首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research was undertaken to clarify the taxonomic identity of leaf rust (Pucciniales) fungi on bioenergy switchgrass in the Eastern and Central U.S. We integrated internal transcribed spacer 2 (ITS2) and partial 28S ribosomal RNA gene sequence data from collections taken from cultivated switchgrass and herbarium specimens, including purported aecial and telial states of Puccinia graminicola and Puccinia pammelii. Maximum likelihood and Bayesian analyses revealed four monophyletic clades: Puccinia emaculata sensu stricto (s.s.), P. pammelii, P. graminicola, and Puccinia novopanici. Results also indicated that P. emaculata s.s. was not affecting cultivated, bioenergy switchgrass. Aecidium pammelii and P. pammelii were distinct phylogenetically from P. emaculata s.s. and grouped within a well-supported clade, demonstrating aecial-telial host alternation for P. pammelii between Euphorbia corollata and switchgrass. Aecidium stillingiae on queen’s delight (Stillingia sylvatica)—a purported aecial state host for P. graminicola—shared identical sequences with the recently described species Puccinia pascua. The latter fungus, however, was recovered within a subclade of P. graminicola. Hence, queen’s delight likely is not an aecial host to P. graminicola s.s. Additional molecular studies are warranted to determine species boundaries within the P. graminicola complex. The majority of contemporary collections from cultivated switchgrass were recognized as P. novopanici. Collectively, bioenergy switchgrass is host to at least three phylogenetically distinct species, presenting a significant challenge to the future selection and breeding of switchgrass with improved rust resistance.  相似文献   

2.
One method for diagnosing the mode of sequence evolution considers the ratio of nonsynonymous substitutions per nonsynonymous site (K A) to the corresponding figure for synonymous substitutions (K S). A ratio (K A/K S) greater than unity is taken as evidence for positive selection. This, however, need not necessarily be the case. Notably, there is one instance of a high intragenic K A/K S peak, revealed by sliding window analysis and observed in two pairwise comparisons, better accounted for by localised purifying selection on synonymous mutations that affect splicing. Is this example exceptional? To address this we isolate intragenic domains with K A/K S > 1 from more than 1000 long mouse-rat orthologues. Approximately one K A/K S > 1 peak is found per 12–15 kb of coding sequence. Surprisingly, low synonymous substitution rates underpin more incidences than do high nonsynonymous rates. Several reasons, however, prevent us from supposing that the low synonymous rates reflect purifying selection on synonymous mutations. First, for many peaks, the null that the peak is no higher than expected given the underlying rates of evolution, cannot be rejected. Second, of 18 statistically significant incidences with unusually low K S values, only 3 are repeatable across independent comparisons. At least two of these are within alternatively spliced exons. We conclude that repeatable statistically significant intragenic domains of low intragenic K S are rare. As so few K A/K S peaks reflect increased rates of protein evolution and so few hold statistical support, we additionally conclude that sliding window analysis to infer domains of positive selection is highly error-prone.  相似文献   

3.
We examined changes in suspended-sediment yields (SSY) after a 50 % strip thinning in headwater streams draining a Japanese cedar (Cryptomeria japonica) and cypress (Chamaecyparis obtusa) plantation forest. We applied a paired-catchment analysis to treated (K T : 17.1 ha) and control (K C : 8.9 ha) catchments. Annual suspended-sediment yield (SSYan) in the prethinning period in the K T and K C catchments was 110.0 and 142.1 kg/ha per year. For the postthinning period, SSYan in the K T catchment became 5055.6 kg/ha per year, whereas that in the K C catchment increased 893.2 kg/ha per year. The paired-catchment analysis revealed that SSY in the K T catchment increased 17.0-fold compared with the prethinning period. However, the dominant hysteresis pattern remained clockwise in both pre- and postthinning periods. Sequences of large storm events in the postthinning period elevated SSY in both catchments. Increase in suspended sediment in the K T catchment was associated with the combined impacts of thinning and sequences of storm events during the period of thinning operation.  相似文献   

4.
We compared several methods for quantifying the culm surface area (S) of one of the most common bamboos in Japan, Phyllostachys pubescens Mazel ex Houz. Nine sample culms of P. pubescens were felled, and the true S was determined by the fine resolution analysis of the culm form (S FRA). The S was then calculated independently with the sectional measurement method from the successive diameters measured at equal intervals of one-twentieth (S 20), one-tenth (S 10), one-fifth (S 5) and one-half (S 2) of the total culm length. The S was also quantified geometrically from the total culm length and the diameter at breast height or at base by assuming that the culm form could be approximated by a cone (S DBH and S DAB). The S FRA was compared with each of the computed S values. For S 10, S 5 and S 2, both the mean relative bias (%BIAS) and relative root mean square error (%RMSE) decreased with an increase in the number of measured diameters. The %BIAS and %RMSE of the S 10 were, respectively, comparable and smaller compared to those of S 20. The bias of the S DBH and S DAB suggested that the cone assumption of the culm form was violated. In conclusion, we recommend that the S should be quantified from the successive diameters measured at equal intervals of one-tenth of the total culm length using the sectional measurement method.  相似文献   

5.
As observed in other self-incompatible species in the Pyrinae subtribe, loquat (Eriobotrya japonica) demonstrates gametophytic self-incompatibility that is controlled by the S-locus, which encodes a polymorphic stylar ribonuclease (S-RNase). This allows the female reproductive organ (style) to recognize and reject the pollen from individuals with the same S-alleles, but allows the pollen from individuals with different S-alleles to effect fertilization. The S-genotype is therefore an important consideration in breeding strategies and orchard management. In an attempt to optimize the selection of parental lines in loquat production, the S-RNase alleles of 35 loquat cultivars and their 26 progeny, as well as five wild loquat species, were identified and characterized in this study. The best pollinizer cultivar combinations were also explored. A total of 28 S-alleles were detected, 21 of which constituted novel S-RNase alleles. The S-haplotypes S2 and S6 were the most frequent, followed by S 29 , S 31 , S 5 , S 24 , S 28 , S 33 , S 34 , S 32 , and S 15 , while the rare alleles S 1 , S 9 , S 14 , S 16 , S 17 , S 18 , S 19 , S 20 , S 21 , S 22 , S 23 , S 27 , and S 35 were only observed in one of the accessions tested. Moreover, the S-genotypes of five wild loquat species (E. prinoides, E. bengalensis, E. prinoides var. dadunensis, E. deflexa, and E. japonica) are reported here for the first time. The results will not only facilitate the selection of suitable pollinators for optimal orchard management, but could also encourage the crossbreeding of wild loquat species to enhance the genetic diversity of loquat cultivars.  相似文献   

6.
European pear exhibits RNase-based gametophytic self-incompatibility controlled by the polymorphic S-locus. S-allele diversity of cultivars has been extensively investigated; however, no mutant alleles conferring self-compatibility have been reported. In this study, two European pear cultivars, ‘Abugo’ and ‘Ceremeño’, were classified as self-compatible after fruit/seed setting and pollen tube growth examination. S-genotyping through S-PCR and sequencing identified a new S-RNase allele in the two cultivars, with identical deduced amino acid sequence as S 21 , but differing at the nucleotide level. Test-pollinations and analysis of descendants suggested that the new allele is a self-compatible pistil-mutated variant of S 21 , so it was named S 21 °. S-genotypes assigned to ‘Abugo’ and ‘Ceremeño’ were S 10 S 21 ° and S 21 °S 25 respectively, of which S 25 is a new functional S-allele of European pear. Reciprocal crosses between cultivars bearing S 21 and S 21 ° indicated that both alleles exhibit the same pollen function; however, cultivars bearing S 21 ° had impaired pistil-S function as they failed to reject either S 21 or S 21 ° pollen. RT-PCR analysis showed absence of S 21 °-RNase gene expression in styles of ‘Abugo’ and ‘Ceremeño’, suggesting a possible origin for S 21 ° pistil dysfunction. Two polymorphisms found within the S-RNase genomic region (a retrotransposon insertion within the intron of S 21 ° and indels at the 3′UTR) might explain the different pattern of expression between S 21 and S 21 °. Evaluation of cultivars with unknown S-genotype identified another cultivar ‘Azucar Verde’ bearing S 21 °, and pollen tube growth examination confirmed self-compatibility for this cultivar as well. This is the first report of a mutated S-allele conferring self-compatibility in European pear.  相似文献   

7.
Radish, belonging to the family Brassicaceae, has a self-incompatibility which is controlled by multiple alleles on the S locus. To employ the self-incompatibility in an F1 breeding system, identification of S haplotypes is necessary. Since collection of S haplotypes and determination of nucleotide sequences of SLG, SRK, and SCR alleles in cultivated radish have been conducted by different groups independently, the same or similar sequences with different S haplotype names and different sequences with the same S haplotype names have been registered in public databases, resulting in confusion of S haplotype names for researchers and breeders. In the present study, we developed S homozygous lines from radish F1 hybrid cultivars in Japan and determined the nucleotide sequences of SCR, the S domain and the kinase domain of SRK, and the SLG of a large number of S haplotypes. Comparing these sequences with our previously published sequences, the haplotypes were ordered into 23 different S haplotypes. The sequences of the 23 S haplotypes were compared with S haplotype sequences registered by different groups, and we suggested a unification of these S haplotypes. Furthermore, dot-blot hybridization using SRK allele-specific probes was examined for developing a standard method for S haplotype identification.  相似文献   

8.
We examined the effect of concentration on nitrogen uptake patterns for a suburban stream in Maryland and addressed the question: How does NO3 ? uptake change as a function of concentration and how do uptake patterns compare with those found for NH4 +? We applied a longitudinal (stream channel corridor) approach in a forested stream section and conducted short-term nutrient addition experiments in late summer 2004. In the downstream direction, NO3 ? concentrations decreased because of residential development in headwaters and downstream dilution; NH4 + concentrations slightly increased. The uptake patterns for NO3 ? were very different from NH4 +. While NH4 + had a typical negative relationship between first-order uptake rate constant (K c ) and stream size, NO3 ? had a reverse pattern. We found differences for other metrics, including uptake velocity (V f ) and areal uptake rate (U). We attributed these differences to a stream size effect, a concentration effect and a biological uptake capacity effect. For NO3 ? these combined effects produced a downstream increase in K c , V f and U; for NH4 + they produced a downstream decrease in K c and V f , and a not well defined pattern for U. We attributed a downstream increase in NO3 ? uptake capacity to an increase in hyporheic exchange and a likely increase in carbon availability. We also found that K c and V f were indirectly related with concentration. Similar evidence of ‘nutrient saturation’ has been reported in other recent studies. Our results suggest that higher-order uptake models might be warranted when scaling NO3 ? uptake across watersheds that are subject to increased nitrogen loading.  相似文献   

9.
The agronomic performances of giant miscanthus (Miscanthus x giganteus) and switchgrass (Panicum virgatum L.) grown as bioenergy grasses are still unclear in North Carolina, due to a relatively short period of introduction. The objectives of the study were to compare the biomass yield and annual N removal of perennial bioenergy grasses and the commonly grown coastal bermudagrass [Cynodon dactylon (L.) Pers.], and to determine the optimum N rates and harvest practices for switchgrass and miscanthus. A 4-year field trial of the grasses under five annual harvest frequencies (May/Oct, June/Oct, July/Oct, Aug/Oct, and October only) and five annual N rates (0, 67,134, 202, and 268 kg N ha?1) was established at a research farm in Eastern North Carolina in 2011. Across harvest treatments and N rates, greatest biomass was achieved in the second growth year for both miscanthus (19.0 Mg ha?1) and switchgrass (15.9 Mg ha?1). Grasses demonstrated no N response until the second or the third year after crop establishment. Miscanthus reached a yield plateau with a N rate of 134 kg ha?1 since achieving plant maturity in 2013, whereas switchgrass demonstrated an increasing fertilizer N response from 134 kg N ha?1 in the third growth year (2014) to 268 kg N ha?1 in the fourth growth year (2015). The two-cut harvest system is not recommended for bioenergy biomass production in this region because it does not improve biomass yield and increased N removal leads to additional costs.  相似文献   

10.
2-Amino-3-ketobutyrate CoA ligase (KBL) of Escherichia coli is a member of the α-oxoamine synthase family; it catalyzes the condensation reaction between glycine and acetyl CoA to yield 2-amino-3-ketobutyrate.We have previously shown that KBL catalyzes the exchange of pro-R hydrogen of glycine with protons in the medium; however, the kinetics of this reaction has never been determined. In this study, we calculated the kinetic parameters of this exchange reaction by using different concentrations of [2RS- 3H2: 2-14C] glycine. The rate of the exchange reaction was determined by measuring the 3H/14C ratio in recovered [2S- 3H: 2-14C]glycine. The Lineweaver-Burk plot showed that K m and k cat of this reaction were 3.8 × 10-3 M and 0.22 S-1, respectively. On the other hand, K m and k cat values of the overall KBL-mediated catalysis were correspondingly 1.23 × 10-2M and 1.19 S-1. Thus, the rate of the exchange reaction was almost five times lower than that of overall KBL catalysis.  相似文献   

11.
α-Amino-ε-caprolactam (ACL) racemizing activity was detected in a putative dialkylglycine decarboxylase (EC 4.1.1.64) from Citreicella sp. SE45. The encoding gene of the enzyme was cloned and transformed in Escherichia coli BL21 (DE3). The molecular mass of the enzyme was shown to be 47.4 kDa on SDS–polyacrylamide gel electrophoresis. The enzymatic properties including pH and thermal optimum and stabilities were determined. This enzyme acted on a broad range of amino acid amides, particularly unbranched amino acid amides including l-alanine amide and l-serine amide with a specific activity of 17.5 and 21.6 U/mg, respectively. The K m and V max values for d- and l-ACL were 5.3 and 2.17 mM, and 769 and 558 μmol/min.mg protein, respectively. Moreover, the turn over number (K cat) and catalytic efficiency (K cat/K m ) of purified ACL racemase from Citreicella sp. SE45 using l-ACL as a substrate were 465 S?1 and 214 S?1mM?1, respectively. The new ACL racemase from Citreicella sp. SE45 has a potential to be used as the biocatalytic application.  相似文献   

12.
How global warming will affect soil respiration (R S) and its source components is poorly understood despite its importance for accurate prediction of global carbon (C) cycles. We examined the responses of R S, heterotrophic respiration (R H), autotrophic respiration (R A), nitrogen (N) availability, and fine-root biomass to increased temperature in an open-field soil warming experiment. The experiment was conducted in a cool-temperate deciduous forest ecosystem in northern Japan. As this forest is subjected to strong temporal variation in temperature, on scales ranging from daily to seasonal, we also investigated the temporal variation in the effects of soil warming on R S, R H, and R A. Soil temperature was continuously elevated by about 4.0°C from 2007 to 2014 using heating wires buried in the soil, and we measured soil respiratory processes in all four seasons from 2012 to 2014. Soil warming increased annual R S by 32–45%, but the magnitude of the increase was different between the components: R H and R A were also stimulated, and increased by 39–41 and 17–18%, respectively. Soil N availability during the growing season and fine-root biomass were not remarkably affected by the warming treatment. We found that the warming effects varied seasonally. R H increased significantly throughout the year, but the warming effect showed remarkable seasonal differences, with the maximum stimulation in the spring. This suggests that warmer spring temperature will produce a greater increase in CO2 release than warmer summer temperatures. In addition, we found that soil warming reduced the temperature sensitivity (Q 10) of R S. Although the Q 10 of both R H and R A tended to be reduced, the decrease in the Q 10 of R S was caused mainly by a decrease in the response of R A to warming. These long-term results indicate that a balance between the rapid and large response of soil microbes and the acclimation of plant roots both play important roles in determining the response of R S to soil warming, and must be carefully considered to predict the responses of soil C dynamics under future temperature conditions.  相似文献   

13.
The bacterial-chemical oxidation of natural pyrites with different physical, chemical, and electrophysical characteristics by bacteria Acidithiobacillus ferrooxidans, Sulfobacillus thermotolerans, and the archaeon Ferroplasma acidiphilum were studied. The electrophysical characteristics of three natural pyrites differed in the K thermoEMF value (pyrites 3, 4, hole conduction (p-type conductivity); pyrite 5, mixed type conductivity (n-p)) and in the logarithm of electric resistance. Chemical oxidation of pyrites 3 and 5 resulted in no changes of K thermoEMF. When pyrite 4 was oxidized chemically, the K thermoEMF values remained in the same range as in the initial sample, but the ratio of grains with different K thermoEMF values in the sample was changed: the number of grains with a higher K thermoEMF value increased. The same changes were also observed in the course of bacterio-chemical oxidation of pyrite 4. Of the three pyrites studied, an increase in the logarithm of resistance was observed only for chemical oxidation of pyrite 4 at 28°C. At higher experimental temperatures, the logarithm of resistance increased accordingly; more active bacterial-chemical oxidation resulted in a more pronounced increase in the logarithm of resistance than chemical oxidation. On bacterial-chemical oxidation of pyrites 3 and 5 by A. ferrooxidans and S. thermotolerans strains, iron was leached more actively than sulfur. Preferred bacterial-chemical oxidation of certain fractions from the pyrite samples was shown, namely of the pyrite 3 fraction with higher K thermoEMF values by the F. acidiphilum strain and of a fraction from the pyrite 5 sample with medium K thermoEMF values by the A. ferrooxidans and S. thermotolerans strains. The comparative assessment of bacterial-chemical pyrite oxidation by three types of microorganisms showed the direction of changes in the K thermoEMF values to be the same in the case of bacteria Acidithiobacillus ferrooxidans and Sulfobacillus thermotolerans and different in the case of the archaeon Ferroplasma acidiphilum.  相似文献   

14.
Large numbers of plant cell-wall (CW)-related genes have been identified or predicted in several plant genomes such as Arabidopsis thaliana, Oryza sativa (rice), and Zea mays (maize), as results of intensive studies of these organisms in the past 2 decades. However, no such gene list has been identified in switchgrass (Panicum virgatum), a key bioenergy crop. Here, we present a computational study for prediction of CW genes in switchgrass using a two-step procedure: (i) homology mapping of all annotated CW genes in the fore-mentioned species to switchgrass, giving rise to a total of 991 genes, and (ii) candidate prediction of CW genes based on switchgrass genes co-expressed with the 991 genes under a large number of experimental conditions. Specifically, our co-expression analyses using the 991 genes as seeds led to the identification of 104 large clusters of co-expressed genes, each referred to as a co-expression module (CEM), covering 830 of the 991 genes plus 823 additional genes that are strongly co-expressed with some of the 104 CEMs. These 1653 genes represent our prediction of CW genes in switchgrass, 112 of which are homologous to predicted CW genes in Arabidopsis. Functional inference of these genes is conducted to derive the possible functional relations among these predicted CW genes. Overall, these data may offer a highly useful information source for cell-wall biologists of switchgrass as well as plants in general.  相似文献   

15.
A 1.4 Kb fragment of Bacillus licheniformis ATCC 14580 encoding β-glucosidase was cloned and expressed in Escherichia coli. β-Glucosidase expressed by E. coli harboring cloned gene was located entirely in the intracellular fraction. Recombinant β-glucosidase protein was purified to homogeneity level and the molecular weight was found to be 53 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. It gave maximum activity at 50°C and pH 6. K m and V max were 0.206 mM and 1.26 U/mg, respectively, with p-nitrophenyl-β-D-glucopyranoside, while activation energy Ea, enthalpy of activation ?H and entropy of activation ΔS were found to be 66.31 kJ/mol, 64.04 kJ/mol and 48.28 J/mol/K, respectively. The pKa1 and pKa2 of the ionizable groups of active site residues involved in Vmax were found to be 5.5 and 7.0, respectively. When the recombinant β-glucosidase protein was used as a member of consortium with endoglucanase and exoglucanase for the saccharification of wheat straw, 123% increase in saccharification was observed.  相似文献   

16.
There are many types of neurons that intrinsically generate rhythmic bursting activity, even when isolated, and these neurons underlie several specific motor behaviors. Rhythmic neurons that drive the inspiratory phase of respiration are located in the medullary pre-Bötzinger Complex (pre-BötC). However, it is not known if their rhythmic bursting is the result of intrinsic mechanisms or synaptic interactions. In many cases, for bursting to occur, the excitability of these neurons needs to be elevated. This excitation is provided in vitro (e.g. in slices), by increasing extracellular potassium concentration (K out ) well beyond physiologic levels. Elevated K out shifts the reversal potentials for all potassium currents including the potassium component of leakage to higher values. However, how an increase in K out , and the resultant changes in potassium currents, induce bursting activity, have yet to be established. Moreover, it is not known if the endogenous bursting induced in vitro is representative of neural behavior in vivo. Our modeling study examines the interplay between K out , excitability, and selected currents, as they relate to endogenous rhythmic bursting. Starting with a Hodgkin-Huxley formalization of a pre-BötC neuron, a potassium ion component was incorporated into the leakage current, and model behaviors were investigated at varying concentrations of K out . Our simulations show that endogenous bursting activity, evoked in vitro by elevation of K out , is the result of a specific relationship between the leakage and voltage-dependent, delayed rectifier potassium currents, which may not be observed at physiological levels of extracellular potassium.  相似文献   

17.
A controversy of long standing in membrane electrophysio-logy is whether the sodium ion current (INa) and potassium ion current (IK) pass through the membrane in separate channels, or through a single set of channels which conduct first INa and then IK. In support of the latter hypothesis it has been noted that the sodium conductance (gNa) decline, called inactivation, proceeds with about the same time course as the potassium conductance (gK) increase. This could mean that Na+ selective channels are being converted into K+ selective channels. The hypothesis is especially interesting because of the possibility that the carrier postulated in active transport is convertible from Na+ to K+ selectivity1. An explicit statement of the single channel hypothesis and the means for disproving it were given by Mullins2. Because a single channel could not simultaneously conduct INa and IK, disproof requires that membrane conductance (gm) be made somehow to exceed the maximum value of gNa or gK. We report here that inactivation of gNa can be destroyed fairly selectively by the action from inside the axon of the unspecific proteolytic enzymes of pronase. In many cases gm after pronase treatment is greater than maximum gK before treatment, making untenable the single channel hypothesis.  相似文献   

18.
The expression level of electrophoretically separated S- and F-allozymes of β-specific esterase (EC 3.1.1.2) in genotypes of wild-type Drosophila melanogaster (males and females) that are monozygous or heterozygous with respect to the locus β-Est is determined by means of computerized densitometry; α-naphthylacetate, β-naphthylacetate, and α-naphthylpropionate are used as the substrates. The intensity of the expression of the esterase is judged from the quantity of reaction product created as a result of simultaneous azo coupling between naphthol and diazonium in 4, 24, 44, and 64 min incubation times. Reliable differences in the expressions of the S- and F-allozymes as a function of the structure of the β-Est locus of genotypically distinct individuals are established. In all the variant experiments, a higher level of summary activity of the S- and F-allozymes of the β-esterase of the heterozygotes by comparison with the individual activity of the F-and S-allozymes of the corresponding homozygotes was demonstrated, independently of the sex of the Drosophila individual. A comparative estimate of the temporal dynamics of the expression of in vitro allozymes of the dominant homozygotes (β-Est S /β-Est S ), heterozygotes (β-Est S /β-Est F ), and recessive homozygotes (β-Est F /β-Est F ) is performed. Possible mechanisms for the occurrence of heterosis according to the character of expression of S- and F-allozymes of β-esterase on the basis of the theory of biochemical enrichment of heterozygote genotypes are considered.  相似文献   

19.
20.
Higher plant hydraulic conductivity (K plant) is vital for plant growth, especially under PEG-induced water deficit stress (PEG-IWDS). Leaf venation architecture is a key determinant of leaf hydraulic conductivity (K leaf) and K leaf is a major component of K plant across different plant species. However, there is little information about (1) varietal difference in leaf vein development in cereal crops, such as rice plants; (2) the effects of PEG-IWDS on leaf vein development; (3) the coordination between leaf venation architecture and K plant as well as K leaf under PEG-IWDS. In the present study, widely cultivated eight rice cultivars were grown hydroponically under well-watered condition (WWC) and PEG-IWDS, simulated by adding 15 % (w/v) PEG6000. Leaf venation architecture, including total longitudinal leaf vein number, leaf vein numbers per unit width (LVNW), vein thickness and leaf mass per area, as well as K plant and K leaf were measured to address above-mentioned questions. The results showed that leaf venation architecture exhibited significant varietal differences and PEG-IWDS significantly increased LVNW while decreased vein thickness. PEG-IWDS suppressed both K plant and K leaf but the decrease was much higher in K plant than K leaf. There was a significant and positive correlation observed between LVNW and K leaf under both WWC and PEG-IWDS but the correlation between LVNW and K plant was only significant under WWC. K leaf was significantly and positively correlated with K plant under WWC but not under PEG-IWDS. It is concluded that K leaf is a major determinant for K plant under WWC but not under PEG-IWDS; therefore, breeding or selecting rice cultivars with high LVNW can improve shoot water supplement under WWC but not under PEG-IWDS condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号