首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Contamination of soil by polycyclic aromatic hydrocarbons (PAHs) is currently widespread in urban and industrial areas, and the decontamination of PAHs remains a challenge. In addition, recovering PAHs from large volumes of soil washings is costly. Therefore, in this study, we focused on cloud-point extraction (CPE) without centrifugation, which separates PAHs from the washing solution through gravitational sedimentation. Specifically, we examined the conditions for the separation of phenanthrene (a typical PAH pollutant) from soil using CPE. After evaluating the water and phenanthrene solubilities of 23 commercially available nonionic surfactants, Brij 30 was found to be optimal. We simulated contaminated soil by adding phenanthrene to three soils with different particle sizes and varying amounts of organic matter. We examined the Brij 30 washing conditions and the effects of salt additives that promote phase separation during CPE. The addition of either sodium chloride or sodium sulfate enabled CPE at 25°C, but sodium sulfate was found to be more effective at lower concentrations than sodium chloride. A phenanthrene recovery rate of 58–88% was observed for each laboratory-simulated contaminated soil by CPE using salt additives. This method is economical and effective for processing large amounts of contaminated soil.  相似文献   

2.
Soils contaminated simultaneously with polycyclic aromatic hydrocarbons (PAHs) and heavy metals pose major threat to human health and environment by getting released from soil into water environment. The purpose of this study was to evaluate simultaneous desorption and desorption kinetics of PAHs (phenanthrene and anthracene) and heavy metals (lead, nickel, and zinc) from artificially contaminated kaolinite soils with different organic matter content. Batch desorption tests were conducted using single and combined enhancing agents containing Triton X-100 and Tween 80 as non-ionic surfactants, Ethylenediaminetetraacetic acid (EDTA) as a chelating agent, and citric acid as an organic acid. The solution with the highest removal efficiency was the combined solution of Triton X-100 (10% w/w) + EDTA (0.01 M). Removal levels around 92, 46, 92, 95, and 96% were obtained for phenanthrene, anthracene, lead, nickel, and zinc, respectively, by using this combination. Batch desorption kinetics experiments were performed using the mentioned combination. During the first 24 h, desorption kinetics were rapid, followed by a plateau until the end. The data obtained from desorption kinetics experiments were fitted with four kinetics models: pseudo-second-order equation, empirical power function, elovich, and parabolic diffusion. The correlation coefficient of the pseudo-second-order equation was higher than that of other functions. Moreover, batch experiments have showed inverse correlations between removal efficiency and organic matter content of soil.  相似文献   

3.
Heavy metals and the transformation products of herbicides, such as 2,4-dichlorophenol (2,4-DCP), are toxic soil pollutants. We assessed the ability of an aqueous solution of the “green solvent” ethyl lactate alone and combined with [S,S]-ethylenediaminedisuccinic acid (EDDS) to remove 2,4-DCP and copper simultaneously from soils. Ethyl lactate extracted 2,4-DCP from contaminated soil comparable to Triton X-100. Ethyl lactate/EDDS extracted more 2,4-DCP and Cu from contaminated soils than ethyl lactate alone. The enhanced extraction of Cu increased slightly with an increase in the EDDS/Cu molar ratio; the maximum Cu extraction efficiency was about 32.3% at an EDDS/Cu ratio of 5. An increase in the ionic strength (NaCl) of the ethyl lactate/EDDS solution decreased the amount of 2,4-DCP extracted by maximally 12% but increased the amount of Cu extracted by >500%. We tested the recycling of the ethyl lactate/EDDS solution with the cation-exchange resin 001×7 and the hyper-cross-linked polymer resin NDA-150. Fresh ethyl lactate/EDDS solution and two sequentially recycled solutions removed 31.4, 28.3, and 26.7% of the Cu in Cu-contaminated soil and 77.7, 62.9, and 56.8% of the 2,4-DCP in 2,4-DCP-contaminated soils, respectively. The ethyl lactate/EDDS solution removed 31.8% of the Cu and 73.0% of the 2,4-DCP in Cu- and 2,4-DCP-contaminated soils, and the solution remained effective even after two recyclings. The aqueous solution of ethyl lactate/EDDS can be used to effectively remove Cu and 2,4-DCP from complex contaminated soils and can be reactivated.  相似文献   

4.
Surfactants are well known to increase solubility/mobility of hydrocarbons and can be used to remediate contaminated water and soil. We wanted to explore if Ivey sol® 106 used at less than the critical micelle concentration (CMC) could effectively mobilize PAH (polycyclic aromatic hydrocarbons) from contaminated soil. The first step was to establish a measurement technique. Hence, a column leaching method was undertaken to investigate mobility of PAH-contaminated soil from a former gaswork facility. The methodology was based on a recycled flow of aqueous solution containing CaCl2 0.01M through two different soil columns. In the first column test, the free desorption of hydrocarbons was studied by recycling the solution through the soil column with a peristaltic pump and with a liquid/solid ratio of 2, based on ISO/DIS 18772. The solution was replaced with new solution every three days to aid desorption.

In the second column test, the set-up was similar with the exception of the aforementioned recycling solution. In this case, a second column was filled with a resin, Amberlite XAD-2, which captures PAHs entering the solution through the soil column, cleaning it of hydrocarbons (induced desorption). The results obtained for induced desorption and free desorption with reposition showed that liberation of PAHs in the presence of resins was higher (7%) as opposed to free desorption (below 0.3%). These two experiments demonstrated low mobilization of PAHs.

A third column test was performed using a non ionic surfactant, Ivey-sol® 106, 100 μg g?1 of soil below the CMC in the recycling solution. The introduction of Ivey-sol® 106 at 0.005%w/v increased desorption of PAHs to 32%, thus demonstrating the potential for increased bioavailability of the PAHs for bioremediation of the soil.  相似文献   


5.
AIMS: To investigate the effects of co-composting poultry manure with soil contaminated with different concentrations of polycyclic aromatic hydrocarbons (PAHs), on the degradation of selected PAHs in a static-pile compost system. METHODS: Mispah form (Food & Agricultural Organisation, FAO : lithosol) soil contaminated with PAHs was co-composted with poultry manure for 19 months. The soil was mixed with wood chips in a ratio of 1:1 to improve aeration and then mixed with poultry manure in a ratio of 4:1. A data logger measured temperature monthly. Residual concentrations of selected PAHs in the compost were determined monthly by gas chromatography/flame ionisation detection (GC/FID). Moisture, pH, ash content and C:N ratios were also monitored monthly. Microbial activity was measured by measuring CO(2) evolution. CONCLUSIONS: The results obtained in this experiment have shown that co-composting poultry manure with PAH-contaminated soil is capable of removing large concentrations of high molecular weight PAH from contaminated soil to levels below 1 mg kg(-1) in 19 months. SIGNIFICANCE AND IMPACT OF THE STUDY: The paper adds to the body of knowledge necessary for the development of a cost effective technology for the remediation of soil contaminated with high molecular weight PAHs by providing information on the behaviour of selected PAHs and factors such as nutrient ratio, temperature and pH during composting.  相似文献   

6.
Li  Ziang  Cabana  Hubert  Lecka  Joanna  Brar  Satinder K.  Galvez  Rosa  Bellenger  Jean-Philippe 《Biodegradation》2021,32(5):563-576

Unconventional oils such as diluted bitumen from oil sands differs from most of conventional oils in terms of physiochemical properties and PAHs composition. This raises concerns regarding the effectiveness of current remediation strategies and protocols originally developed for conventional oil. Here we evaluated the efficiency of different biotreatment approaches, such as fungi inoculation (bioaugmentation), sludge addition (bioaugmentation/biostimulation), perennial grasses plantation (phytoremediation) and their combinations as well as natural attenuation (as control condition), for the remediation of soil contaminated by synthetic crude oil (a product of diluted bitumen) in laboratory microcosms. We specifically monitored the PAHs loss percentage (alkylated PAHs and unsubstituted 16 EPA Priority PAHs), the residue of PAHs and evaluated the ecotoxicity of soil after treatment. All treatments were highly efficient with more than?~?80% of ∑PAHs loss after 60 days. Distinctive loss efficiencies between light PAHs (≤?3 rings,?~?96% average loss) and heavy PAHs (4–6 rings,?~?29% average loss) were observed. The lowest average PAHs residue (0.10?±?0.02 mg·kg?1, for an initial concentration of 0.29?±?0.12 mg·kg?1) was achieved with the “sludge—plants (grasses)” combination. Sludge addition was the only treatment that achieved significantly lower ecotoxicity (3%?±?4% of growth inhibition of L. sativa) than the control (natural attenuation, 13%?±?4% of inhibition). Sludge addition, grasses plantation and “sludge—fungi combination” treatments could result in lower PAH exposure (than other treatments) in post-treated soil when using the Canadian Soil Quality Guidelines for the protection of environmental and human health for potentially carcinogenic and other PAHs.

  相似文献   

7.
Due to the unique properties of subcritical water (marked change in water's dielectric constant and viscosity), the extraction by subcritical water offers a great opportunity to remediate soil contaminated with organic pollutants as an alternative and green remediation method. In this study, subcritical water extraction is proposed as an efficient remediation technique for the Gulf War oil spill contaminated soil. The subcritical water extraction experiment was carried out in a lab-scale continuous flow apparatus. The three major operating factors, temperature, time and water flow rate, were evaluated in terms of optimum removal efficiency. The results show that crude oil removal depended largely on water temperature, whereas an extraction run time higher than 1 h and a water flow rate higher than 1.5 mL/min marginally or negatively affected removal efficiency. During subcritical water treatment at 300°C for 1 h at a flow rate of 1.5 mL/min, removal efficiency was almost 95%. Under these operating conditions, the subcritical water treatment demonstrated a similar removal efficiency to those of organic solvents like acetone. In contrast, the efficiency of oil recovery decreased with an increase in extraction temperature, due to degradation by a water self-oxidizing agent. Several degradation products identified in the treated soil and in the effluent sample (which initially were absent in the contaminated soil) were oxygen-containing aromatic compounds, confirming the oxidation-degradation.  相似文献   

8.
The soil contaminated by explosive production wastewater was treated by washing using water as solvent. The effect of contact time and temperature, water/soil ratio and washing steps on desorption efficiency was investigated. Six kinetic models—parabolic diffusion model, zero-order equation, pseudo-first-order equation, pseudo-second-order equation, power function equation and Elovich equation—were used to study the desorption kinetics of nitroaromatic compounds from contaminated soil to water. The eluent of contaminated soil before and after washing was characterized by UV–vis analysis. The results showed that the removal rate was fast at the initial stage and then slowed down after 60 min. The desorption of contaminants from soil to water is endothermic. Washing with small quantities of water in high frequency is preferred when water volume is limited. The pseudo-second-order model can be used to describe the desorption process. Soil washing can remove most of the contaminants from the contaminated soil.  相似文献   

9.
The mobility of selected heavy metals in contaminated soil at a previous industrial site in Brisbane, Australia, was assessed using a sequential extraction technique. Copper, Pb, Zn, Cr, Fe, and Mn were extracted from the soil solution/exchangeable, carbonate, Fe and Mn oxides, and organic matter fractions. The amounts of metals adsorbed by these fractions were used as an indicator of each metal's mobility in the soil. Copper and Pb were largely adsorbed by the organic and oxide fractions, while a significant amount of Zn was extracted from the carbonate fraction. The potential mobility and biological availability of the metals in these soils is Zn > Cr = Cu ≈ Pb. Soils were also analyzed using the toxicity characteristic leaching procedure (TCLP) to determine whether the contaminated soil could be disposed of by landfilling. The leachability of all metals from the soils was very low, with metal concentrations below the allowable limits. The TCLP also showed that Zn was the most mobile metal in these soils. An environmental and health risk assessment was undertaken, and it was concluded that the site did not represent a risk despite the “total”; concentrations of some metals being up to 40 times the investigation threshold value adopted in Australia.  相似文献   

10.
Benzene, toluene, ethylbenzene, and xylenes (BTEX), twelve polycyclic aromatic hydrocarbons (PAHs) and seven polychlorinated biphenyls (PCBs), were selected as pollutants to evaluate the contamination of soils in the urban and industrial areas of Tangier (Morocco). PAHs and PCBs were determined by gas chromatography-mass spectrometry (GC-MS) after a microwave-assisted extraction (MAE) and gel permeation chromatography (GPC) clean-up. BTEX were directly determined by head-space GC-MS. Results obtained in this study show the presence of high levels of BTEX and PAHs in the soil near the urban waste deposit. However, the analysis of pollutants in the other sampling sites provided comprehensive evidence that soils of Tangier city are not contaminated.  相似文献   

11.
A well-characterized cadmium (Cd) hyperaccumulating plant Solanum nigrum was grown in Cd and polycyclic aromatic hydrocarbons (PAHs) co-contaminated soil that was repeatedly amended with chemicals, including EDTA, cysteine (CY), salicylic acid (Sa), and Tween 80 (TW80), to test individual and combined treatment effects on phytoremediation of Cd-PAHs contaminated soils. Plant growth was negatively affected by exogenous chemicals except for EDTA. S. nigrum could accumulate Cd in tissues without assistant chemicals, while there was no visible effect on the degradation of PAHs. Cysteine had significant effects on phytoextraction of Cd and the highest metal extraction ratio (1.27%) was observed in 0.9 mmol/kg CY treatment. Both salicylic acid and Tween 80 had stimulative effects on the degradation of PAHs and there was the maximal degradation rate (52.6%) of total PAHs while 0.9 mmol/kg Sa was applied. Furthermore, the combined treatment T(0.1EDTA+0.9CY+0.5TW80) and T(0.5EDTA+0.9CY+03Sa) could not only increase the accumulation of Cd in plant tissues, but also promote the degradation of PAHs. These results indicated that S. nigrum might be effective in phytoextracting Cd and enhancing the biodegradation of PAHs in the co-contaminated soils with assistant chemicals.  相似文献   

12.
Numerous studies demonstrate polynuclear aromatic hydrocarbons (PAHs) dissolved from weathered crude oil adversely affect fish embryos at 0.5 to 23 μg/l. This conclusion has been challenged by studies that claim (1) much lower toxicity of weathered aqueous PAHs; (2) direct contact with dispersed oil droplets plays a significant role or is required for toxicity; (3) that uncontrolled factors (oxygen, ammonia, and sulfides) contribute substantively to toxicity; (4) polar compounds produced by microbial metabolism are the major cause of observed toxicity; and (5) that based on equilibrium models and toxic potential, water contaminated with weathered oil cannot be more toxic per unit mass than effluent contaminated with fresh oil. In contrast, several studies demonstrate high toxicity of weathered oil; shifts in PAH composition were consistent with dissolution (not particle ablation), embryos accumulated dissolved PAHs at low concentrations and were damaged, and assumed confounding factors were inconsequential. Consistent with previous empirical observations of mortality and weathering, temporal shifts in PAH composition (oil weathering) indicate that PAHs dissolved in water should (and do) become more toxic per unit mass with weathering because high molecular weight PAHs are more persistent and toxic than the more abundant low molecular weight PAHs in whole oil.  相似文献   

13.
The feasibility of using a biodegradable surfactant, surfactin from Bacillus subtilis, for the removal of heavy metals from a contaminated soil (890?mg/kg zinc, 420?mg/kg copper, 12.6% oil and grease) and sediments (110?mg/kg copper, 3300?mg/kg zinc) was evaluated. Results showed that after one and five batch washings of the soil, 25 and 70% of the copper, 6 and 25% of the zinc, and 5 and 15% of the cadmium could be removed by 0.1% surfactin with 1% NaOH, respectively. From the sediment, 15% of the copper and 6% of the zinc could be removed after a single washing with 0.25% surfactin/1% NaOH. The geochemical speciation of the heavy metals among the exchangeable, oxide, carbonate, organic, and residual fractions was determined by selective sequential extraction procedure. For both matrices, the exchangeable fractions were minimal, while the carbonate and the oxide fractions accounted for over 90% of the zinc present and the organic fraction constituted over 70% of the copper. Results after washing indicated that surfactin with NaOH could remove copper from the organic fraction, zinc from the oxide, and cadmium from the carbonate fractions. The residual fraction remained untouched. These experiments indicate that the sequential extraction studies could be useful in designing soil-washing procedures.  相似文献   

14.
Summary Polycyclic aromatic hydrocarbon (PAH) biodegradation was investigated in contaminated soils from two different industrial sites under simulated land treatment conditions. Soil samples from a former impregnation plant (soil A) showed high degradation rates of PAHs by the autochthonous microorganisms, whereas PAHs in material of a closed-down coking plant (soil B) were not degraded even after inoculation with bacteria known to effectively degrade PAHs. As rapid PAH biodegradation in soil B was observed after PAHs were extracted and restored into the extracted soil material, the kind of PAH binding in soil B appears to completely prevent biodegradation. Sorption of PAHs onto extracted material of soil B follows a two-phase process (fast and slow); the latter is discussed in terms of migration of PAHs into soil organic matter, representing less accessible sites within the soil matrix. Such sorbed PAHs are suggested to be non-bioavailable and thus non-biodegradable. By eluting soil B with water, no biotoxicity, assayed as inhibition of bioluminescence, was detected in the aqueous phase. When treating soil A analogously, a distinct toxicity was observed, which was reduced relative to the amount of activated carbon added to the soil material. The data suggest that sorption of organic pollutants onto soil organic matter significantly affects biodegradability as well as biotoxicity.  相似文献   

15.
The feasibility of using Portland cement and organobentonite to stabilize and solidify Polycyclic Aromatic Hydrocarbons (PAH) contaminated soil was examined. Naphthalene and phenanthrene in solid and dissolved phases were selected as PAHs compounds to represent organic contaminants in the soil. Different tests including Toxicity Characteristics Leaching Procedure (TCLP), Unconfined Compressive Strength (UCS), and permeability tests were conducted on the stabilization/solidification (S/S) contaminated soils. The leaching test results confirmed a significant reduction in the leaching of naphthalene and phenanthrene from the stabilized soil specimen by adding 2%, 5%, and 10% of organoclay during solidification/stabilization. Based on the results for the tested ranges of cement and organoclay for S/S contaminated soil, the optimum mix design includes 5% of cement and 2% of organoclay. The observation in this study confirmed that organoclay particles sorbed the organic contaminates and therefore naphthalene and phenanthrene leachate concentration will be reduced. Moreover, results show that increasing the curing time of S/S products reduces the naphthalene and phenanthrene leachate concentration.  相似文献   

16.
High-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs) are pollutants that persist in the environment due to their low solubility in water and their sequestration by soil and sediments. The addition of a water-immiscible, nonbiodegradable, and biocompatible liquid, silicone oil, to a soil slurry was studied to promote the desorption of PAHs from soil and to increase their bioavailability. First, the transfer into silicone oil of phenanthrene, pyrene, chrysene, and benzo[a]pyrene added to a sterilized soil (sandy soil with 0.65% total volatile solids) was measured for 4 days in three two-liquid-phase (TLP) slurry systems each containing 30% (w/v) soil but different volumes of silicone oil (2.5%, 7.5%, and 15% [v/v]). Except for chrysene, a high percentage of these PAHs was transferred from soil to silicone oil in the TLP slurry system containing 15% silicone oil. Rapid PAH transfer occurred during the first 8 h, probably resulting from the extraction of nonsolubilized and of poorly sorbed PAHs. This was followed by a period in which a slower but constant transfer occurred, suggesting extraction of more tightly bound PAHs. Second, a HMW PAH-degrading consortium was enriched in a TLP slurry system with a microbial population isolated from a creosote-contaminated soil. This consortium was then added to three other TLP slurry systems each containing 30% (w/v) sterilized soil that had been artificially contaminated with pyrene, chrysene, and benzo[a]pyrene, but different volumes of silicone oil (10%, 20%, and 30% [v/v]). The resulting TLP slurry bioreactors were much more efficient than the control slurry bioreactor containing the same contaminated soil but no oil phase. In the TLP slurry bioreactor containing 30% silicone oil, the rate of pyrene degradation was 19 mg L(-)(1) day(-)(1) and no pyrene was detected after 4 days. The degradation rates of chrysene and benzo[a]pyrene in the 30% TLP slurry bioreactor were, respectively, 3.5 and 0.94 mg L(-)(1) day(-)(1). Low degradation of pyrene and no significant degradation of chrysene and benzo[a]pyrene occurred in the slurry bioreactor. This is the first report in which a TLP system was combined with a slurry system to improve the biodegradation of PAHs in soil.  相似文献   

17.
Phytoremediation is a natural, aesthetically pleasing, low-cost technology that employs plant-influenced microbial, chemical, and physical processes to remediate contaminated soils and waters. The Institute of Gas Technology (IGT) conducted a laboratory study to determine the potential of phytoremediation to remediate soils contaminated with polynuclear aromatic hydrocarbons (PAHs). The soils used for the study were collected from a former manufactured gas plant (MGP) site in Newark, NJ. Phytoremediation was assessed both as a primary remediation technology and as a final polishing step for soil treatment. The following three plant species were used for the 6-month laboratory study: alfalfa (Medicago sativa), switch grass (Panicum virgatum), and little bluestem grass (Schizachyrium scoparium). Using both alfalfa and switch grass for primary treatment of PAH-contaminated soil, a 57% reduction in total PAH concentration was observed after 6-months of treatment. Final polishing of that soil using alfalfa further reduced the total PAH concentration in that soil by 15%. Research is in progress with the objective of improving both the efficiency and the economics of phytoremediation for the cleanup of contaminated soils to environmentally acceptable endpoints at MGP sites.  相似文献   

18.
无患子水提皂素液,经纤维二糖酶水解,以无患子水提水解液为底物,接种丘陵假丝酵母,将水提液中糖组分发酵转化为槐糖脂,得到天然皂素及生物表面活性剂复合产物。在发酵过程中,2%的丘陵假丝酵母菌种接种量,溶液中葡萄糖消耗速率最快;在水提水解液中额外添加大豆油作为补充碳源能较大幅度降低溶液表面张力。经过发酵转化,溶液中表面活性物质浓度达到52.48 g/L,比发酵前提高了23.4%,溶液表面张力值明显降低。无患子精制发酵液中不含糖类成分,是理想的液体洗涤剂生产原料。  相似文献   

19.
This article describes the removal of heavy metals from contaminated clayey soils by soil washing using various extractants. Two clayey soils, kaolin, a low buffering soil with pH of 5, and glacial till, a high buffering soil with pH of 8, were used to represent various soil conditions. These soils were spiked with chromium (Cr), nickel (Ni), and cadmium (Cd) to simulate improper disposal of typical electroplating waste constituents. The following extracting solutions were investigated for the removal of heavy metals from the soils: deionized water, distilled water, and tap water; acetic acid and phosphoric acid; chelating agents ethylenediaminetetraacetic acid (EDTA) and citric acid; and the oxidizing agents potassium permanganate and hydrogen peroxide. The effect of extractant concentration on removal of heavy metals was also investigated. Complete removal of Cr was achieved using 0.1?M potassium permanganate for kaolin, while a maximum of 54% was removed from glacial till. A maximum Ni removal of 80% was achieved using tapwater for kaolin, while a maximum removal of 48 to 52% was achieved using either 1?M acetic acid or 0.1?M citric acid for glacial till. A maximum Cd removal of 50% was achieved using any of the extractants for kaolin, while a maximum removal of 45 to 48% was obtained using either acids or chelating agents for glacial till. Overall, this study showed that complete removal of Cr, Ni, and Cd from clayey soils is difficult to achieve using the soil-washing process, and also the use of one extractant may not be effective in removing all metals. A sequential extraction using different extractants may be needed for the removal of multiple metal contaminants from clayey soils.  相似文献   

20.
The high hydrophobicity of polycyclic aromatic hydrocarbons (PAHs) strongly reduces their bioavailability in aged contaminated soils, thus limiting their bioremediation. The biodegradation of PAHs in soils can be enhanced by employing surface-active agents. However, chemical surfactants are often recalcitrant and exert toxic effects in the amended soils. The effects of two biogenic materials as pollutant-mobilizing agents on the aerobic bioremediation of an aged-contaminated soil were investigated here. A soil historically contaminated by about 13 g kg(-1) of a large variety of PAHs, was amended with soya lecithin (SL) or humic substances (HS) at 1.5% w/w and incubated in aerobic solid-phase and slurry-phase reactors for 150 days. A slow and only partial biodegradation of low-molecular weight PAHs, along with a moderate depletion of the initial soil ecotoxicity, was observed in the control reactors. The overall removal of PAHs in the presence of SL or HS was faster and more extensive and accompanied by a larger soil detoxification, especially under slurry-phase conditions. The SL and HS could be metabolized by soil aerobic microorganisms and enhanced the occurrence of both soil PAHs and indigenous aerobic PAH-degrading bacteria in the reactor water phase. These results indicate that SL and HS are biodegradable and efficiently enhance PAH bioavailability in soil. These natural surfactants significantly intensified the aerobic bioremediation of a historically PAH-contaminated soil under treatment conditions similar to those commonly employed in large-scale soil bioremediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号