首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined beta-D-galactofuranosidase production by Penicillium fellutanum in the presence of D-galactono-1,4-lactone or 4-aminophenyl 1-thio-beta-D-galactofuranoside, two potent in vitro inhibitors of the enzyme. Activity of the enzyme in the culture filtrate was increased by 35% when glucose was replaced by D-galactose as the carbon source, and the activity diminished 80% of the control value when the inhibitors were added. Significant alterations of the culture were observed: (a) the medium became increasingly opalescent due to the secretion of a protein aggregate (PA) which contained 15% neutral sugar, mainly ribose; (b) the peptidophosphogalactomannan (pPGM) containing galactofuranose, normally produced by P. fellutanum, could not be obtained from the culture medium in the presence of the inhibitors; (c) the content of galactofuranose in the cell wall was significantly decreased in the presence of D-galactono-1,4-lactone. The influence on the mycelia growth was investigated by light microscopy (LM) and transmission electron microscopy (TEM) showing important alterations.  相似文献   

2.
Reaction of L-ascorbic acid with hydrogen bromide in acetic acid gave 6-bromo-6-deoxy-L-ascorbic acid, which was converted into 5,6-dideoxy-D-glycero-hex-2,3-enono-1,4-lactone. Hexonic acids or their lactones also gave bromo compounds on treatment with HBrAcOH. From D-galactono-1,4-lactone a 6-bromo derivative was obtained. Calcium D-gluconate yielded 2,6-dibromo-2,6-dideoxy-D-mannono-1,4-lactone, whereas D-mannono-1,4-lactone gave 2,6-dibromo-2,6-dideoxy-D-glucono-1,4-lactone.  相似文献   

3.
Li SC  Han JW  Chen KC  Chen CS 《Phytochemistry》2001,57(3):349-359
Five isoforms of beta-galactosidase (EC 3.2.1.23), designated as beta-galactosidases I-V, were isolated from five-day-old mung bean (Vigna radiata) seedlings. Beta-galactosidases II and III were purified to electrophoretic homogeneity by a procedure involving acid precipitation, ammonium sulfate fractionation, chromatography on diethylaminoethyl-cellulose (DEAE-Cellulose) and con A-Sepharose. and chromatofocusing. Beta-galactosidases I, II and III have the same molecular mass of 87 kDa. comprising two nonidentical subunits with molecular masses of 38 and 48 kDa, while beta-galactosidases IV and V have molecular masses of 45 and 73 kDa, respectively. All the enzymes were active against p-nitrophenyl-beta-D-galactoside, and to a lesser extent, p-nitrophenyl-alpha-L-arabinoside and p-nitrophenyl-beta-D-fucoside. The enzymes were inhibited by D-galactono-1,4-lactone, D-galactose, Hg2+, Ag+ and sodium dodecyl sulfate (SDS). Beta-galactosidases I, II and III were shown to be competitively inhibited by either D-galactono-1, 4-lactone or D-galactose. Isoforms I, II and III have a common optimal pH of 3.6, while isoforms IV and V have pH optima at 3.8 and 4.0, respectively. Isoelectric points of isoforms I, II and III were 7.7, 7.5 and 7.3, respectively. Double immunodiffusion analysis indicated that beta-galactosidases I, II, III and V are immunologically similar to each other, while beta-galactosidase IV shares partially identical antigenic determinants with the other four isoforms. The purified beta-galactosidases II and III were capable of releasing D-galactose residue from the hemicellulose fraction isolated from mung bean seeds.  相似文献   

4.
The single-crystal X-ray diffraction and high-resolution 1H and 13C NMR spectral data for methyl 2,5-di-O-acetyl-beta-D-glucofuranosidurono-6,3-lactone and 1,2,5-tri-O-acetyl-beta-D-glucofuranurono-6,3-lactone are reported. The lactones were synthesized as byproducts of reactions carried out to obtain methyl 1,2,3,4-tetra-O-acetyl-D-glucopyranuronate. The conformations of these lactones in the crystal structure and in solution are discussed. A 1T2-like conformation was found to be the preferred form for these lactones in both the crystal lattice and in solution.  相似文献   

5.
The inhibition of growth in Bacteroides melaninogenicus by sugars in described. Monosaccharides such as D-glucose, D-galactose, D-mannose, and D-fructose are inhibitory at low concentrations, whereas the disaccharides sucrose and lactose are not inhibitory even at high concentrations. The major inhibitory effect of the sugar is found during the transition of lag to logarithmic growth phases. There was no primary effect of D-glucose on protein, ribonucleic acid, or deoxyribonucleic acid synthesis on cells in transition from lag to logarithmic growth. However, the addition of glucose or galactose completely abolished the induction of 3-ketodihydrosphingosine synthetase by vitamin K in vitamin K-depleted cells. Futhermore, in cells which were not vitamin K depleted, the level of this enzyme was drastically reduced by the addition of the sugar. Cyclic adenosine 5-monophosphate was unable to reverse the growth inhibition produced by glucose. In actively growing cultures, addition of sugar slows the growth rate. In these experiments the level of 3-ketodihydrosphingosine synthetase fell only after the cells had assumed the slower rate of growth. There were two indications that D-galactose was more inhibitory than D-glucose; in the presence of 0.1% D-galactose cells in lag phase did not show the increase in turbidity found in similar cells placed in medium with 0.1% D-glucose, and also D-galactose caused a greater decrease in the growth rate of actively growing cultures than was found with D-glucose. These studies suggest that the inhibitory effect of monosaccharides in lag leads to logarithmic growth transition can be ascribed to an effect on enzyme induction. On the other hand, the ability of many monosaccharides to inhibit growth, and the greater inhibitory property of D-galactose compared with D-glucose, suggests that other mechanisms may be operative as well.  相似文献   

6.
The reversion reactions of beta-galactosidase (Escherichia coli) produced beta-galactosyl-galactoses and beta-galactosyl-glucoses. About 10 beta-galactosyl-galactose and 10 beta-galactosyl-glucose gas-liquid chromatographic peaks were detected and it is thus very likely that every possible isomer of beta-galactosyl-galactose and beta-galactosyl-glucose was formed by the reversion reactions (taking into account both anomers for each isomer). The presence of lactose and allolactose among the beta-galactosyl-glucoses was confirmed with standards. An important finding relating to the role of allolactose as an inducer of the lac operon was that allolactose (beta-D-galactosyl-(1----6)-D-glucose) was the only disaccharide formed initially, and at equilibrium it was present in the largest amount (50%). Obviously the enzyme is specific in its ability to form allolactose, and allolactose is the most stable beta-galactosyl-glucose, both important inducer properties. The equilibrium constant (concentration of disaccharides divided by the concentration of reactants at equilibrium) of the reaction was about 9.5 mM-1. This is the first report of an equilibrium constant for the beta-galactosidase reaction. Of mechanistic significance is the fact that only three compounds were able to replace D-galactose as a reversion reactant. Two of these (L-arabinose and D-fucose) had alterations at carbon 6. The 6 position, therefore, is not essential for reactivity. The third compound was D-galactal. Any other sugars tested (even with very minor changes relative to D-galactose) did not react. Of special consequence is the 2 position. The results strongly suggest that there has to be either an equatorial hydroxyl at the 2 position of a sugar or a special reactivity (as with D-galactal) in order for the enzyme to catalyze the beta-galactosidase reaction.  相似文献   

7.
 通过测定海枣曲霉β-半乳糖苷酶的底物特异性,表明该酶水解对-硝基酚基β-半乳糖苷(PNP-β-gal)的活力最高。该酶水解PNP-β-gal,乳糖和对-硝基酚基β-D-岩藻糖苷(PNP-β-fuc)的相对活力为100,63.1,10.3。不同测定方法的结果均表明,这一PNP-β-fuc水解活性来自β-半乳糖苷酶本身。Hg~(2+)、D-半乳糖和D-半乳糖-r-内酯对该酶有强烈的抑制作用,Ag~+和4mol/l脲也有较强的抑制作用。该酶水解PNP-β-gal和乳糖的Km值分别为1.3及36.2mmol/l,Vmax则分别为478和189μmol.min~(-1).mg~(-1)。Lineweaver-Burk作图法及Dixon作图法均表明D-半乳糖和D-半乳糖酸-γ-内酯对该酶显示竞争性抑制作用,其Ki分别为4和0.9mmol/l。  相似文献   

8.
When Bacillus megaterium cells are grown on D-galactose as the sole carbon source, the cells actively synthesize beta-galactosidase (beta-D-galactoside galactohydrolase, EC 3.2.1.23). However, D-galactose, when added to a glucose-grown culture, did not induce beta-galactosidase, apparently because of the glucose inhibition of the transport of galactose. On the other hand, when glucose was added to a galactose-grown culture, the transport of galactose continued at a reduced but significate rate, whereas further synthesis of beta-galactosidase was halted. Adenosine 3',5'-cyclic monophosphate (camp) or guanosine 3',5'-cyclic monophosphate (Cgmp) did not relieve the glucose inhibition of beta-galactosidase synthesis in the preinduced culture. A method which gave a reproducible assay of c[32P]AMP in Escherichia coli did not detect cAMP or cGMP in a B. megaterium culture undergoing beta-galactosidase induction, but revealed the extracellular accumulation of two unknown phosphorylated compounds. Cell-free extracts prepared from galactose-grown cells did not catalyze the degradation of cAMP or cGMP.  相似文献   

9.
The concentration of cyclic adenosine 3',5'-monophosphate (c-AMP) in Escherichia coli growing on different sources of carbon was studied. Cultures utilizing a source of carbon that supported growth relatively poorly had consistently higher concentrations of c-AMP than did cultures utilizing sugars that supported rapid growth. This relationship was also observed in strains defective in c-AMP phosphodiesterase and simultaneously resistant to catabolite repression; in such strains the c-AMP concentration was slightly higher for several sources of carbon tested. Cultures continued to synthesize c-AMP and secreted it into the medium, under conditions that brought about an inhibition of the intracellular accumulation of the cyclic nucleotide. Transient repression of the synthesis of beta-galactosidase was not associated with an abrupt decrease in the cellular concentration of c-AMP.  相似文献   

10.
Two simple procedures for the synthesis of 2-deoxy-D-lyxo-hexono-1,4-lactone are described. Reductive cleavage of a 2-O-tosyl derivative of D-galactono-1,4-lactone in the presence of sodium iodide afforded the 2-deoxy derivative. On the other hand, alpha-deoxygenation of D-galactono-1,4-lactone was easily achieved by photochemical electron transfer deoxygenation of HO-2 as the 3-(trifluoromethyl)benzoate. Methyl 2-deoxy-beta-D-lyxo-hexafuranoside ('methyl 2-deoxy-beta-D-galactofuranoside') was synthesized and tested as substrate for exo beta-D-galactofuranosidase from Penicillium fellutanum. The reaction was followed by HPAEC, showing that methyl 2-deoxy-beta-D-galactofuranoside was not hydrolyzed by incubation with the enzyme. Neither the 2-deoxy lactone, nor the 2-deoxy-beta-D-galactofuranoside acted as inhibitors of the reaction with the 4-nitrophenyl beta-D-galactofuranoside. The present and our previous results show that the hydroxyl groups at C-2, C-3 and C-6 of the galactofuranoside are essential for interaction with the exo beta-D-galactofuranosidase.  相似文献   

11.
During evolution ribose was selected as the exclusive sugar component of nucleic acids. The selection is explained by using molecular models and by eliminating most of the other common sugars by looking at their chemical structure and envisioning how they would fit in a nucleic acid model. Comparisons of sugar pucker conformations and configurations of pentoses indicate that ribose was not randomly selected but the only choice, since beta-D-ribose fits best into the structure of physiological forms of nucleic acids. In other nucleotides containing arabinose, xylose, or lyxose, the C(2)'-OH and/or the C(3)'-OH are above the furanose ring, causing steric interference with the bulky base and the C(5)'-OH group.  相似文献   

12.
The mechanism of the galactosyltransferase-catalyzed reaction was probed using positional isotope exchange, alpha-secondary deuterium isotope effects, and inhibition studies with potential transition state analogs. Incubation of [beta-18O2, alpha beta-18O]UDP-galactose and alpha-lactalbumin with galactosyltransferase from bovine milk did not result in any positional isotope exchange. The addition of 4-deoxy-4-fluoroglucose as a dead-end inhibitor did not induce any detectable positional isotope exchange. alpha-Secondary deuterium isotope effects of 1.21 +/- 0.04 on Vmax and 1.05 +/- 0.04 on Vmax/KM were observed for [1-2H]-UDP-galactose. D-Glucono-1,5-lactone, D-galactono-1,4-lactone, D-galactono-1,5-lactone, nojirimycin, and deoxynojirimycin, did not inhibit the galactosyl transfer reaction at concentrations less than 1.0 mM. The magnitude of the secondary deuterium isotope effect supports a mechanism in which the anomeric carbon of the galactosyl moiety has substantial sp2 character in the transition state. Therefore, the cleavage of the bond between the galactose and UDP moieties in the transition state has proceeded to a much greater extent than the formation of the bond between the galactose and the incoming glucose. The lack of a positional isotope exchange reaction indicates that the beta-phosphoryl group of the UDP is not free to rotate in the absence of an acceptor substrate.  相似文献   

13.
Gamma-sugar-amino acid analogues in the form of C-ketosides can be prepared in 5-6 steps starting from D-galactono-1,5-lactone. The key step in the synthesis is the trimethylsilyl trifluoromethanesulfonate (TMSOTf) promoted C-glycosylation of 2-deoxy-3-ulopyranosonates with trimethylsilyl cyanide. Hydrogenation of the resulting beta-cyano esters provides C-ketoside-based gamma-sugar-amino acids that serve as building blocks for the synthesis of unnatural neoglycopeptides.  相似文献   

14.
Treatment of 2-acetamido-2-deoxy-D-mannono-1,4-lactone with dicyclohexylamine in ethanolic solution afforded an unsaturated 1,4-lactone, 2-acetamido-2,3-dideoxy-D-erythro-hex-2-enono-1,4-lactone (1), in good yield. 2-Acetamido-2,3-dideoxy-D-threo-hex-2-enono-1,4-lactone (2) was similarly prepared from 2-acetamido-2-deoxy-D-galactono-1,4-lactone. An unsaturated 1,5-lactone, 2-acetamido-2,3-dideoxy-D-threo-hex-2-enono-1,5-lactone (4), was obtained through the oxidation of 2-acetamido-2-doexy-4,6-0-isopropylidene-D-galactopyranose with silver carbonate on Celite, followed by mild hydrolysis. The inhibitory activity of four isomeric 2-acetamido-2,3-dideoxy-D-hex-2-enonolactones [1, 2, 4, and 2-acetamido-2,3-dideoxy-D-erythro-hex-2-enono-1,5-lactone (3)] was assayed against 2-acetamido-2-deoxy-beta-D-glucosidase from bull epididymis. Only the erythro lactones 1 and 3 are weak competitive inhibitors, whereas the threo lactones 2 and 4 are practically inactive. The 1,4-lactone 1 inhibited 2-acetamido-2-deoxy-beta-D-glucosidase more strongly than the 1,5-lactone 3. The lactones 1-4 were found to be quite stable in aqueous solution or under inhibitory-assay conditions. In addition, two 2-acetamido-2-deoxy-D-glycals, 2-acetamido-1,5-anhydrohex-1-enitol (7) were tested; both are 10 times as active as 1.  相似文献   

15.
The tautomerism of sugars showing complex mutarotation has been analyzed mathematically based on a scheme of three components. More-complete but complex schemes are shown to be reducible to the three-component scheme, because the supposed intermediates of interconversion can be neglected in the kinetics when their equilibrium contents are very small and because two furanose tautomers can be regarded as one component under appropriate conditions. The kinetics of the three-component scheme have been fully studied and are shown to explain successfully the tautomerism of most of the sugars. The tautomerism of D-galactose has been analyzed in especial detail. From the polarimetric data and the equilibrium content of α-pyranose, the kinetic rate-constants for D-galactose were determined and found consistent with all other experimental data. The slow and fast processes of complex mutarotation of D-galactose are shown to correspond approximately to pyranose-pyranose and pyranose-furanose interconversions, respectively.  相似文献   

16.
The ebg beta-galactosidase of Escherichia coli K-12 strain LC110 has been purified and characterized. Strain LC110 is a Lac+ revertant of a mutant with a deletion of the lacZ beta-galactosidase gene. Its new ebg beta-galactosidase activity was shown to be due to a discrete protein, immunologically unrelated to lacZ beta-galactosidase. Its kinetics of action conformed to those of a simple conventional enzyme. With o-nitrophenyl-beta-D-galactoside as substrate, the Vmax was 11,200 nmol/min per mg of enzyme, the Km was 5 mM, and the activation energy was 12,400 cal/mol. Corresponding values for lacZ beta-galactosidase of wild-type E. coli K-12 were 350,000 nmol/min per mg of enzyme, 1.3 mM, and 8,000 cal/mol. A series of sugars has been examined as competitive inhibitors of ebg beta-galactosidase. Kinetic analyses suggest that ebg beta-galactosidase has a particularly high affinity for galactosamine and gamma-galactonolactone, binds galatose more tightly than lactose, and shows a general preference for monosaccharides rather than beta-galactosides. We conclude that the ebg beta-galactosidase may have arisen by modification of a gene involved with the metabolism of a monosaccharide, possibly a 2-amino sugar.  相似文献   

17.
The effect of three sugars and their amino derivatives on violaxanthin cycle enzymes activity was investigated in duckweed (Lemna trisulca), a model water-plant. No effect of sugars and amino sugars on violaxanthin de-epoxidase was observed independent of incubation time; however, epoxidation of zeaxanthin to violaxanthin was inhibited. The minimum amino sugar concentrations causing maximum inhibition of zeaxanthin epoxidation have been estimated. Amino sugars but not sugars caused more than a 50% inhibition of zeaxanthin epoxidation in duckweed after a 24h incubation when applied at a concentration of 0.5%. Incubation with amino sugars under a 6d photoperiod enhanced the inhibitory effect. Zeaxanthin epoxidation was completely inhibited under such conditions, whereas only a minor inhibitory effect was observed in sugar treated plants. The strong amino sugar inhibition of zeaxanthin epoxidase activity represents additional evidence for the creation of an unstable carotenoid carbocation in the molecular mechanism of epoxidation.  相似文献   

18.
The regulation of formation of the single intracellular beta-galactosidase activity of Aspergillus nidulans was investigated. beta-Galactosidase was not formed during growth on glucose or glycerol, but was rapidly induced during growth on lactose or D-galactose. L-Arabinose, and -- with lower efficacy -- D-xylose also induced beta-galactosidase activity. Addition of glucose to cultures growing on lactose led to a rapid decrease in beta-galactosidase activity. In contrast, in cultures growing on D-galactose, addition of glucose decreased the activity of beta-galactosidase only slightly. Glucose inhibited the uptake of lactose, but not of D-galactose, and required the carbon catabolite repressor CreA for this. In addition, CreA also repressed the formation of basal levels of beta-galactosidase and partially interfered with the induction of beta-galactosidase by D-galactose, L-arabinose, and D-xylose. D-Galactose phosphorylation was not necessary for beta-galactosidase induction, since induction by D-galactose occurred in an A. nidulans mutant defective in galactose kinase, and by the non-metabolizable D-galactose analogue fucose in the wild-type strain. Interestingly, a mutant in galactose-1-phosphate uridylyl transferase produced beta-galactosidase at a low, constitutive level even on glucose and glycerol and was no longer inducible by D-galactose, whereas it was still inducible by L-arabinose. We conclude that biosynthesis of the intracellular beta-galactosidase of A. nidulans is regulated by CreA, partially repressed by galactose-1-phosphate uridylyl transferase, and induced by D-galactose and L-arabinose in independent ways.  相似文献   

19.
20.
1. By the osmotic-protection method, the penetration of sugars through the rat liver lysosomal membranes was studied with a view of determining whether sugar uptake was by facilitated diffusion. 2. The following criteria for this type of transport were established: sugar specificity, the order of uptake being 2-deoxy-D-glucose less than D-glucose less than D-mannose less than D-galactose less than D-ribose less than 2-deoxy-D-ribose; stereospecificity, the uptake of L-glucose and L-ribose being 50% slower than their D-stereoisomers; inhibition by 1 MM-phlorrhizin and 1 M-cytochalastin B; competition between sugars for uptake, and a Q10 (rate difference over a 10 degrees C temperature range) for uptake of approx. 2.8. 3. It is proposed that sugar uptake into lysosomes from rat liver is by facilitated diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号