首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pine, eucalyptus, and switchgrass were evaluated for the production of fermentable sugars via ionic liquid and dilute acid pretreatments and subsequent enzymatic hydrolysis. The results show that among the three feedstocks, switchgrass has the highest sugar yields and faster hydrolysis rates for both pretreatment technologies by achieving 48 % (dilute acid) and 96 % (ionic liquid) sugar yields after 24 h. Of the two wood species, eucalyptus has a higher and faster sugar recovery after ionic liquid pretreatment than pine (93 vs. 62 % in 24 h) under 160 °C for 3 h with [C2mim][OAc]. Pretreatment of pine and eucalyptus is observed to be ineffective under 1.2 % dilute acid condition and 160 °C for 15 min, indicating that further enhancement of reaction temperature or acid concentration is necessary to increase the digestibility of pretreated materials. Raman spectroscopy data show that the extent of lignin depolymerization that occurs during pretreatment also varies for the three different feedstocks. Under similar hemicellulose removal conditions, lignin removal in ionic liquid pretreatment can help improve cellulose conversion. This finding may help explain the observed variation in the saccharification yields and kinetics. These results indicate that ionic liquid pretreatment not only improved saccharification over dilute acid for all three feedstocks but also better dealt with the differences among them, suggesting better tolerance to feedstock variability.  相似文献   

2.
The impacts of hydrothermal and dilute acid pretreatments and alkali and alkaline earth metals (AAEMs) on the thermal degradation of biomass were studied. Besides, the influence of these pretreatments on the biomass ash properties was investigated. The influence of pretreatments on the biomass thermal degradation was manifested in the removal of potassium out of the biomass. The presence of potassium in the biomass catalyzed cellulose thermal degradation and increased the char percentage at temperatures higher than 380 °C. Pretreatments were effective at removing the potassium from biomass and dramatically reduced the char percentage at temperatures higher than 380 °C. It was found that the best burning temperature for biomass ash production was 500 °C because at this temperature the thermal degradation of biomass was completed under pure combustion. It was shown that when burning biomass in oxygen-limited environments, removing AAEMs, particularly potassium, will improve the quality of ash as a potential candidate for supplementary cementitious materials for concrete application.  相似文献   

3.
Ionic liquid pretreatment of biomass has been shown to greatly reduce the recalcitrance of lignocellulosic biomass, resulting in improved sugar yields after enzymatic saccharification. However, even under these improved saccharification conditions the cost of enzymes still represents a significant proportion of the total cost of producing sugars and ultimately fuels from lignocellulosic biomass. Much of the high cost of enzymes is due to the low catalytic efficiency and stability of lignocellulolytic enzymes, especially cellulases, under conditions that include high temperatures and the presence of residual pretreatment chemicals, such as acids, organic solvents, bases, or ionic liquids. Improving the efficiency of the saccharification process on ionic liquid pretreated biomass will facilitate reduced enzyme loading and cost. Thermophilic cellulases have been shown to be stable and active in ionic liquids but their activity is typically at lower levels. Cel5A_Tma, a thermophilic endoglucanase from Thermotoga maritima, is highly active on cellulosic substrates and is stable in ionic liquid environments. Here, our motivation was to engineer mutants of Cel5A_Tma with higher activity on 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) pretreated biomass. We developed a robotic platform to screen a random mutagenesis library of Cel5A_Tma. Twelve mutants with 25–42% improvement in specific activity on carboxymethyl cellulose and up to 30% improvement on ionic-liquid pretreated switchgrass were successfully isolated and characterized from a library of twenty thousand variants. Interestingly, most of the mutations in the improved variants are located distally to the active site on the protein surface and are not directly involved with substrate binding.  相似文献   

4.
Fundamental understanding of biomass pretreatment and its influence on saccharification kinetics, total sugar yield, and inhibitor formation is essential to develop efficient next-generation biofuel strategies, capable of displacing fossil fuels at a commercial level. In this study, we investigated the effect of residence time and temperature during ionic liquid (IL) pretreatment of switchgrass using 1-ethyl-3-methyl imidazolium acetate. The primary metrics of pretreatment performance are biomass delignification, xylan and glucan depolymerization, porosity, surface area, cellulase kinetics, and sugar yields. Compositional analysis and quantification of process streams of saccharides and lignin demonstrate that delignification increases as a function of pretreatment temperature and is hypothesized to be correlated with the apparent glass transition temperature of lignin. IL pretreatment did not generate monosaccharides from hemicellulose. Compared to untreated switchgrass, Brunauer–Emmett–Teller surface area of pretreated switchgrass increased by a factor of ~30, with a corresponding increase in saccharification kinetics of a factor of ~40. There is an observed dependence of cellulase kinetics with delignification efficiency. Although complete biomass dissolution is observed after 3 h of IL pretreatment, the pattern of sugar release, saccharification kinetics, and total sugar yields are strongly correlated with temperature.  相似文献   

5.
The synthesis of δ-aminolevulinate from glutamate by Chlamydomonas reinhardtii membrane-free cell homogenates requires Mg2+, ATP, and NADPH as cofactors. The pH optimum is about 8.3. When analyzed by a Fractogel TSK gel filtration column the δ-aminolevulinate synthesizing enzymes, including glutamate-1-semialdehyde aminotransferase, elute with an apparent molecular weight of about 45,000. The enzymes obtained from the gel filtration column were separated into three fractions by affinity column chromatography. One fraction binds to heme-Sepharose, one to Blue Sepharose, while the enzyme converting the putative glutamate-1-semialdehyde to δ-aminolevulinic acid is retained by neither column. All three fractions are necessary for the conversion of glutamate to δ-aminolevulinate. The δ-aminolevulinate synthesizing enzymes from Chlamydomonas are sensitive to inhibition by heme but not sensitive to inhibition by protoporphyrin.  相似文献   

6.
In this work, we report the thermodynamic and ultrasonic properties of ascorbic acid (vitamin C) in water and in presence of newly synthesized ammonium based protic ionic liquid (diethylethanolammonium propionate) as a function of concentration and temperature. Apparent molar volume and apparent molar isentropic compression, which characterize the solvation state of ascorbic acid (AA) in presence of protic ionic liquid (PIL) has been determined from precise density and speed of sound measurements at temperatures (293.15 to 328.15) K with 5 K interval. The strength of molecular interactions prevailing in ternary solutions has been discussed on the basis of infinite dilution partial molar volume and partial molar isentropic compression, corresponding volume of transfer and interaction coefficients. Result has been discussed in terms of solute-solute and solute-solvent interactions occurring between ascorbic acid and PIL in ternary solutions (AA + water + PIL).  相似文献   

7.
Various ammonium sulfate concentrations and reaction conditions were employed in the fractionation of sera from rabbits, sheep, horses, and goats. Precipitates and supernatant fluids were analyzed by electrophoresis to study the effects of the controlled variables. At room temperature, the third precipitate in 35% saturated (NH(4))(2)SO(4) was the best fraction from both rabbit and sheep sera; 80 to 90% of the gamma globulins were recovered. The second and third precipitates of horse sera proteins in 30% saturated (NH(4))(2)SO(4) were both satisfactory, but only 44% of the gamma globulin was recovered after three precipitations. Goat sera yielded a very satisfactory fraction; 80% of the gamma globulin was recovered after two precipitations-the first in 30% and the second in 45% saturated (NH(4))(2)SO(4). The composition of these fractions was not influenced by the pH of the sulfate solutions (pH 5.8 and 7.2), by a range of normal room temperatures (20 to 30 C), or by diluting the sera before fractionation. Crude globulins and fluorescein isothiocyanate-labeled globulins were successfully refractionated by one precipitation in the optimal sulfate concentration for the appropriate animal species. The refractionated products contained considerably less beta and alpha globulins than did the original crude fractions and little or no albumin.  相似文献   

8.
Levulinic acid (LA) is a versatile platform chemical that can be derived from biomass as an alternative to fossil fuel resources. Herein, the optimization of LA production from glucose and oil palm fronds (OPF) catalyzed by an acidic ionic liquid; 1-sulfonic acid-3-methyl imidazolium tetrachloroferrate ([SMIM][FeCl4]) have been investigated. Response surface methodology based on Box-Behnken design was employed to optimize the LA yield and to examine the effect and interaction of reaction parameters on the LA production. The reaction parameters include reaction temperature, reaction time, feedstock loading, and catalyst loading. From the optimization study, the predicted mathematical models for LA production from glucose and OPF covered more than 90 % of the variability in the experimental data. At optimum conditions, 69.2 % of LA yield was obtained from glucose, while 24.8 % of LA yield was attained from OPF and registered 77.3 % of process efficiency. The recycled [SMIM][FeCl4] gave sufficient performance for five successive cycles. Furthermore, the optimum LA produced from glucose and OPF can be directly converted to ethyl levulinate through esterification over the [SMIM][FeCl4] catalyst. This study highlights the potential of [SMIM][FeCl4] for biorefinery processing of renewable feedstocks at mild process conditions.  相似文献   

9.
Switchgrass (Panicum virgatum L.) is a native North American prairie grass being developed for bioenergy production in the central and eastern USA. The objective of this study was to identify the impacts of harvest time and switchgrass cultivar had on sugar release variables determined through enzymatic hydrolysis. Previously, we reported that delaying harvest of switchgrass until after frost and until after winter resulted in decreased yields of switchgrass but it reduced the amount of ash and nutrients in the biomass. The current study used near-infrared reflectance spectroscopy (NIRS) to broaden an existing set of calibration equations designed to predict composition and sugar release variables of switchgrass. These updated calibrations were then applied to the full set of samples from a multi-year and multi-location switchgrass harvest-management study. Composition and processor sugar yields were significantly affected by location, year, cultivar, and harvest time, of which the time of harvest was the most important. Delaying the time of harvest until after frost or post-winter increased the concentration of structural carbohydrates from 500 to over 570 g kg?1 in the biomass and lignin content from 160 to over 200 g kg?1. Conversely, delaying harvest time lowered the amounts of ash and soluble sugars. The later harvest times also yielded more sugars following processing with yields increasing over 20% from the first harvest. Increased sugar yields are attributable to both increased concentration of sugars in the biomass upon harvest and reduced biomass recalcitrance. Based upon processed sugar yields, it is estimated that a biorefinery producing 76 million liters of ethanol per year would require 229–373 km2 of land cultivated with switchgrass.  相似文献   

10.
Switchgrass (Panicum virgatum L.) is a potential biomass crop for native species-based biofuel systems in North America. A recently identified pest of switchgrass, the switchgrass moth, Blastobasis repartella (Dietz) (Lepidoptera: Coleophoridae), feeds in the basal above-ground internodes and below-ground in the proaxis and rhizomes, causing premature tiller and rhizome loss. Our goal was to determine genetic and temporal variation among six upland cultivars for frequency of tiller infestation by larvae of the switchgrass moth in mature stands in the northern Great Plains and if variation in biomass production was associated with variation in frequency of infestation. Data were collected in 2011 and 2012 for tiller density, biomass, frequency of infestation, number of leaves per healthy and infested tiller, and weights of healthy and infested tillers. Differences were found among cultivars for tiller density, biomass yield, and numbers of leaves per healthy and infested tillers. ‘Summer’, ‘Sunburst’, ‘Pathfinder’, and ‘Cave-In-Rock’ were the highest yielding cultivars. Mean frequency of infestation was different between 2011 (6.7 %) and 2012 (9.6 %). Infested tillers had one less collared leaf than healthy tillers. The weights of healthy tillers were ca. 3× those of infested tillers in both years, suggesting an impact on biomass accumulation and economic value. Levels of infestation were similar for all six cultivars, indicating no feeding preference by the switchgrass moth larva among genetically diverse cultivars of switchgrass. Regression of biomass yield on frequency of infestation showed negative linear relationships for ‘Carthage’ and ‘Kentucky 1625’.  相似文献   

11.
Several fungal pathogens have been identified on ornamental and native stands of switchgrass (Panicum virgatum L.). Diseases of switchgrass, particularly rust, have been largely neglected and are likely to become the major limiting factor to biomass yield and quality, especially when monocultured over a large acreage. Based on teliospore morphology and internal transcribed spacer-based diagnostic primers, the rust pathogen collected from switchgrass research fields in Oklahoma was identified as Puccinia emaculata. Furthermore, to identify genetically diverse source(s) of rust resistance, several switchgrass genotypes from both upland (cv. ‘Summer’ and ‘Cave-in-Rock’) and lowland (cv. ‘Alamo’ and ‘Kanlow’) ecotypes were evaluated in Ardmore, Oklahoma during 2008 and 2009 and in growth chamber assays. Field and growth chamber evaluations revealed a high degree of genetic variation within and among switchgrass cultivars. In general, Alamo and Kanlow showed moderate resistance to P. emaculata, while Summer was highly susceptible. Distinct ecotypic variations for reactions to rust were also prevalent with the lowlands maintaining a high level of resistance. These results suggest the potential for improvement of rust resistance via the selection of resistant individuals from currently available cultivars. Further, the selection pressure on the pathogen would also be reduced by employing several rust resistant cultivars in production-scale situations.  相似文献   

12.
本文运用现代分析手段系统考察了溶液离子强度对菠菜来源光系统Ⅰ(PSⅠ)和光系统(PSⅡ)结构性质的影响,研究的结构性质包括:低温荧光光谱、放(耗)氧活性、聚集尺寸、聚集形貌、Zeta电位和热稳定性等.结果表明,溶液离子强度对PSⅠ和PSⅡ的放(耗)氧活性、聚集尺寸和热稳定性具有显著影响.此外,根据测试结果的分析得知,“筛分效应”在光系统Ⅰ的超滤分离过程中起决定性作用.  相似文献   

13.
The O-glycosidically linked carbohydrate units of ovomucin were released from serine and threonine in peptide as oligosaccharide chains by alkali treatment with and without borohydride. Two sulfated oligosaccharides were fractionated by using gel filtration and ion-exchange chromatography. The yield of sulfated oligosaccharides released by alkali treatment was higher in the presence of borohydride than in the absence of borohydride. The sulfated oligosaccharides released by alkali treatment with borohydride were as follows: an oligosaccharide composed of N-acetylgalactosaminitol, galactose, N-acetylneuraminic acid and sulfate in a molar ratio of about 1: 1: 1: 1 and another oligosaccharide in a molar ratio of about 1:1: 0.6: 0.5.  相似文献   

14.
The study of the effects of harvest time on switchgrass (Panicum virgatum L.) biomass and bioenergy production reported herein encompasses a large study evaluating the harvest of six switchgrass cultivars grown at three northern US locations over 3 years, harvested at upland peak crop (anthesis), post-frost, and post-winter. Delaying harvest of switchgrass until after frost and until after winter has resulted in decreased yields of switchgrass and reduced amounts of minerals in the biomass. This report examines how changes in biomass composition as a result of varying harvest time and other factors affect the distribution of products formed via fast pyrolysis. A subset (50) of the population (n = 864) was analyzed for fast pyrolysis and catalytic pyrolysis (zeolite catalyst) product yields using a pyrolysis-GC/MS system. The subset was used to build calibrations that were successful in predicting the pyrolysis product yield using near-infrared reflectance spectroscopy (NIRS), and partial least squares predictive models were applied to the entire sample set. The pyrolysis product yield was significantly affected by the field trial location, year of harvest, cultivar, and harvest time. Delaying harvest time of the switchgrass crop led to greater production of deoxygenated aromatics improving the efficiency of the catalytic fast pyrolysis and bio-oil quality. The changes in the pyrolysis product yield were related to biomass compositional changes, and key relationships between cell wall polymers, potassium concentration in the biomass, and pyrolysis products were identified. The findings show that the loss of minerals in the biomass as harvest time is delayed combined with the greater proportion in cellulose and lignin in the biomass has significant positive influences on conversion through fast pyrolysis.  相似文献   

15.
Optimal (NH(4))(2)SO(4) concentrations were sought for serum fractionation in order to obtain the gamma globulin as free as possible from other serum components while maintaining a reasonable recovery. Various ammonium sulfate concentrations were used to fractionate sera from mice, hamsters, guinea pigs, monkeys, chimpanzees, swine, chicken, and cattle. All precipitates and supernatants were analyzed by electrophoresis to study the effects of various treatments on the composition of these materials. Approximately 75% of all the gamma globulins were recovered when each serum was fractionated with its optimal sulfate concentration. These optimals were determined to be as follows: three precipitations in 35% saturated ammonium sulfate (SAS) for hamster, chimpanzee, swine, and chicken serum; one precipitation in 35% SAS followed by two in 40% SAS for mouse and guinea pig serum; one precipitation in 30% SAS and then two in 40% SAS for monkey serum; and one precipitation in 30% SAS followed by two in 35% SAS for cattle serum.  相似文献   

16.
Protoplasts of Listeria monocytogenes strain 42 were fractionated after control lysis on a Ficoll (a polysucrose) density gradient. Visually, five zones could be recognized in the gradient. The first one was composed of amorphous cytoplasmic solutes (fraction 1a) and a mixture of particles (fraction 1b). These were: (i) light particles that were lipase-sensitive and composed of six subunits and (ii) heavy particles, sensitive to ribonuclease and devoid of fine structure. The second zone consisted of tubules and vesicles still harboring cytoplasmic components (fraction 2), whereas the third zone contained only empty vesicles and protoplast ghosts (fraction 3). The material congregating into the fourth zone was morphologically identical to that of the third (fraction 3a). The fifth and heaviest zone contained a mixture of (i) particles without any substructure and (ii) partly lysed protoplasts (fraction 4). Fractions 1b and 4 were the richest in nucleic acids (ribonucleic acid, 11.4 and 9.4%, respectively; deoxyribonucleic acid, 5.1 and 4.8%, respectively), whereas fraction 1b had the highest protein contents (74.6%). Phospholipids were mainly found in fractions 2 and 3. Except for fraction 1, all materials contained significant amounts of protein-bound phosphorus. The main concentrations of four enzymes were: glucose-6-phosphate dehydrogenase (fraction 1a); adenosine triphosphatase and reduced nicotinamide adenine diphosphate oxidase (fraction 3); nitro blue tetrazolium chloride reductase (fraction 2). Fractionation of strain 42 after addition of (32)P during the mid-log phase of growth revealed that the radio-activity was mainly detected in fraction 1b, when growth in the presence of the marker was allowed for 10 min, and in fraction 2, when growth was allowed for 90 min. The vesicles of fraction 2, often tubular, are probably of mesosomal origin, whereas those of fraction 3, which are always spherical, represent, most likely, the bulk of the cell plasma membrane. Our data showed slight chemical differences between these two fractions, but the differences in enzymatic activities and lipid-phosphorus incorporation during long pulse experiments were most dramatic.  相似文献   

17.
The survey of the fragments obtained from pepsin-digested, denatured rat tail tendon collagen is completed. Three additional fragments could be renatured and two of them (490 A and 670 A) were located in tropocollagen by electron microscopy. Data are given on the amino acid compositions of the various fractions. Certain fragments probably originated from the associated non-collagenous material belonging to the "acidic structural proteins".  相似文献   

18.
In this work, we have explored the thermophysical properties of tetraalkylammonium hydroxide ionic liquids (ILs) such as tetrapropylammonium hydroxide (TPAH) and tetrabutylammonium hydroxide (TBAH) with isomers of butanol (1-butanol, 2-butanol and 2-methyl-2-propanol) within the temperature range 293.15–313.15 K, with interval of 5 K and over the varied concentration range of ILs. The molecular interactions between ILs and butanol isomers are essential for understanding the function of ILs in related measures and excess functions are sensitive probe for the molecular interactions. Therefore, we calculated the excess molar volume (VE) and the deviation in isentropic compressibility (Δκs) using the experimental values such as densities (ρ) and ultrasonic sound velocities (u) that are measured over the whole compositions range at five different temperatures (293.15, 298.15, 303.15, 308.15 and 313.15 K) and atmospheric pressure. These excess functions were adequately correlated by using the Redlich–Kister polynomial equation. It was observed that for all studied systems, the VE and Δκs values are negative for the whole composition range at 293.15 K. And, the excess function follows the sequence: 2-butanol>1-butanol>2-methyl-2-propanol, which reveals that (primary or secondary or tertiary) position of hydroxyl group influence the magnitude of interactions with ILs. The negative values of excess functions are contributions from the ion-dipole interaction, hydrogen bonding and packing efficiency between the ILs and butanol isomers. Hence, the position of hydroxyl group plays an important role in the interactions with ILs. The hydrogen bonding features between ILs and alcohols were analysed using molecular modelling program by using HyperChem 7.  相似文献   

19.
20.
A standard two-step dilute sulfuric acid pretreatment was performed on Loblolly pine to enhance the overall efficiency of enzymatic deconstruction of woody biomass to monomeric sugars. The structure of milled wood lignin and cellulose isolated from the untreated and acid-treated biomass was studied in detail. Solid-state 13C NMR spectroscopy coupled with line shape analyses has been employed to elucidate cellulose crystallinity and ultrastructure. The results indicate an increase in the degree of crystallinity and reduced relative proportion of less ordered cellulose allomorphs following the acid pretreatment. This increase was attributed to a preferential degradation of amorphous cellulose and less ordered crystalline forms during the high temperature pretreatment. Milled wood lignin structural elucidation by quantitative 13C and 31P NMR reveals an increase in the degree of condensation of lignin due to the pretreatment. The increase in degree of condensation is accompanied by a decrease in β-O-4 linkages which were fragmented and recondensed during the high temperature acid-catalyzed reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号