherapy. A-T heterozygotes are clinically asymptomatic and their fibroblasts are intermediate in radiosensitivity between homozygotes and normals. We have attempted to identify heterozygotes by assaying for cellular hypersensitivity to chronic gamma irradiation. Cultured dermal fibroblast strains from 13 control subjects and 55 members from a large Amish pedigree segregating for A-T were assayed for loss of colony-forming ability (CFA) in response to 137Cs gamma radiation delivered at a dose rate of 0.8 cGy/min. For each strain, multiple dose-response curves were summarized in a composite D10 value (dose, in cGy, reducing colony survival to 10%). The D10's of the clinically normal controls and of those pedigree members with known A-T genotype formed a trimodal distribution, with the seven obligate heterozygotes displaying an average value (516 cGy) intermediate between that of the 10 healthy controls (797 cGy) and that of the two affected patients (154 cGy). The D10's were modeled statistically using Gaussian penetrance functions. The most parsimonious model yielded a significant difference in D10 means for heterozygotes and normal homozygotes, a significant donor age effect, but no sex effect. We compared probabilistic identification of heterozygotes based on D10 values with identification based on linkage data for two markers, THY1 and D11S144, closely linked to the A-T gene. This comparison revealed that the D10 data were appreciably less informative than the linked markers. Indeed, the extensive overlap between D10 values for heterozygotes and normal homozygotes precludes the use of postirradiation CFA for either accurate identification of heterozygotes or chromosomal mapping of the A-T gene.  相似文献   

5.
Summary Human leukocyte cultures were irradiated with 200 R X-rays before the addition of phytohemagglutinin (PHA) in the G0-stage and at different times up to 25 h within the first G1-phase of the cell cyle after the addition of PHA. The results of the analysis of chromosomal aberrations show that the frequencies of dicentric chromosomes increase significantly when leukocytes leave the G0-stage, reaching a maximum yield of aberrations about halfway through the first G1-phase. After that, toward the end of the G1-phase, the frequencies of dicentric chromosomes decrease again, to a level similar to that found in the G0-stage. Different possible explanations for the differential chromosomal radiosensitivity of human leukocytes within the first poststimulation G1-phase are discussed.  相似文献   

6.
Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by cerebellar degeneration, immunodeficiency, chromosomal instability, radiosensitivity, and cancer predisposition. A-T cells are sensitive to ionizing radiation and radiomimetic chemicals and fail to activate cell-cycle checkpoints after treatment with these agents. The responsible gene, ATM, encodes a large protein kinase with a phosphatidylinositol 3-kinase-like domain. The typical A-T phenotype is caused, in most cases, by null ATM alleles that truncate or severely destabilize the ATM protein. Rare patients with milder manifestations of the clinical or cellular characteristics of the disease have been reported and have been designated "A-T variants." A special variant form of A-T is A-TFresno, which combines a typical A-T phenotype with microcephaly and mental retardation. The possible association of these syndromes with ATM is both important for understanding their molecular basis and essential for counseling and diagnostic purposes. We quantified ATM-protein levels in six A-T variants, and we searched their ATM genes for mutations. Cell lines from these patients exhibited considerable variability in radiosensitivity while showing the typical radioresistant DNA synthesis of A-T cells. Unlike classical A-T patients, these patients exhibited 1%-17% of the normal level of ATM. The underlying ATM genotypes were either homozygous for mutations expected to produce mild phenotypes or compound heterozygotes for a mild and a severe mutation. An A-TFresno cell line was found devoid of the ATM protein and homozygous for a severe ATM mutation. We conclude that certain "A-T variant" phenotypes represent ATM mutations, including some of those without telangiectasia. Our findings extend the range of phenotypes associated with ATM mutations.  相似文献   

7.
Rosin  Miriam P.  Ochs  H. D.  Gatti  R. A.  Boder  E. 《Human genetics》1989,83(2):133-138
Summary The objective of this study was to obtain an estimate of the frequency distribution of spontaneous chromosomal breakage occurring in vivo in oral epithelia of 20 ataxiatelangiectasia patients (A-T homozygotes) and 26 parents (A-T obligate heterozygotes). Samples of exfoliated cells were obtained from each individual by swabbing the oral cavity and preparing air-dried slides. The percentage of exfoliated cells with micronuclei (MEC frequency) was used as an in vivo indicator for the amount of chromosomal breakage occurring in the tissue. As a population group, MEC frequencies of the A-T patients differed significantly from controls (mean for A-T patients, 1.51; for controls, 0.29; P<0.01). However, the values observed in individual patients ranged from MEC frequencies 10- to 12-fold above control values, to frequencies overlapping the upper values observed in the controls. Similarily, MEC frequencies observed among the A-T heterozygotes differed significantly from controls (mean for A-T heterozygotes, 1.02, mean for controls, 0.29; P<0.01). However, only 16 of the 26 individuals sampled had MEC frequencies >0.5%, the 90th percentile for controls (compared with 16 of the 20 A-T patients examined). Of the A-T patients 11 had been previously assigned to complementation groups on the basis of sensitivity to x-irradiation. Seven of the patients belonged to group A and had MEC frequencies ranging from 0.3% to 1.9% with the remaining patients belonging to group C with MEC frequencies of 0.2% to 0.9%. The data presented in this paper suggest that although levels of spontaneous breakage in epithelial tissues of A-T patients and A-T obligate heterozygotes are often significantly elevated, this is not the case in all individuals.  相似文献   

8.
V(D)J rearrangement in lymphoid cells involves repair of double-strand breaks (DSBs) through non-homologous end joining (NHEJ). Defects in this process lead to increased radiosensitivity and severe combined immunodeficiency (RS-SCID). Here, a SCID patient, M3, is described with a T?B+NK+ phenotype but without causative mutations in CD3δ, ?, ζ or IL7Rα, genes specifically involved in T cell development. Clonogenic survival of M3 fibroblasts showed an increased sensitivity to the DSB-inducing agents ionizing radiation and bleomycin, as well as the crosslinking compound, mitomycin C. We did not observe inactivating mutations in known NHEJ genes and results of various DSB-repair assays in G1 M3 cells were indistinguishable from those obtained with normal cells. However, we found increased chromosomal radiosensitivity at the G2 phase of the cell cycle. Checkpoint analysis indicated functional G1/S and intra-S checkpoints after irradiation but impaired activation of the “early” G2/M checkpoint. Together these results indicate a novel class of RS-SCID patients characterized by the specific absence of T lymphocytes and associated with defects in G2-specific DSB repair. The pronounced G2/M radiosensitivity of the RS-SCID patient described here, suggests a defect in a putative novel and uncharacterized factor involved in cellular DNA damage responses and T cell development.  相似文献   

9.
Functional consequences of sequence alterations in the ATM gene   总被引:4,自引:0,他引:4  
Lavin MF  Scott S  Gueven N  Kozlov S  Peng C  Chen P 《DNA Repair》2004,3(8-9):1197-1205
The product of the gene (ATM) mutated in the human genetic disorder ataxia-telangiectasia (A-T) is a high molecular weight, protein ( approximately 350kDa) containing a C-terminal protein kinase domain and a number of other putative domains not yet functionally defined. The majority of ATM gene mutations in A-T patients are truncating, resulting in prematurely terminated products that are highly unstable. Missense mutations within the kinase domain and elsewhere in the molecule alter the stability of the protein and lead to loss of protein kinase activity. Only rarely are patients observed with two missense mutations and this gives rise to a milder disease phenotype. Evidence for a dominant interfering effect on normal ATM kinase activity has been reported in cell lines transfected with missense mutant ATM and in cell lines from some A-T heterozygotes. The dominant negative effect of mutant ATM is manifested by an enhancement of cellular radiosensitivity and may be responsible for the cancer predisposition observed in carriers of ATM missense mutations. In this review, we explore the domain structure of the ATM molecule, sites of interaction with other proteins and the consequences of specific amino acid changes on function.  相似文献   

10.
Babaei M  Mitui M  Olson ER  Gatti RA 《Human genetics》2005,117(2-3):101-106
Ataxia–telangiectasia (A–T) is an autosomal recessive disorder caused by mutations in the ATM gene. The ATM gene spans more than 150 kb at chromosomal region 11q23.1 and encodes a product of 3,056 amino acids. The ATM protein is a serine/threonine protein kinase and is involved in oxidative stress, cell cycle control, and DNA repair. We analyzed the 11q22-23 haplotypes and associated mutations of 16 Iranian families. We utilized standardized short tandem repeat (STR) haplotypes to enhance mutation identification. In addition to the STR markers, single-nucleotide polymorphism haplotypes were determined, using three critical polymorphisms. The entire gene was screened sequentially by protein truncation testing, single-strand conformation polymorphism, and denaturing high-performance liquid chromatography to identify the disease-causing mutations. Of the expected 32 mutations, 25 (78%) were identified. All but two mutations led to a truncated or null form of the ATM protein (nonsense, splice site, or frameshift). Twelve mutations were identified for 15 haplotypes. Five mutations were novel. Mutations were located throughout the entire gene, with no clustering. Despite the absence of an Iranian founder mutation, three-fourths of the families were homozygous, suggesting that many undetected ATM mutations still exist in Iran. This study establishes a database for Iranian A–T families, and extends the global spectrum of ATM mutations.  相似文献   

11.
The TEL1 gene from Saccharomyces cere- visiae has been shown to be the closest sequence homologue to ATM, the gene mutated in ataxia-telangiectasia (A-T) patients. Functional homology shared between the ATM and Tel1 proteins has recently been demonstrated based on heterologous expression of the TEL1 gene in human cells derived from A-T patients. TEL1 expression complemented specific cellular A-T deficiencies, i.e. increased radiation-induced apoptosis, telomere shortening and spontaneous hyperrecombination. The mechanism of cellular A-T complementation by TEL1 appears to be independent of p53-dependent signaling cascades, since the deficiency of A-T cells to properly induce p53 upon ionizing radiation was not corrected by TEL1. We now find that the basic number of chromosome aberrations is increased and the number of radiation-induced chromosome aberrations is suppressed in A-T cells upon TEL1 expression. In cell cycle analyses, we find no changes in basic cell cycle distribution or in radiation-induced cell cycle checkpoints following TEL1 expression. We conclude that the radioprotective function of the Tel1 protein includes suppression of apoptosis and suppression of chromosome aberrations, and that both cellular endpoints can be uncoupled from ionizing radiation-induced cell cycle checkpoints. Received: 6 November 2000 / Accepted: 1 October 2001  相似文献   

12.
Ataxia telangiectasia (A-T) is a progressive neurodegenerative disorder caused by disruption of the gene, ataxia telangiectasia mutated (ATM). Present study was aimed at identifying proteins that are present in abnormal levels in A-T brain that may identify alternative targets for therapeutic interventions. Proteomic and Western blot analysis have shown massive expression of the small heat shock protein 27 (Hsp27) in frontal cortices of A-T brains compared to negligible levels in controls. The expression of other stress proteins, Hsp70, αB-crystallin, and prohibitin remained unchanged in the A-T and control brains. Significant decreases in reactive oxygen species, protein carbonyl groups and lipid peroxidation products were observed in the A-T brains. There is no evidence of caspase 3 activation or DAXX mediated apoptosis. We propose that neurons in the frontal lobe are protected by the expression of Hsp27, which scavenges the oxidative stress molecules formed consequent to the primary loss of ATM function.  相似文献   

13.
Previously we used the topoisomerase I inhibitor camptothecin (CPT), which kills mainly S-phase cells primarily by inducing double strand breaks (DSBs) in replication forks, to show that ataxia telangiectasia (A-T) fibroblasts are defective in the repair of this particular subclass of DSBs. CPT treated A-T cells reaching G2 have abnormally high levels of chromatid exchanges, viewed as prematurely condensed G2 chromosomes (G2 PCC), compared with normal cells where aberrations are mostly chromatid breaks. Here we show that A-T lymphoblastoid cells established from individuals with different mutations in the ATM gene also exhibit increased levels of chromosomal exchanges in response to CPT, indicating that the replication-associated DSBs are misrepaired in all these cells. From family studies we show that the presence of a single mutated allele in obligate A-T heterozygotes leads to intermediate levels of chromosomal exchanges in CPT-treated lymphoblastoid cells, thus providing a functional and sensitive assay to identify these individuals.  相似文献   

14.
15.
Inherited sensitivity to X-rays in man   总被引:3,自引:0,他引:3  
Ataxia-telangiectasia (A-T), an inherited disorder giving radiation sensitivity and cancer-proneness, is discussed in terms of a defect in ability to repair DNA damage. A new assay using damaged recombinant DNA molecules suggests that the fidelity of repair of DNA double-strand breaks is reduced in an A-T cell line. Specific chromosomal changes in some A-T patients appear to be associated with cancer induction, and it is suggested that these could be linked to a DNA repair-fidelity defect. However, a general correlation between radiosensitivity and cancer-proneness is difficult to establish at present, partly because of diversity in radiosensitivity in the normal population.  相似文献   

16.
The model is based on the assumption that the cell cycle contains a Go-phase which cells leave randomly with a constant probability per unit time, γ. After leaving the Go-phase, the cells enter the C-phase which ends with cell division. The C-phase and its constituent phases, the‘true’G1-phase, the S-phase, the G2-phase and mitosis are assumed to have constant durations of T, T1Ts, T2 and Tm, respectively. For renewal tissue it is assumed that the probability per unit time of being lost from the population is a constant for all cells irrespective of their position in the cycle. The labelled mitosis curve and labelling index for continuous labelling are derived in terms of γ, T, and Ts. The model generates labelled mitosis curves which damp quickly and reach a constant value of twice the initial labelling index, if the mean duration of the Go-phase is sufficiently long. It is shown that the predicted labelled mitosis and continuous labelling curves agree reasonably well with the experimental curves for the hamster cheek pouch if T has a value of about 60 hr. Data are presented for the rat dorsal epidermis which support the assumption that there is a constant probability per unit time of a cell being released from the Go-phase.  相似文献   

17.
The possibility that the radiosensitivity of lymphoblastoid cell lines from patients with ataxia telangiectasia (A-T) is due to an aberrant content of histones has been examined. The histone pattern of lymphoblastoid cell lines derived from A-T patients was found to be indistinguishable from that obtained from normal individuals. X-ray irradiation led to a greater decrease in cell growth rate in the A-T cells than in the normal cells but was accompanied by a greater decrease of DNA synthesis rate in the normal cells. This difference in radiosensitivity was not reflected in differences in the content or rates of synthesis of histones or of major non-histone proteins in these cells. Reduction in the rate of DNA synthesis was not associated with the appearance of the lysine-rich histone variant H1. We conclude that the hypersensitivity to ionizing radiation in A-T cells is not due to fundamental differences in the composition or synthesis of the major chromosomal proteins.  相似文献   

18.
Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations are associated with cystic fibrosis (CF)-related monosymptomatic conditions, including idiopathic pancreatitis. We evaluated prospectively enrolled patients who had idiopathic recurrent acute pancreatitis or idiopathic chronic pancreatitis, healthy controls, CF heterozygotes, and CF patients (pancreatic insufficient or sufficient) for evidence of CFTR gene mutations and abnormalities of ion transport by sweat chloride and nasal potential difference testing. DNA samples from anonymous blood donors were controls for genotyping. At least one CFTR mutation or variant was carried in 18 of 40 patients (45%) with idiopathic chronic pancreatitis and in 6 of 16 patients (38%) with idiopathic recurrent acute pancreatitis but in only 11 of the 50 controls (22%, P=0.005). Most identified mutations were rare and would not be identified in routine genetic screening. CFTR mutations were identified on both alleles in six patient (11%). Ion transport measurements in patients with pancreatitis showed a wide range of results, from the values in patients with classically diagnosed CF to those in the obligate heterozygotes and healthy controls. In general, ion channel measurements correlated with the number and severity of CFTR mutations. Twelve of 56 patients with pancreatitis (21%) fulfilled current clinical criteria for the diagnosis of CF, but CFTR genotyping alone confirmed the diagnosis in only two of these patients. We concluded that extensive genotyping and ion channel testing are useful to confirm or exclude the diagnosis of CF in the majority of patients with idiopathic pancreatitis.  相似文献   

19.
《Autophagy》2013,9(5):840-841
The various pathologies in ataxia telangiectasia (A-T) patients including T-cell lymphomagenesis have been attributed to defects in the DNA damage response pathway because ATM, the gene mutated in this disease, is a key mediator of this process. Analysis of Atm-deficient thymocytes in mice reveals that the absence of this gene results in altered mitochondrial homeostasis, a phenomenon that appears to result from abnormal mitophagy engagement. Interestingly, allelic loss of the autophagic gene Becn1 delays tumorigenesis in Atm-null mice presumably by reversing the mitochondrial abnormalities and not by improving the DNA damage response (DDR) pathway. Thus, ATM plays a critical role in modulating mitochondrial homeostasis perhaps by regulating mitophagy.  相似文献   

20.
From more than 500 tumours reported in human primary immune deficiencies a majority has been observed in two disorders: ataxia telangiectasia (A-T) and common variable immune deficiency (CVID). Since both diseases have an increased risk of lymphomas/leukaemias and gastrointestinal tumours, suggesting a common risk factor, and the cells derived from A-T patients exhibit an increased chromosomal radiosensitivity we analysed chromosome damage in the G2 lymphocytes of 24 CVID pateints and 21 controls after X-irradiation in vitro.

There was a significant difference in mean aberration yields between patients and controls. Three CVID patients had yields higher than the mean + 3SD of the controls. Six patients but only one control had yields higher than the mean + 2SD of controls. The patient with the highest chromosomal radiosensitivity subsequently developed a lymphoma. Repeat assays on the same blood sample, with a 24-h delay in setting up the second culture, showed as much variability for control donors as the variation between control donors although for CVID patients inter-individual variation was greater than the difference between results of repeat samples. There was a weak positive correlation between radiosensitivity and age of donor. Chromosomal radiosensitivity of five patients with X-linked hypogammaglobulinaemia was not different from healthy donors.

The mean mitotic index (MI) for unirradiated samples from CVID patients was significantly lower than for controls and there was an inverse relationship between MI and aberration yields in the patients, but not in controls. We suggest that the defect in CVID patients that reduces response to mitogenic stimuli may have mechanism(s) in common with those involved in cellular repair processes.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号