首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aquatic sediments in industrial regions are often polluted by heavy metals. When removed by dredging, the sediments become an environmental risk. Because of the high costs and the deficient sustainability of landfill disposal, we intend to develop a remediation process for cleaning heavy metal-contaminated sediments by solid-bed bioleaching. Unfortunately, freshly dredged sediments are often impermeable to water. Therefore, they have to be conditioned to improve their hydrodynamic properties and make them suitable for solid-bed leaching. The treatment basin of 5.9 m × 7.5 m of a pilot-scale plant for sediment conditioning was filled with 0.5 m freshly dredged sediment, which originated from a trap in the Weisse Elster River near Leipzig, Germany, and was contaminated with Zn, Cr, Pb, Cu, Ni, and Cd. The sediment was planted with the helophytes Phragmites australis, Phalaris arundinacea, and Agrostis stolonifera. The vegetation evaporated large amounts of water and transported oxygen into the sediment. During conditioning the anoxic, black, muddy-pasty sediment changed to the oxic state and turned into a grayish brown, crumbly, soil-like material. Furthermore, the sediment turned acidic, its buffer capacity decreased, and, because of pore and particle enlargements, it became easily permeable to water. The plants on the sediment incorporated heavy metals in their biomass, especially Zn, Ni, Cd, and Co, but not enough for sediment remediation by phytoextraction.  相似文献   

2.
Constructed tide tanks were used to examine the accumulation and distribution of heavy metals in various components of a simulated mangrove ecosystem. Young Kandelia candel plants grown in mangrove soils were irrigated with wastewater of various strengths twice a week for a period of one year. The amounts of heavy metals released via tidal water and leaf litter were monitored at regular time intervals. The quantities of heavy metals retained in mangrove soil and various plant parts were also determined. Results show that most heavy metals from wastewater were retained in soils with little being uptake by plants or released into tidal seawater. However, the amounts of metals retained in plants on a per unit dry weight base were higher than those in soils as the biomass production from the young mangrove plants was much smaller when compared to the vast quantity of soils used in this study. A significantly higher heavy metal content was found in roots than in the aerial parts of the mangrove plant,indicating that the roots act as a barrier for metal translocation and protect the sensitive parts of the plant from metal contamination. In both soil and plant, concentrations of Zn, Cd, Pb and Ni increased with the strengths of wastewater, although the bioaccumulation factors for these metals decreased when wastewater strengths increased. These results suggest that the mangrove soil component has a large capacity to retain heavy metals, and the role of mangrove plants in retaining metals will depend on plant age and their biomass production. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The present study investigated the impact of cumulative irrigation with wastewater on the soil properties and, its health hazards on the consumers of cabbage plants at south Cairo Province, Egypt. Irrigation water, soil and cabbage plants were sample d from two polluted and other two unpolluted farms. The physicochemical properties of water and soil were analyzed and the growth parameters, as well as nutrients and heavy metals concentration in cabbage were investigated. In addition, the daily intake of metals (DIM) and health risk index (HRI) were estimated. Wastewater posed a decrease in the availability of N, P and K, but increases heavy metals in the soil solution. Cabbage stem and root lengths as well as the number of leaves and biomass were greatly reduced in the polluted farms. In addition, the photosynthetic pigments, carbohydrates and proteins were decreased under pollution stress. The concentration of most investigated metals in the leaves and roots were increased with translocation factor greater than one for Pb, Cd, As, Cr, Ni, Fe, and Co. The study revealed that the HRI exceeded one for Pb and Cd in polluted and unpolluted plants; and Fe in polluted ones. Irrigation with wastewater is not suitable for cabbage as it has health risks on humans due to accumulation of heavy metals. It worth noting that, the high ability of cabbage plants to accumulate Pb and Cd from both polluted and unpolluted soils should be taken into consideration when consuming this plant.  相似文献   

4.
The present study was conducted to investigate the potential of Vossia cuspidata as a phytoremediator to accumulate heavy metals from polluted water bodies. Thirty-two quadrats, distributed equally in eight sites (six polluted sites along the Ismailia canal and two unpolluted sites along the Nile River) were selected seasonally for plant, water, and sediment investigations. Winter plants recorded the highest values of shoot height, diameter, and leaf width, but the lowest shoot density. Plants collected in autumn had the lowest values of leaf length, width, and area, while those collected in spring had the highest shoot density, with the lowest shoot height. Summer populations had the highest fresh and dry plant biomass, while winter plants had the lowest. Fresh production and dry biomass of V. cuspidata in the unpolluted Nile were significantly higher than those in polluted canals. Chlorophyll a and carotenoid concentrations were reduced under pollution stress. Spring plants accumulated the highest concentrations of Cr, Cu, and Pb in their root, and the lowest concentrations of Al, Cd, Cr, and Zn in their shoot. The bioaccumulation factor for most investigated metals, except Al, Cr, and Fe was greater than 1, while the translocation factor of all metals was less than 1, therefore this plant is considered to be a potential for these metals phytostabilization.  相似文献   

5.
An attractive option for the management of dredged sediment involves the use of dredged sediment for beneficial use purposes, such as for fill material. Treatment (chemical amendment) of contaminated sediment may be necessary to limit the environmental and human availability (bioaccessibility, leachability, plant uptake) of heavy metals associated with the contaminated sediment before it is placed. A laboratory study was conducted to investigate the effect of admixing a specific chemical amendment (blast furnace slag) with slightly contaminated fresh-water sediment for reducing metal availability. Initial characterization tests of the un-amended sediment showed that the some of the metals analyzed were present in relatively available (non-residual) forms. Although sulfide was present in the un-amended sediment, the amount was not sufficient to bind all of the available metals. A series of metal availability testing methods indicated that the amendment of the sediment with blast furnace slag (4% on a dry weight ratio basis) had the potential to slightly reduce the availability of some, but not all of the available metals associated with the sediment. Results of the column and batch leaching tests showed that leachability of certain metals, such as barium, nickel and zinc, was reduced by the amendment, but the leachability of copper increased. The effect of the amendment for decreasing bioaccessibility for lead and arsenic was not demonstrated. The amended soil had a detrimental effect on most of the plant species that were evaluated. The metal availability results for the plant uptake tests were also mixed, with slightly lower uptake of certain metals by corn grown within the amended sediment.  相似文献   

6.
An experiment was undertaken to evaluate the effect of liquid manure amendment on heavy metal accumulation in wheat and barley. For this purpose, both kinds of seedlings were grown simultaneously in a Petri dish, while wheat seedlings were also grown in pots containing unpolluted agricultural soil. All of the seedlings were irrigated with one of the three prepared solutions: artificial rainwater solution, heavy metal solution and liquid manure solution containing NH4NO3, H3PO4 and KOH along with equal amounts of heavy metals as in the second solution. Twenty days later, 1 g of plant tissue was digested with the mixture of HNO3 and H2O2 for ICP-OES/HG-ICP-OES analysis. The results showed that the uptake of arsenic and mercury was highest for both plants grown in a Petri dish. Furthermore, the wheat grown in a Petri dish also had a high content of nickel, cadmium and copper, while the pot-grown wheat contained high amounts of iron and manganese, probably due to the adsorption of nickel, cadmium, copper and mercury on soil phases. The lower uptake of all heavy metals was observed after the amendment of liquid manure, with the exception of manganese in wheat and mercury in all plants.  相似文献   

7.
High biomass producing plant species, such as Helianthus annuus, have potential for removing large amounts of trace metals by harvesting the aboveground biomass if sufficient metal concentrations in their biomass can be achieved However, the low bioavailability of heavy metals in soils and the limited translocation of heavy metals to the shoots by most high biomass producing plant species limit the efficiency of the phytoextraction process. Amendment of a contaminated soil with ethylene diamine tetraacetic acid (EDTA) or citric acid increases soluble heavy metal concentrations, potentially rendering them more available for plant uptake. This article discusses the effects of EDTA and citric acid on the uptake of heavy metals and translocation to aboveground harvestable plant parts in Helianthus annuus. EDTA was included in the research for comparison purposes in our quest for less persistent alternatives, suitable for enhanced phytoextraction. Plants were grown in a calcareous soil moderately contaminated with Cu, Pb, Zn, and Cd and treated with increasing concentrations of EDTA (0.1, 1, 3, 5, 7, and 10 mmol kg(-1) soil) or citric acid (0.01, 0.05, 0.25, 0.442, and 0.5 mol kg(-1) soil). Heavy metal concentrations in harvested shoots increased with EDTA concentration but the actual amount of phytoextracted heavy metals decreased at high EDTA concentrations, due to severe growth depression. Helianthus annuus suffered heavy metal stress due to the significantly increased bioavailable metal fraction in the soil. The rapid mineralization of citric acid and the high buffering capacity of the soil made citric acid inefficient in increasing the phytoextracted amounts of heavy metals. Treatments that did not exceed the buffering capacity of the soil (< 0.442 mol kg(-1) soil) did not result in any significant increase in shoot heavy metal concentrations. Treatments with high concentrations resulted in a dissolution of the carbonates and compaction of the soil. These physicochemical changes caused growth depression of Helianthus annuus. EDTA and citric acid added before sowing of Helianthus annuus did not appear to be efficient amendments when phytoextraction of heavy metals from calcareous soils is considered.  相似文献   

8.
Hemp (Cannabis sativa L.) is an emerging dioecious crop grown primarily for grain, fiber, and cannabinoids. There is good evidence for medicinal benefits of the most abundant cannabinoid in hemp, cannabidiol (CBD). For CBD production, female plants producing CBD but not tetrahydrocannabinol (THC) are desired. We developed and validated high‐throughput PACE (PCR Allele Competitive Extension) assays for C. sativa plant sex and cannabinoid chemotype. The sex assay was validated across a wide range of germplasm and resolved male plants from female and monoecious plants. The cannabinoid chemotype assay revealed segregation in hemp populations, and resolved plants producing predominantly THC, predominantly CBD, and roughly equal amounts of THC and CBD. Cultivar populations that were thought to be stabilized for CBD production were found to be segregating phenotypically and genotypically. Many plants predominantly producing CBD accumulated more than the current US legal limit of 0.3% THC by dry weight. These assays and data provide potentially useful tools for breeding and early selection of hemp.  相似文献   

9.
The contamination and toxicity levels of sediments in Kaohsiung Harbor, Taiwan, were evaluated using different sediment quality guidelines (SQGs). Twenty dredged sediment samples were collected from various locations in the harbor. Distribution of polycyclic aromatic hydrocarbons (PAHs), heavy metals, nutrients, and total organic carbons in the sediment samples were investigated. Results from the sediment analyses show that the sediments contained significant amounts of organics, nutrients, metals, and PAHs. Based on the analyses using the SQGs, sediments dredged from Kaohsiung Harbor were moderately contaminated and most samples have a low and medium-low probability of toxicity pollution. Results show that industrial activities and urban sewage effluents are the major sources of contamination in the harbor sediments.  相似文献   

10.
Hemp (Cannabis sativa L.) is mainly grown for its fibre and is considered a desirable crop for sustainable production systems. In a field trial carried out over two years in Northern Italy the root system of a hemp crop, cultivated at contrasting plant densities, was sampled and analysed with an image analysis software. Root length density (RLD) was highest in the first 10 cm of soil, almost 5 cm cm?3; it decreased progressively until the depth of 130 cm, a part from a peak at 90–100 cm in response to a perched water table. Roots were found to 130 cm of depth in one year and to 200 cm in the other. Root diameter was finer (190 μm) in the upper soil layer, it increased with depth until 100 cm, and remained constant at 300 μm thereafter. Following the same trend of RLD, root biomass was highest in the first soil layer; 50% of the root biomass was found in the first 20 cm or 50 cm when taproot biomass was considered or not. Total root biomass was 3.21 t ha?1 and 2.41 t ha?1 in the two years of trial, but the ratio between aboveground and below ground biomass was constant at 5.46. None of the root parameters were significantly affected by plant population, which seems to confirm the plastic behaviour that hemp shows for aboveground development. The high root biomass production measured in this study, especially in deeper soil layers, provides additional evidence of the positive role that hemp can play in sustainable cropping systems.  相似文献   

11.
Heavy metal phytoextraction is a soil remediation technique which implies the optimal use of plants to remove contamination from soil. Plants must thus be tolerant to heavy metals, adapted to soil and climate characteristics and able to take up large amounts of heavy metals. Their roots must also fit the spatial distribution of pollution. Their different root systems allow plants to adapt to their environment and be more or less efficient in element uptake. To assess the impact of the root system on phytoextraction efficiency in the field, we have studied the uptake and root systems (root length and root size) of various high biomass plants (Brassica juncea, Nicotiana tabacum, Zea mays and Salix viminalis) and one hyperaccumulator (Thlaspi caerulescens) grown in a Zn, Cu and Cd contaminated soil and compared them with total heavy metal distribution in the soil. Changes from year to year have been studied for an annual (Zea mays) and a perennial plant (Salix viminalis) to assess the impact of the climate on root systems and the evolution of efficiency with time and growth. In spite of a small biomass, T. caerulescens was the most efficient plant for Cd and Zn removal because of very high concentrations in the shoots. The second most efficient were plants combining high metal concentrations and high biomass (willows for Cd and Zn and tobacco for Cu and Cd). A large cumulative root density/aboveground biomass ratio (LA/B), together with a relative larger proportion of fine roots compared to other plants seemed to be additional favourable characteristics for increased heavy metal uptake by T. caerulescens. In general, for all plants correlations were found between L A/B and heavy metal concentrations in shoots (r=0.758***, r=0.594***, r=0.798*** (P<0.001) for Cd, Cu and Zn concentrations resp.). Differences between years were significant because of variations in climatic conditions for annual plants or because of growth for perennial plants. The plants exhibited also different root distributions along the soil profile: T. caerulescens had a shallow root system and was thus best suited for shallow contamination (0.2 m) whereas maize and willows were the most efficient in colonising the soil at depth and thus more applicable for deep contamination (0.7 m). In the field situation, no plant was able to fit the contamination properly due to heterogeneity in soil contamination. This points out to the importance and the difficulty of choosing plant species according to depth and heterogeneity of localisation of the pollution.  相似文献   

12.
The effects of humic acid (HA) on heavy-metal uptake by plants and degradation of total petroleum hydrocarbons (TPHs) in a wetland microcosm planted with Phragmites communis were evaluated by comparing waterlogged soils and water-drained upland soils. Experiments were conducted on soils artificially contaminated with heavy metals (Pb, Cu, Cd, Ni) and diesel fuel. HA showed a positive influence on biomass increase for all conditions, but more for belowground than aboveground biomass, and lower in contaminated than uncontaminated soil. The bioavailability and leachability factor (BLF) for all heavy metals except Ni increased with HA addition in both the control and the P. communis planted microcosms, suggesting that more heavy metals could be potentially phytoavailable for plant uptake. Microbial activities were not affected by both heavy metals and TPH contamination, and HA effects on stimulating microbial activities were much greater in the contaminated soil than under uncontaminated conditions. HA addition enhanced the degradation of TPH and n-alkane in waterlogged conditions. The results show that HA can increase the remedial performance in P. communis dominated wetlands simultaneously contaminated with heavy metals and petroleum hydrocarbons and thus prevent contamination of groundwater or other adjacent ecosystems.  相似文献   

13.
Enhanced phytoextraction: in search of EDTA alternatives   总被引:6,自引:0,他引:6  
Enhanced phytoextraction proposes the use of soil amendments to increase the heavy-metal content of above-ground harvestable plant tissues. This study compares the effect of synthetic aminopolycarboxylic acids [ethylenediamine tetraacetatic acid (EDTA), nitriloacetic acid (NTA), and diethylenetriamine pentaacetic acid (DTPA)] with a number of biodegradable, low-molecular weight, organic acids (citric acid, ascorbic acid, oxalic acid, salicylic acid, and NH4 acetate) as potential soil amendments for enhancing phytoextraction of heavy metals (Cu, Zn, Cd, Pb, and Ni) by Zea mays. The treatments in this study were applied at a dose of 2 mmol/kg(-1) 1 d before sowing. To compare possible effects between presow and postgermination treatments, a second smaller experiment was conducted in which EDTA, citric acid, and NH4 acetate were added 10 d after germination as opposed to 1 d before sowing. The soil used in this screening was a moderately contaminated topsoil derived from a dredged sediment disposal site. This site has been in an oxidized state for more than 8 years before being used in this research. The high carbonate, high organic matter, and high clay content characteristic to this type of sediment are thought to suppress heavy-metal phytoavailability. Both EDTA and DTPA resulted in increased levels of heavy metals in the above-ground biomass. However, the observed increases in uptake were not as large as reported in the literature. Neither the NTA nor organic acid treatments had any significant effect on uptake when applied prior to sowing. This was attributed to the rapid mineralization of these substances and the relatively low doses applied. The generally low extraction observed in this experiment restricts the use of phytoextraction as an effective remediation alternative under the current conditions, with regard to amendments used, applied dose (2 mmol/kg(-1) soil), application time (presow), plant species (Zea mays), and sediment (calcareous clayey soil) under study.  相似文献   

14.
Soil moisture effects on uptake of metals by Thlaspi, Alyssum, and Berkheya   总被引:3,自引:0,他引:3  
Most commonly used hyperaccumulator plants for phytoextraction of metals evolved on soils where moisture is limited throughout much of the year. As these plant species are commercialized for use, they are frequently moved from the point of evolution to locations where environmental conditions may be significantly different. Greatest among these potential differences is soil moisture. The objective of this study was therefore to determine whether these plants could grow in soils with much higher soil moisture and whether they would continue to hyperaccumulate metals as soils approach saturation. We examined extractable soil metal concentrations, plant growth, and metal accumulation for the Ni hyperaccumulators, Alyssum murale and Berkheya coddii and the Zn hyperaccumulators Thlaspi caerulescens cultivars AB300 and AB336. Non-hyperaccumulating control species for each were also examined. In general, extractable soil concentrations of Ni decreased with increasing soil moisture content. Few significant effects related to Zn extractability were observed for any of the soil moisture treatments. The biomass of all tested species was generally greater at higher soil moisture and inhibited at low soil moisture. Further, plants accumulated large amounts of metals from soil at higher soil moisture. Highest foliar concentrations of Zn or Ni were found at the two highest WHCs of 80 and 100%. These results show that hyperaccumulators grow well under conditions of high soil moisture content and that they continue to hyperaccumulate metals. Thus, growing Thlaspi, Alyssum, and Berkheya for commercial phytoextraction under nonnative conditions is appropriate and suggests that this technology may be applied to a wide and diverse range of soil types, climatic conditions, and irrigation regimes.  相似文献   

15.
菌根植物根际环境对污染土壤中Cu、Zn、Pb、Cd形态的影响   总被引:56,自引:6,他引:56  
采用根垫法和连续形态分析技术,分析了生长在污灌土壤中菌根小麦和无菌根小麦根际Cu、Zn、Pb、Cd的形态分布和变化趋势。结果表明,下对照土壤相比,菌根际土壤中交换态Cu含量显著增加,交换态Cd呈减少的趋势;与非菌根际相比,Cu、Zn、Pb的有机结合态在菌根根际中显著增加,而4种测定金属2的碳酸盐态和铁锰氧化态都没有显著改变,该结果表明,植物根系能影响根际中金属形态的变化,且菌根比无菌根的影响程度大  相似文献   

16.
工业大麻对重金属污染土壤的治理研究进展   总被引:2,自引:0,他引:2  
梁淑敏  许艳萍  陈裕  杨明  郭鸿彦 《生态学报》2013,33(5):1347-1356
由于工业、农业、废水处理、建筑和采矿等一系列人为活动造成土壤的污染程度日益严重,致使土壤不能用于粮食等作物生产.如何深入治理重金属污染土壤已成为当今研究的热点.由于传统的治理重金属污染技术非常昂贵,并存在二次污染的风险,促使研究者寻求新的治理技术.而植物修复技术以其价廉、清洁、不破坏环境、不会造成二次污染等特性逐步引起了学术界和政府部门的广泛重视.近年来,工业大麻以其优良的修复特性和利用价值已成为修复重金属污染土壤的候选植物之一.在此重点论述了重金属对工业大麻的影响及其在大麻不同部位的分布;工业大麻对重金属的吸收能力以及工业大麻对重金属污染土壤修复的优良特性,最后对工业大麻修复重金属污染土壤技术存在的不足等进行归纳总结,以便为工业大麻对重金属污染治理研究及耐重金属或超富集工业大麻品种的选育和栽培技术研究提供指导.  相似文献   

17.
The effects of different cadmium concentrations [17 mg(Cd) kg−1(soil) and 72 mg(Cd) kg− 1(soil)] on Cannabis sativa L. growth and photosynthesis were examined. Hemp roots showed a high tolerance to Cd, i.e. more than 800 mg(Cd) kg−1(d.m.) in roots had no major effect on hemp growth, whereas in leaves and stems concentrations of 50 – 100 mg(Cd) kg−1(d.m.) had a strong effect on plant viability and vitality. For control of heavy metal uptake and xylem loading in hemp roots, the soil pH plays a central role. Photosynthetic performance and regulation of light energy consumption were analysed using chlorophyll fluorescence analysis. Seasonal changes in photosynthetic performance were visible in control plants and plants growing on soil with 17 mg(Cd) kg−1(soil). Energy distribution in photosystem 2 is regulated in low and high energy phases that allow optimal use of light and protect photosystem 2 from overexcitation, respectively. Photosynthesis and energy dissipation were negatively influenced by 72 mg(Cd) kg−1(soil). Cd had detrimental effects on chlorophyll synthesis, water splitting apparatus, reaction centre, antenna and energy distribution of PS 2. Under moderate cadmium concentrations, i.e. 17 mg(Cd) kg−1(soil), hemp could preserve growth as well as the photosynthesis apparatus, and long-term acclimation to chronically Cd stress occurred.  相似文献   

18.
The phytoremediation, with industrial hemp (Cannabis sativa), of a Hawaiian silty clay soil contaminated with two polycyclic aromatic hydrocarbons (PAHs), chrysene and benzo[a]pyrene, was studied. Hemp showed a very high tolerance to the contaminants. The growth rates of hemp, compared with control, in soils fortified with chrysene and benzo[a]pyrene at concentrations of each varying from 25 to 200 micrograms/g were consistently above 100%. The plants grew from seed for 45 days in soil fortified with PAHs at concentrations of 25, 50, and 75 micrograms/g. Controls were pots with contaminated soil but no plant. PAHs levels were significantly reduced in all pots (control and seeded pots), expect for one set at a high concentration of chrysene, which may be due to uneven spiking. A time course study over 28 days was done to monitor changes of microbial count and levels of chrysene. Little changes were observed for the total microbial count in the soil, and the concentration of chrysene in the soil decreased slightly in the pots containing plants. However, the chrysene levels in those pots were consistently lower than those in the pots without plants.  相似文献   

19.
Excessive amounts of heavy metals adversely affect plant growth and development. Whereas some regions naturally contain high levels of heavy metals, anthropogenic release of heavy metals into the environment continuously increases soil contamination. Preliminary studies have shown that Chenopodium botrys can grow in some heavy metal contaminated soils and is a high accumulator plant species for Cu and moderately accumulator plant species for Fe, Mn, and Zn, thus, was considered as an important species in this study. Based on that, in this species, we studied the individual effects of heavy metals on the formation, development, and structure of anther and pollen. To achieve this purpose, surrounding area of Hame-Kasi iron and copper mine (Hamedan, Iran) was chosen as a polluted area where the amount of some heavy metals was several times higher than the natural soils. Flowers and young pods were removed from non-polluted and polluted plants, fixed in FAA 70, and subjected to developmental studies. Analysis of anther development in plants from contaminated sites showed general similarities in the pattern of pollen formation with those from non-polluted ones, but also deviation from typical form of major stages of anther and pollen development was seen in plants from polluted ones. Stabilizing of tapetum layer, increasing in tapetum layer numbers, thickening callose wall in the microspore mother cell stage, changing the anther shape, and decreasing the size of anther were the effects of heavy metals. Reduction of pollen number was also seen in the plants collected from polluted area.  相似文献   

20.
Two common macrophyte species, Potamogeton perfoliatus L. and Potamogeton pectinatus L. were grown for 12 weeks at shallow depths in sediments contaminated with 1250 or 2500 g Pb or Cu and/or Zn (gDW sediment)-1. Control experiments were run at background levels of 4, 13, and 38 g Pb, Cu and Zn (gDW sediment)-1, respectively. Effects of heavy metals on biomass production and metal uptake and distribution in plants are presented in relation to total amount and plant-available fraction of metals in the sediment.All three studied metals gave reduced biomass production, and the toxicity of the metals decreased in the order Zn>Cu>Pb. The root/shoot biomass ratio increased for P. pectinatus, but decreased for P. perfoliatus with metal treatment. The content of any single metal was higher in shoots than in roots of plants grown on sediments not contaminated with that specific metal, but addition of that metal increased the proportion in roots. The uptake by plants of any of the heavy metals increased with increased metal addition. The magnitude of the plant-available fraction of metals of untreated sediment was Zn>Cu>Pb, and increased in contaminated sediments. Addition of Cu decreased both the plant-available fraction and the total concentration of Zn in the sediment, while increased the uptake of Zn by the plants. The opposite was found for Cu when Zn was added. P. pectinatus accumulated about twice as much Cu as P. perfoliatus. On the other hand, the concentration of Pb was higher in P. perfoliatus than in P. pectinatus, and was negligible in P. pectinatus when cultivated in untreated sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号