首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Heparan sulphate and chondroitin/dermatan sulphate proteoglycans of human skin fibroblasts were isolated and separated after metabolic labelling for 48 h with 35SO4(2-) and/or [3H]leucine. The proteoglycans were obtained from the culture medium, from a detergent extract of the cells and from the remaining ''matrix'', and purified by using density-gradient centrifugation, gel and ion-exchange chromatography. The core proteins of the various proteoglycans were identified by electrophoresis in SDS after enzymic removal of the glycosaminoglycan side chains. Skin fibroblasts produce a number of heparan sulphate proteoglycans, with core proteins of apparent molecular masses 350, 250, 130, 90, 70, 45 and possibly 35 kDa. The major proteoglycan is that with the largest core, and it is principally located in the matrix. A novel proteoglycan with a 250 kDa core is almost entirely secreted or shed into the culture medium. Two exclusively cell-associated proteoglycans with 90 kDa core proteins, one with heparan sulphate and another novel one with chondroitin/dermatan sulphate, were also identified. The heparan sulphate proteoglycan with the 70 kDa core was found both in the cell layer and in the medium. In a previous study [Fransson, Carlstedt, Cöster & Malmström (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5657-5661] it was suggested that skin fibroblasts produce a proteoglycan form of the transferrin receptor. However, the core protein of the major heparan sulphate proteoglycan now purified does not resemble this receptor, nor does it bind transferrin. The principal secreted proteoglycans are the previously described large chondroitin sulphate proteoglycan (PG-L) and the small dermatan sulphate proteoglycans (PG-S1 and PG-S2).  相似文献   

2.
The basement membrane heparan sulfate proteoglycan produced by the Englebreth-Holm-Swarm (EHS) tumor and by glomeruli were compared by immunological methods. Antibodies to the EHS proteoglycan immunoprecipitated a single precursor protein (Mr = 400,000) from [35S]methionine-pulsed glomeruli, the same size produced by EHS cells. These antibodies detected both heparan sulfate proteoglycans and glycoproteins in extracts of unlabeled glomeruli and glomerular basement membrane. The proteoglycans contained core proteins of varying size (Mr = 150,000 to 400,000) with a Mr = 250,000 species being predominant. The glycoproteins are fragments of the core protein which lack heparan sulfate side chains. Antibodies to glomerular basement membrane proteoglycan immunoprecipitated the precursor protein (Mr = 400,000) synthesized by EHS cells and also reacted with most of the proteolytic fragments of the EHS proteoglycan. This antibody did not, however, react with the P44 fragment, a peptide situated at one end of the EHS proteoglycan core protein. These data suggest that the glomerular basement membrane proteoglycan is synthesized from a large precursor protein which undergoes specific proteolytic processing.  相似文献   

3.
We have previously described the structures of neutral and sialylated O-glycosidic mannose-linked tetrasaccharides and keratan sulphate polysaccharide chains in the chondroitin sulphate proteoglycan of brain. The present paper provides information on a series of related sialylated and/or sulphated tri- to penta-saccharides released by alkaline-borohydride treatment of the proteoglycan glycopeptides. The oligosaccharides were fractionated by ion-exchange chromatography and gel filtration, and their structural properties were studied by methylation analysis and fast-atom-bombardment mass spectrometry. Five fractions containing [35S]sulphate-labelled oligosaccharides were obtained by ion-exchange chromatography, each of which was eluted from Sephadex G-50 as two well-separated peaks. The apparent Mr values of both the large- and small-molecular-size fractions increased with increasing acidity (and sulphate labelling) of the oligosaccharides. The larger-molecular-size fractions contained short mannose-linked keratan sulphate chains of Mr 3000-4500, together with some asparagine-linked oligosaccharides. The smaller tri- to penta-saccharides, of Mr 800-1400, appear to have a common GlcNac(beta 1-3)Manol core, and to contain one to two residues of sialic acid and/or sulphate.  相似文献   

4.
Proteoglycans, metabolically labelled with [3H]leucine and 35SO4(2-), were isolated from the spent media and from guanidinium chloride extracts of cultured human umbilical-vein endothelial cells by using isopycnic density-gradient centrifugation, gel filtration and ion-exchange h.p.l.c. The major proteoglycan species were subjected to SDS/polyacrylamide-gel electrophoresis before and after enzymic degradation of the polysaccharide chains. The cell extract contained mainly a heparan sulphate proteoglycan that has a buoyant density of 1.31 g/ml and a protein core with apparent molecular mass 300 kDa. The latter was heterogeneous and migrated as one major and one minor band. After reduction, the apparent molecular mass of the major band increased to approx. 350 kDa, indicating the presence of intrachain disulphide bonds. The proteoglycan binds to octyl-Sepharose and its polysaccharide chains are extensively degraded by heparan sulphate lyase. The proteoglycans of the medium contained 90% of all the incorporated 35SO4(2-). Here the predominant heparan sulphate proteoglycan was similar to that of the cell extract, but was more heterogeneous and contained an additional core protein with apparent molecular mass 210 kDa. Furthermore, two different chondroitin sulphate proteoglycans were found: one 200 kDa species with a high buoyant density (approx. 1.45 g/ml) and one 100 kDa species with low buoyant density (approx. 1.3 g/ml). Both these proteoglycans have a core protein of molecular mass approx. 47 kDa.  相似文献   

5.
35SO42(-)- and [3H]leucine-labelled proteoglycans were isolated from the medium and cell layer of human skin fibroblast cultures. Measures were taken to avoid proteolytic modifications during isolation by adding guanidinium chloride and proteolysis inhibitors immediately after harvest. The proteoglycans were purified and fractionated by density-gradient centrifugation, followed by gel and ion-exchange chromatography. Our procedure permitted the isolation of two major proteoglycan fractions from the medium, one large, containing glucuronic acid-rich dermatan sulphate chains, and one small, containing iduronic acid-rich ones. The protein core of the latter proteoglycan had an apparent molecular weight of 47000 as determined by polyacrylamide-gel electrophoresis, whereas the protein core of the former was considerably larger. The major dermatan sulphate proteoglycan of the cell layer was similar to the large proteoglycan of the medium. Only small amounts of the iduronic acid-rich dermatan sulphate proteoglycan could be isolated from the cell layer. Instead most of the iduronic acid-rich glycans appeared as free chains. The heparan sulphate proteoglycans found in the cell culture were largely confined to the cell layer. This proteoglycan was of rather low buoyant density and seemed to contain a high proportion of protein. The major part of the heparan sulphate proteoglycan from the medium had a higher buoyant density and contained a smaller amount of protein.  相似文献   

6.
Heparan sulphate proteoglycan, labelled with [35S]sulphate, was prepared from rat livers for studies of its interaction with purified rat transferrin. Affinity chromatography of the preparation on columns of immobilized differic transferrin and apotransferrin showed that the proteoglycan possessed affinity for both types of matrices at pH 7.3 and that this affinity significantly increased at pH 5.6. The glycosaminoglycan chains liberated from the proteoglycan by heparan sulphate lyase also bound to apotransferrin, albeit less strongly, whereas the deglycosylated core protein exhibited virtually no interaction with this matrix. In the presence of the proteoglycan at pH 5.6, the release of iron from the N-lobe of transferrin was accelerated. These observations suggest that heparan sulphate proteoglycan from the liver can mimick some of the known functions of bona fide transferrin receptors and, hence, interaction with the proteoglycan may provide an alternative nondegradative pathway for transferrin through hepatic cells.  相似文献   

7.
1. Proteoglycans were extracted from sclera with 4 M-guanidine hydrochloride in the presence of proteinase inhibitors and purified by ion-exchange chromatography and density-gradient centrifugation. 2. The entire proteoglycan pool was characterized by compositional analyses and by specific chemical (periodate oxidation) and enzymic (chondroitinases) degradations. The glycan moieties of the molecules were exclusively galactosaminoglycans (dermatan sulphate-chondroitin sulphate co-polymers). In addition, the preparations contained small amounts of oligosaccharides. 3. The scleral proteodermatan sulphates were fractionated into one larger (I) and one smaller (II) component by gel chromatography. Proteoglycan I was eluted in a more excluded position on gel chromatography in 0.5 M-sodium acetate than in 4.0 M-guanidine hydrochloride. Reduced and alkylated proteoglycan I was eluted in the same position (in 0.5 M-sodium acetate) as was the starting material (in 4.0 M-guanidine hydrochloride). The elution position of proteoglycan II was the same in both solvents. Proteoglycans I and II had s0 20,w values of 2.8 x 10(-13) and 2.2 x 10(-13) s respectively in 6.0 M-guanidine hydrochloride. 4. The two proteoglycans differed with respect to the nature of the protein core and the co-polymeric structure of their side chains. Also proteoglycan I contained more side chains than did proteoglycan II. The dermatan sulphate side chains of proteoglycan I were D-glucuronic acid-rich (80%), whereas those of proteoglycan II contained equal amounts of D-glucuronic acid and L-iduronic acid. Furthermore, the co-polymeric features of the side chains of proteoglycans I and II were different. The protein core of proteoglycan I was of larger size than that of proteoglycan II. The latter had an apparent molecular weight of 46 000 (estimated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis), whereas the former was greater than 100 000. In addition, the amino-acid composition of the two core preparations was different. 5. As proteoglycan I altered its elution position on gel chromatography in 4 M-guanidine hydrochloride compared with 0.5 M-sodium acetate it is proposed that a change in conformation or a disaggregation took place. If the latter hypothesis is favoured, aggregation may be due to self-association or mediated by an extrinsic molecule, e.g. hyaluronic acid.  相似文献   

8.
Fibroblast proteoheparan sulphate has a disulphide-bonded subunit structure. The core protein appears to consist of two polypeptides each of Mr 80 000-100 000. As shown elsewhere [Carlstedt, Cöster, Malmström & Fransson (1983) J. Biol. Chem. in the press], both polypeptide molecules carry four to six heparan sulphate side chains (approx. Mr 20 000) and an unknown number of oligosaccharide units, giving the whole macromolecule an Mr in the range 300 000-400 000.  相似文献   

9.
We show here that the endothelial cell-line ECV 304 expresses the heparan sulfate proteoglycan glypican-1. The predominant cellular glycoform carries truncated side-chains and is accompanied by heparan sulfate oligosaccharides. Treatment with brefeldin A results in accumulation of a glypican proteoglycan with full-size side-chains while the oligosaccharides disappear. During chase the glypican proteoglycan is converted to partially degraded heparan sulfate chains and chain-truncated proteoglycan, both of which can be captured by treatment with suramin. The heparan sulfate chains in the intact proteoglycan can be depolymerized by nitrite-dependent cleavage at internally located N-unsubstituted glucosamine moieties. Inhibition of NO-synthase or nitrite-deprivation prevents regeneration of intact proteoglycan from truncated precursors as well as formation of oligosaccharides. In nitrite-deprived cells, formation of glypican proteoglycan is restored when NO-donor is supplied. We propose that, in recycling glypican-1, heparan sulfate chains are cleaved at or near glucosamines with unsubstituted amino groups. NO-derived nitrite is then required for the removal of short, nonreducing terminal saccharides containing these N-unsubstituted glucosamine residues from the core protein stubs, facilitating re-synthesis of heparan sulfate chains.  相似文献   

10.
Heparan sulfate proteoglycan from the L2 rat yolk sac carcinoma has been purified and partially characterized. The proteoglycan has an apparent Mr of 750 000, 35% of which represents the core protein. The core protein seems to be homogeneous, whereas the heparan sulfate chains are heterogeneous with an Mr of about 50 000-70 000, with 30% of the glucosamine being N-sulfated. Antibodies raised against the core protein of the heparan sulfate proteoglycan reacted with basement membranes of various rat and human tissue.  相似文献   

11.
We have isolated from the conditioned medium of an established endothelial cell line a heparan sulphate proteoglycan whose involvement in the inhibition of the extrinsic coagulation pathway was reported in previous studies [Colburn & Buonassisi (1982) Biochem. Biophys. Res. Commun. 104, 220-227]. The proteoglycan was purified by gel filtration and ion-exchange chromatography, and appears to be free of contaminating proteins as determined by polyacrylamide-gel electrophoresis of the radioiodinated protein core before and after removal of the glycosaminoglycan chains by treatment with heparitinase. By this procedure the Mr of the protein core was estimated to be 22000. The N-terminal end was sequenced up to amino acid 25. The 21st residue is likely to be glycosylated. Analysis of the purified proteoglycan by gel-filtration chromatography yielded Kd values of 0.2 for the whole molecule and 0.35 for the glycosaminoglycan chains. The structure that emerges from these data is that of a heparan sulphate proteoglycan characterized by a relatively small protein core and few glycosaminoglycan chains.  相似文献   

12.
Human embryonic skin fibroblasts were pretreated with transforming growth factor-beta (TGF-beta) for 6 h and then labeled with [35S]sulphate and [3H]leucine for 24 h. Radiolabeled proteoglycans from the culture medium and the cell layer were isolated and separated by isopycnic density-gradient centrifugation, followed by gel, ion-exchange and hydrophobic-interaction chromatography. The major proteoglycan species were examined by polyacrylamide gel electrophoresis in sodium dodecyl sulphate before and after enzymatic degradation of the polysaccharide chains. The results showed that TGF-beta increased the production of several different 35S-labelled proteoglycans. A large chondroitin/dermatan sulphate proteoglycan (with core proteins of approximately 400-500 kDa) increased 5-7-fold and a small dermatan sulphate proteoglycan (PG-S1, also termed biglycan, with a core protein of 43 kDa) increased 3-4-fold both in the medium and in the cell layer. Only a small effect was observed on another dermatan sulphate proteoglycan, PG-S2 (also named decorin). These observations are generally in agreement with results of other studies using similar cell types. In addition, we have found that the major heparan sulphate proteoglycan of the cell layer (protein core approximately 350 kDa) was increased by TGF-beta treatment, whereas all the other smaller heparan sulphate proteoglycans with protein cores from 250 kDa to 30 kDa appeared unaffected. To investigate whether TGF-beta also influences the glycosaminoglycan (GAG) chain-synthesizing machinery, we also characterized GAGs derived from proteoglycans synthesized by TGF-beta-treated cells. There was generally no increase in the size of the GAG chains. However, the dermatan sulphate chains on biglycan and decorin from TGF-beta treated cultures contained a larger proportion of D-glucuronosyl residues than those derived from untreated cultures. No effect was noted on the 4- and 6-sulphation of the GAG chains. By the use of p-nitrophenyl beta-D-xyloside (an initiator of GAG synthesis) it could be demonstrated that chain synthesis was also enhanced in TGF-beta-treated cells (approximately twofold). Furthermore, the dermatan sulphate chains synthesized on the xyloside in TGF-beta-treated fibroblasts contained a larger proportion of D-glucuronosyl residues than those of the control. These novel findings indicate that TGF-beta affects proteoglycan synthesis both quantitatively and qualitatively and that it can also change the copolymeric structure of the GAG by affecting the GAG-synthesizing machinery. Altered proteoglycan structure and production may have profound effects on the properties of extracellular matrices, which can affect cell growth and migration as well as organisation of matrix fibres.  相似文献   

13.
Intermediary gel immunoelectrophoresis was used to show that purified aggregating cartilage proteoglycans from 2-year-old steers contain two distinct populations of molecules and that only one of these is immunologically related to non-aggregating cartilage proteoglycans. The two types of aggregating proteoglycans were purified by density-gradient centrifugation in 3.5M-CsCl/4M-guanidinium chloride and separated by zonal rate centrifugation in sucrose gradients. The higher-buoyant-density faster-sedimenting proteoglycan represented 43% of the proteoglycans in the extract. It had a weight-average Mr of 3.5 X 10(6), did not contain a well-defined keratan sulphate-rich region, had a quantitatively dominant chondroitin sulphate-rich region and contained 5.9% protein and 23% hexosamine. The lower-buoyant-density, more slowly sedimenting, proteoglycan represented 15% of the proteoglycans in the extract. It had a weight-average Mr of 1.3 X 10(6), contained both the keratan sulphate-rich and the chondroitin sulphate-rich regions and contained 7.3% protein and 23% hexosamine. Each of the proteoglycan preparations showed only one band on agarose/polyacrylamide-gel electrophoresis. The larger proteoglycan had a lower mobility than the smaller. The distribution of chondroitin sulphate chains along the chondroitin sulphate-rich region was similar for the two types of proteoglycans. The somewhat larger chondroitin sulphate chains of the larger proteoglycan could not alone account for the larger size of the proteoglycan. Peptide patterns after trypsin digestion of the proteoglycans showed great similarities, although the presence of a few peptides not shared by both populations indicates that the core proteins are partially different.  相似文献   

14.
The characteristics of cell-associated proteoglycans were studied and compared with those from the medium in suspension cultures of calf articular-cartilage chondrocytes. By including hyaluronic acid or proteoglycan in the medium during [35S]sulphate labelling the proportion of cell-surface-associated proteoglycans could be decreased from 34% to about 15% of all incorporated label. A pulse-chase experiment indicated that this decrease was probably due to blocking of the reassociation with the cells of proteoglycans exported to the medium. Three peaks of [35S]sulphate-labelled proteoglycans from cell extracts and two from the medium were isolated by gel chromatography on Sephacryl S-500. These were characterized by agarose/polyacrylamide-gel electrophoresis, by SDS/polyacrylamide-gel electrophoresis of core proteins, by glycosaminoglycan composition and chain size as well as by distribution of glycosaminoglycans in proteolytic fragments. The results showed that associated with the cells were (a) large proteoglycans, typical for cartilage, apparently bound to hyaluronic acid at the cell surface, (b) an intermediate-size proteoglycan with chondroitin sulphate side chains (this proteoglycan, which had a large core protein, was only found associated with the cells and is apparently not related to the large proteoglycans), (c) a small proteoglycan with dermatan sulphate side chains with a low degree of epimerization, and (d) a somewhat smaller proteoglycan containing heparan sulphate side chains. The medium contained a large aggregating proteoglycan of similar nature to the large cell-associated proteoglycan and small proteoglycans with dermatan sulphate side chains with a higher degree of epimerization than those of the cells, i.e. containing some 20% iduronic acid.  相似文献   

15.
Extraction of stage 22-23 chick embryo limb buds that had been metabolically labeled with [35S]sulfate yielded heparan sulfate proteoglycan, small chondroitin sulfate proteoglycan, and large chondroitin sulfate proteoglycan (designated PG-M). PG-M constituted over 60% of the total macromolecular [35S]sulfates. It was larger in hydrodynamic size, richer in protein, and contained fewer chondroitin sulfate chains as compared to the predominant proteoglycan (PG-H, Mr congruent to 1.5 X 10(6)) of chick embryo cartilage. The chondroitin sulfate chains were notable for their large size (Mr greater than or equal to 60,000) and high content of nonsulfated chondroitin units (about 20% of the total hexosamine). Hexosamine-containing chains corresponding in size to N-linked and O-linked oligosaccharides were also present. The core protein was rich in serine, glutamic acid (glutamine), and glycine which together comprised about 38% of the total amino acids. Following chondroitinase AC II (or ABC) digestion, core molecules were obtained which migrated on sodium dodecyl sulfate gel electrophoresis as a doublet of bands with approximately Mr = 550,000 (major) and 500,000, respectively. The Mr = 550,000 core glycoprotein was structurally different from the core glycoprotein (Mr congruent to 400,000) of PG-H, as ascertained by tryptic peptide mapping and immunochemical criteria. Immunofluorescent localization of PG-M showed that the intensity of PG-M staining progressively became higher in the core mesenchyme region than in the peripheral loose mesenchyme, closely following the condensation of mesenchymal cells. Since the cell condensation process has been shown to begin with the increase of fibronectin and type I collagen concentration, the similar change in PG-M distribution suggests that PG-M plays an important role in the cell condensation process by means of its interaction with fibronectin and type I collagen.  相似文献   

16.
Various forms of heparan sulfate proteoglycan were solubilized from the mouse Engelbreth-Holm-Swarm (EHS) sarcoma by extraction with 0.5 M NaCl, collagenase digestion and extraction with 4 M guanidine. They could be separated into high (greater than or equal to 1.65 g/ml) and low (1.38 g/ml) buoyant density variants. The high-density form from the NaCl extract and collagenase digest had Mr = 130000 and So20,W = 4.5 S and contained 4-10% protein, indicating Mr = 5 000-12 000 for the protein core. This proteoglycan exhibited polydispersity as shown by rotary shadowing electron microscopy and ultracentrifugation. An average molecule consisted of four heparan sulfate chains (Mr = 29 000) each with a length of 32 +/- 10 nm. The low-density form (Mr about 400 000) could not be completely purified and contained about 50% protein. As shown by radioimmunoassay, the various proteoglycans shared similar protein cores. Labeling of the tumor in vivo or in vitro demonstrated preferential incorporation of radioactive sulfate in the high-density form. The high-density proteoglycan interacted in affinity chromatography by virtue of its heparan sulfate chains with laminin, fibronectin, the globular domain NC1 and the triple helix of collagen IV. These interactions were abolished at moderate concentrations of NaCl (0.1-0.2 M) and in the presence of heparin, chondroitin sulfate or dextran sulfate. Interactions with the globule NC1 could also be demonstrated by velocity band centrifugation in sucrose gradients and a binding constant of about 10(6) M-1 was derived.  相似文献   

17.
A proteodermatan sulphate was isolated from 0.15 M-NaCl and 0.45 M-NaCl extracts of newborn-calf skin. The proteoglycan was separated from collagen and hyaluronic acid by precipitation with cetylpyridinium chloride and CsCl-density-gradient centrifugation. Further purification was performed by ion-exchange, affinity and molecular-sieve chromatography. The proteoglycan bound to concanavalin A-Sepharose in 1 M-NaCl. It gave a positive reaction with periodic acid/Schiff reagent and contained 8.3% of uronic acid. The dermatan sulphate, the only glycosaminoglycan component, was composed of 74% iduronosylhexosamine units and 26% glucuronosylhexosamine units. The Mr was assessed to be 15000-20000 by gel chromatography. The core protein was found to be a sialoglycoprotein that had O-glycosidic oligosaccharides with N-acetylgalactosamine at the reducing termini. The molar ratio of oligosaccharide chains to dermatan sulphate was approx. 3:1. From these results the proposed structure of proteodermatan sulphate is: one dermatan sulphate chain (average Mr 17500), three O-glycosidic oligosaccharide chains and probably N-glycosidic oligosaccharide chain(s) bound to one core-protein molecule (Mr 55000).  相似文献   

18.
Heterogeneity of heparan sulfate proteoglycans synthesized by PYS-2 cells   总被引:5,自引:0,他引:5  
Antibodies to the basement membrane proteoglycan produced by the EHS tumor were used to immunoprecipitate [35S]sulfate-labeled protoglycans produced by PYS-2 cells. The immunoprecipitated proteoglycans were subsequently fractionated by CsCl density gradient centrifugation and Sepharose CL-4B chromatography. The culture medium contained a low-density proteoglycan eluting from Sepharose CL-4B at Kav = 0.18, containing heparan sulfate side chains of Mr = 35-40,000. The medium also contained a high-density proteoglycan eluting from Sepharose CL-4B at Kav = 0.23, containing heparan sulfate side chains of Mr = 30,000. The corresponding proteoglycans of the cell layer were all smaller than those in the medium. Since the antibodies used to precipitate those proteoglycans were directed against the protein core, this suggests that these proteoglycans share common antigenic features, and may be derived from a common precursor which undergoes modification by the removal of protein segments and a portion of each heparan sulfate chain.  相似文献   

19.
Seven different sulphated macromolecules were detected in 6 M-guanidinium chloride extracts of metabolically [35S]sulphate-labelled mouse Reichert's membrane and were partially separated. Polypeptide bands of apparent Mr 50 000, 150 000 (tentatively identified as entactin) and 170 000 contained essentially tyrosine O-sulphate as the labelled component. Most of the radioactive sulphate was incorporated into three different proteoglycans, which could be separated by chromatography and density-gradient centrifugation before and after enzymic degradation. Enzymic analysis of glycosaminoglycans and of protein cores by immunoassays identified these components as low-density and high-density forms of heparan sulphate proteoglycan and a high-density form of chondroitin sulphate or dermatan sulphate proteoglycan.  相似文献   

20.
An endoglycosidase is described in isolated liver plasma membranes that brings about a rapid and selective degradation of membrane-associated heparan sulphate, pre-labelled biosynthetically with Na2(35)SO4. The enzyme attacked mainly the polysaccharide chains of a hydrophobic membrane proteoglycan and it had little effect on a proteoglycan that could be displaced from the membranes with 1.0 M-NaCl. The highest activity was measured in the pH range 7.5-8.0, and the enzyme was almost completely inhibited below pH 5.5. Breakdown of susceptible polysaccharide chains was fast, being complete in 20-30 min. The major oligosaccharide fraction (Mr approx. 6000) produced by the enzyme was considerably smaller than the intact heparan sulphate chains. Enzyme activity was retained in membranes solubilized in 1% (v/v) Triton X-100. The high pH optimum and plasma-membrane association distinguish this enzyme from other heparan sulphate-degrading endoglycosidases that have acid pH optima and may be of lysosomal origin. A plasma-membrane endoglycosidase could modulate cellular interactions mediated by heparan sulphate, and/or release biologically active fragments of the polysaccharide from the cell periphery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号