首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the paraquat-resistant mutants that have been reported in plants, this study identified a novel A. thaliana mutant (pqr2) from an XVE inducible activation library based on its resistance to 2 μM paraquat. The pqr2 mutant exhibited a termination mutation in the exon of AT1G31830/PAR1/PQR2, encoded a polyamine uptake transporter AtPUT2/PAR1/PQR2. The PQR2 mutation could largely reduce superoxide accumulation and cell death in the pqr2 plants under paraquat treatment. Moreover, compared with wild type, the pqr2 mutant exhibited much reduced tolerance to putrescine, a classic polyamine compound, which confirmed that PQR2 encoded a defective polyamine transporter. Notably, co-treated with ABA and paraquat, both pqr2 mutant and wild type exhibited a lethal phenotype from seed germination, but the wild type like pqr2 mutant, could remain paraquat-resistance while co-treated with high dosage of Na2WO4, an ABA synthesis inhibitor. Gene expression analysis suggested that ABA signaling should widely regulate paraquat-responsive genes distinctively in wild type and pqr2 mutant. Hence, this study has for the first time reported about ABA negative effect on paraquat-resistance in A. thaliana, providing insight into the ABA signaling involved in the oxidative stress responses induced by paraquat in plants.  相似文献   

2.
3.
Streptomyces coelicolor genome carries two apparently paralogous genes, SCO4164 and SCO5854, that encode putative thiosulfate sulfurtransferases (rhodaneses). These genes (and their presumed translation products) are highly conserved and widely distributed across actinobacterial genomes. The SCO4164 knockout strain was unable to grow on minimal media with either sulfate or sulfite as the sole sulfur source. The SCO5854 mutant had no growth defects in the presence of various sulfur sources; however, it produced significantly less amounts of actinorhodin. Furthermore, we discuss possible links between basic interconversions of inorganic sulfur species and secondary metabolism in S. coelicolor.  相似文献   

4.

Background

A recently constructed cellulolytic Yarrowia lipolytica is able to grow efficiently on an industrial organosolv cellulose pulp, but shows limited ability to degrade crystalline cellulose. In this work, we have further engineered this strain, adding accessory proteins xylanase II (XYNII), lytic polysaccharide monooxygenase (LPMO), and swollenin (SWO) from Trichoderma reesei in order to enhance the degradation of recalcitrant substrate.

Results

The production of EG I was enhanced using a promoter engineering strategy. This provided a new cellulolytic Y. lipolytica strain, which compared to the parent strain, exhibited higher hydrolytic activity on different cellulosic substrates. Furthermore, three accessory proteins, TrXYNII, TrLPMOA and TrSWO, were individually expressed in cellulolytic and non-cellulolytic Y. lipolytica. The amount of rhTrXYNII and rhTrLPMOA secreted by non-cellulolytic Y. lipolytica in YTD medium during batch cultivation in flasks was approximately 62 and 52 mg/L, respectively. The purified rhTrXYNII showed a specific activity of 532 U/mg-protein on beechwood xylan, while rhTrLPMOA exhibited a specific activity of 14.4 U/g-protein when using the Amplex Red/horseradish peroxidase assay. Characterization of rhTrLPMOA revealed that this protein displays broad specificity against β-(1,4)-linked glucans, but is inactive on xylan. Further studies showed that the presence of TrLPMOA synergistically enhanced enzymatic hydrolysis of cellulose by cellulases, while TrSWO1 boosted cellulose hydrolysis only when it was applied before the action of cellulases. The presence of rTrXYNII enhanced enzymatic hydrolysis of an industrial cellulose pulp and of wheat straw. Co-expressing TrXYNII and TrLPMOA in cellulolytic Y. lipolytica with enhanced EG I production procured a novel engineered Y. lipolytica strain that displayed enhanced ability to degrade both amorphous (CIMV-cellulose) and recalcitrant crystalline cellulose in complex biomass (wheat straw) by 16 and 90%, respectively.

Conclusions

This study has provided a potent cellulose-degrading Y. lipolytica strain that co-expresses a core set of cellulolytic enzymes and some accessory proteins. Results reveal that the tuning of cellulase production and the production of accessory proteins leads to optimized performance. Accordingly, the beneficial effect of accessory proteins for cellulase-mediated degradation of cellulose is underlined, especially when crystalline cellulose and complex biomass are used as substrates. Findings specifically underline the benefits and specific properties of swollenin. Although in our study swollenin clearly promoted cellulase action, its use requires process redesign to accommodate its specific mode of action.
  相似文献   

5.
Despite possessing related ancestral genomes, hexaploid wheat behaves as a diploid during meiosis. The wheat Ph1 locus promotes accurate synapsis and crossover of homologous chromosomes. Interspecific hybrids between wheat and wild relatives are exploited by breeders to introgress important traits from wild relatives into wheat, although in hybrids between hexaploid wheat and wild relatives, which possess only homoeologues, crossovers do not take place during meiosis at metaphase I. However, in hybrids between Ph1 deletion mutants and wild relatives, crossovers do take place. A single Ph1 deletion (ph1b) mutant has been exploited for the last 40 years for this activity. We show here that chemically induced mutant lines, selected for a mutation in TaZIP4-B2 within the Ph1 locus, exhibit high levels of homoeologous crossovers when crossed with wild relatives. Tazip4-B2 mutant lines may be more stable over multiple generations, as multivalents causing accumulation of chromosome translocations are less frequent. Exploitation of such Tazip4-B2 mutants, rather than mutants with whole Ph1 locus deletions, may therefore improve introgression of wild relative chromosome segments into wheat.  相似文献   

6.

Background

Microbial lipid production represents a potential alternative feedstock for the biofuel and oleochemical industries. Since Escherichia coli exhibits many genetic, technical, and biotechnological advantages over native oleaginous bacteria, we aimed to construct a metabolically engineered E. coli strain capable of accumulating high levels of triacylglycerol (TAG) and evaluate its neutral lipid productivity during high cell density fed-batch fermentations.

Results

The Streptomyces coelicolor TAG biosynthesis pathway, defined by the acyl-CoA:diacylglycerol acyltransferase (DGAT) Sco0958 and the phosphatidic acid phosphatase (PAP) Lppβ, was successfully reconstructed in an E. coli diacylglycerol kinase (dgkA) mutant strain. TAG production in this genetic background was optimized by increasing the levels of the TAG precursors, diacylglycerol and long-chain acyl-CoAs. For this we carried out a series of stepwise optimizations of the chassis by 1) fine-tuning the expression of the heterologous SCO0958 and lpp β genes, 2) overexpression of the S. coelicolor acetyl-CoA carboxylase complex, and 3) mutation of fadE, the gene encoding for the acyl-CoA dehydrogenase that catalyzes the first step of the β-oxidation cycle in E. coli. The best producing strain, MPS13/pET28-0958-ACC/pBAD-LPPβ rendered a cellular content of 4.85% cell dry weight (CDW) TAG in batch cultivation. Process optimization of fed-batch fermentation in a 1-L stirred-tank bioreactor resulted in cultures with an OD600nm of 80 and a product titer of 722.1 mg TAG L-1 at the end of the process.

Conclusions

This study represents the highest reported fed-batch productivity of TAG reached by a model non-oleaginous bacterium. The organism used as a platform was an E. coli BL21 derivative strain containing a deletion in the dgkA gene and containing the TAG biosynthesis genes from S. coelicolor. The genetic studies carried out with this strain indicate that diacylglycerol (DAG) availability appears to be one of the main limiting factors to achieve higher yields of the storage compound. Therefore, in order to develop a competitive process for neutral lipid production in E. coli, it is still necessary to better understand the native regulation of the carbon flow metabolism of this organism, and in particular, to improve the levels of DAG biosynthesis.
  相似文献   

7.
Sensitivity to the lethal action of the anticancer substance cisplatin was studied in the yeast mutants him1, hsm2, hsm3, and hsm6, deficient for repair of spontaneous and induced mutations. The him1 and hsm3 mutants were as resistant to the agent under study as the wild-type strain. The survival of the double mutant rad2 hsm3 was higher than that of the single mutant rad2. The hsm2 and hsm6 mutants were more cisplatin-sensitive than the wild type. Cisplatin was shown to have high mutagenic and recombinogenic effects on yeast cells.  相似文献   

8.
Here, we characterize the Aspergillus fumigatus homologue ncsA Neuronal Calcium Sensor. We showed that ncsA is not an essential gene and ?ncsA growth was decreased in the presence of EGTA and SDS. Furthermore, the ?ncsA mutant is more resistant to calcium chloride. NcsA:mRFP localizes to the cytoplasm and its cellular localization is not affected by the cellular response to either calcium chloride or EGTA. The ?ncsA mutant strain is more sensitive to voriconazole, itraconazole, and amphotericin. Polar growth in the ΔncsA mutant was also considerably more affected by lovastatin than in the wild type strain. The Spitzenkörper can be visualized in both strains and although the vacuolar system does not seem to be very different, there is an increase in the staining intensity on the germling surface of the ?ncsA strain. NcsA promotes pmcA and pmcB expression and therefore there is a reduced expression of these ion pumps in the ΔncsA mutant background, and also of other genes involved in the response to calcium in A. fumigatus. The ncsA inactivation mutation is not causing loss of virulence in a low dose murine infection when compared to the corresponding wild type strain.  相似文献   

9.
Anaphase chromatid segregation defects (CSDs) were quantitatively and qualitatively studied in neural ganglion cells of third-instar larvae of several control wild type Drosophila melanogaster strains and four strains with mutations of the aar v158 , ff3, mast v40 , and CycB 2g cell cycle genes. A linear specificity was observed for the CSD frequency, type, determination, and correction probability. The probability of anaphase CSD correction was close to unity in the control strains and lower in the mutant strains. The lower correction probability in the mutant strains was explained in the context of two findings, that the mutations induced the CSDs that were atypical of the wild type strains and were potentially uncorrectable in anaphase and that the mutations negatively affected the relative anaphase time in mitosis.  相似文献   

10.
Yarrowia lipolytica is categorized as a generally recognized as safe (GRAS) organism and is a heavily documented, unconventional yeast that has been widely incorporated into multiple industrial fields to produce valuable biochemicals. This study describes the construction of a CRISPR-Cas9 system for genome editing in Y. lipolytica using a single plasmid (pCAS1yl or pCAS2yl) to transport Cas9 and relevant guide RNA expression cassettes, with or without donor DNA, to target genes. Two Cas9 target genes, TRP1 and PEX10, were repaired by non-homologous end-joining (NHEJ) or homologous recombination, with maximal efficiencies in Y. lipolytica of 85.6 % for the wild-type strain and 94.1 % for the ku70/ku80 double-deficient strain, within 4 days. Simultaneous double and triple multigene editing was achieved with pCAS1yl by NHEJ, with efficiencies of 36.7 or 19.3 %, respectively, and the pCASyl system was successfully expanded to different Y. lipolytica breeding strains. This timesaving method will enable and improve synthetic biology, metabolic engineering and functional genomic studies of Y. lipolytica.  相似文献   

11.

Objectives

To obtain functional expression of a heterologous multifunctional carotene synthase containing phytoene synthase, phytoene dehydrogenase, and lycopene β-cyclase activities encoded by carS from Schizochytrium sp. in order to allow Yarrowia lipolytica to produce β-carotene.

Results

To increase the integration efficiency of a 3.8 kb carS under the control of P GPD promoter with a 2 kb selection marker, ura3, along with a geranylgeranyl diphosphate synthase (GGS1) expression cassette (~10 kb in total), was inserted into the Y. lipolytica chromosome, and the DNA assembler method was combined with double chromosomal deletions of ku70 and ku80. This method resulted in a 13.4-fold increase in integration efficiency compared with the original method, reaching 63% (10/16). The resulting recombinant Y. lipolytica produced 0.41 mg β-carotene per g dry cell weight, while the wild type did not produce any indicating the functionality of the multifunctional carotene synthase in Y. lipolytica.

Conclusion

Expression of GGS1 and a multifunctional carotene synthase from Schizochytrium sp. in Y. lipolytica led to β-carotene production. DNA assembler efficiency was greatly increased by the deletion of ku70 and ku80, which resulted in decreased in vivo nonhomologous end-joining (NHEJ) in Y. lipolytica.
  相似文献   

12.
The yeast Yarrowia lipolytica is capable of high-intensity synthesis (overproduction) of citric (CA) and isocitric (ICA) acids under nitrogen limitation. The ratio of the synthesized acids depends on the producing strains used and the expression level of the aconitate hydratase gene (ACO1). Recombinant variants with overexpression of the multicopy ACO1 gene have been obtained based on the natural ICA-producing strain Y. lipolytica 672. A recombinant strain Y. lipolytica 20, which has an isocitrate-citrate ratio shifted towards ICA (2.3: 1) as compared to the parental strain (1.1: 1), has been selected. Culturing of the 20 variant in a 10 L reactor has resulted in the production of 72.6 g/L of ICA and 29.0 g/L of CA with a ratio of 2.5: 1. This makes it possible to regard Y. lipolytica 20 as a promising producer for the development of an industrial process for isocitrate production.  相似文献   

13.
Pseudomonas aeruginosa is a metabolically voracious bacterium that is easily manipulated genetically. We have previously shown that the organism is also highly electrogenic in microbial fuel cells (MFCs). Polarization studies were performed in MFCs with wild-type strain PAO1 and three mutant strains (pilT, bdlA and pilT bdlA). The pilT mutant was hyperpiliated, while the bdlA mutant was suppressed in biofilm dispersion chemotaxis. The double pilT bdlA mutant was expected to have properties of both mutations. Polarization data indicate that the pilT mutant showed 5.0- and 3.2-fold increases in peak power compared to the wild type and the pilT bdlA mutant, respectively. The performance of the bdlA mutant was surprisingly the lowest, while the pilT bdlA electrogenic performance fell between the pilT mutant and wild-type bacteria. Measurements of biofilm thickness and bacterial viability showed equal viability among the different strains. The thickness of the bdlA mutant, however, was twice that of wild-type strain PAO1. This observation implicates the presence of dead or dormant bacteria in the bdlA mutant MFCs, which increases biofilm internal resistance as confirmed by electrochemical measurements.  相似文献   

14.

Key message

virG mutant strains of a nopaline type of Agrobacterium tumefaciens increase the transformation frequency in cotton meristem transformation. Constitutive cytokinin expression from the tzs gene in the virG mutant strains is responsible for the improvement.

Abstract

Strains of Agrobacterium tumefaciens were tested for their ability to improve cotton meristem transformation frequency. Two disarmed A. tumefaciens nopaline strains with either a virGN54D constitutively active mutation or virGI77V hypersensitive induction mutation significantly increased the transformation frequency in a cotton meristem transformation system. The virG mutant strains resulted in greener explants after three days of co-culture in the presence of light, which could be attributed to a cytokinin effect of the mutants. A tzs knockout strain of virGI77V mutant showed more elongated, less green explants and decreased cotton transformation frequency, as compared to a wild type parental strain, suggesting that expression of the tzs gene is required for transformation frequency improvement in cotton meristem transformation. In vitro cytokinin levels in culture media were tenfold higher in the virGN54D strain, and approximately 30-fold higher in the virGI77V strain, in the absence of acetosyringone induction, compared to the wild type strain. The cytokinin level in the virGN54D strain is further increased upon acetosyringone induction, while the cytokinin level in the virGI77V mutant is decreased by induction, suggesting that different tzs gene expression regulation mechanisms are present in the two virG mutant strains. Based on these data, we suggest that the increased cytokinin levels play a major role in increasing Agrobacterium attachment and stimulating localized division of the attached plant cells.
  相似文献   

15.
Citrus paradisi 3-O-glucosyltransferase (Cp3GT, Genbank Protein ID: ACS15351) and Citrus sinensis 3-O-glucosyltransferase (Cs3GT, Genbank Protein ID: AAS00612.2) share 95% amino acid sequence identity. Cp3GT was previously established as a flavonol-specific 3-O-glucosyltransferase by direct enzymatic analysis. Cs3GT is annotated as a flavonoid-3-O-glucosyltransferase and predicted to use anthocyanidins as substrates based on gene expression analysis correlated with the accumulation of anthocyanins in C. sinensis cv. Tarocco, a blood orange variety. Mutant enzymes in which amino acids found in Cs3GT were substituted for position equivalent residues in Cp3GT were generated, heterologously expressed in yeast, and characterized for substrate specificity. Structure–function relationships were investigated for wild type and mutant glucosyltransferases by homology modelling using a crystallized Vitis vinifera anthocyanidin/flavonol 3-O-GT (PDB: 2C9Z) as template and subsequent substrate docking. All enzymes showed similar patterns for optimal temperature, pH, and UDP/metal ion inhibition with differences observed in kinetic parameters. Although changes in the activity of the mutant proteins as compared to wild type were observed, cyanidin was never efficiently accepted as a substrate.  相似文献   

16.
17.

Background

Recently, there have been several attempts to produce long-chain dicarboxylic acids (DCAs) in various microbial hosts. Of these, Yarrowia lipolytica has great potential due to its oleaginous characteristics and unique ability to utilize hydrophobic substrates. However, Y. lipolytica should be further engineered to make it more competitive: the current approaches are mostly intuitive and cumbersome, thus limiting its industrial application.

Results

In this study, we proposed model-guided metabolic engineering strategies for enhanced production of DCAs in Y. lipolytica. At the outset, we reconstructed genome-scale metabolic model (GSMM) of Y. lipolytica (iYLI647) by substantially expanding the previous models. Subsequently, the model was validated using three sets of published culture experiment data. It was finally exploited to identify genetic engineering targets for overexpression, knockout, and cofactor modification by applying several in silico strain design methods, which potentially give rise to high yield production of the industrially relevant long-chain DCAs, e.g., dodecanedioic acid (DDDA). The resultant targets include (1) malate dehydrogenase and malic enzyme genes and (2) glutamate dehydrogenase gene, in silico overexpression of which generated additional NADPH required for fatty acid synthesis, leading to the increased DDDA fluxes by 48% and 22% higher, respectively, compared to wild-type. We further investigated the effect of supplying branched-chain amino acids on the acetyl-CoA turn-over rate which is key metabolite for fatty acid synthesis, suggesting their significance for production of DDDA in Y. lipolytica.

Conclusion

In silico model-based strain design strategies allowed us to identify several metabolic engineering targets for overproducing DCAs in lipid accumulating yeast, Y. lipolytica. Thus, the current study can provide a methodological framework that is applicable to other oleaginous yeasts for value-added biochemical production.
  相似文献   

18.
The effects of GA3, 24-epibrassinolide (EBL), and their combination on morphogenesis of Arabidopsis thaliana (L.) Heynh seven-day-old seedlings were studied. Four plant lines were analyzed: wild type Ler and ga4-1 mutant, belonging to the Landsberg erecta ecotype and wild type Col and det2 mutant, both of the Columbia ecotype. In ga4-1 and det2, GA4/1-and brassinosteroid-deficient mutants, the highest hypocotyl growth response to the lack of hormones was noted. The cotyledon shape and size were dependent on EBL, and the root length was both GA3-and EBL-regulated, indicating organ specificities in the responses to these hormones. Simultaneous treatment of dark-grown plants with GA3 and EBL exerted an additive stimulatory effect on the root growth of det2, reduced the inhibitory effect of EBL on hypocotyl elongation of ga4-1, and enhanced the effect of EBL on hypocotyl and cotyledon elongation of det2.  相似文献   

19.
The possibility of obtaining mutant yeasts Yarrowia lipolytica VKM Y-2373 with increased ability to synthesize citric acid from glucose by using UV irradiation and N-methyl-N’-nitro-N-nitrosoguanidine was studied. Of 1500 colonies of the Y. lipolytica treated with either UV or N-methyl-N’-nitro-N-nitrosoguanidine, three mutants were selected that displayed higher (by 23%) biosynthetic ability as compared with the initial strain. Additionally, three mutants were selected from 1000 colonies of the Y. lipolytica exposed to a combined action of UV and N-methyl-N’-nitro-N-nitrosoguanidine; their biosynthetic activity exceeded that of the initial strain by 43.9%. The selective media with citrate and acetate were developed for a rapid selection of mutants as well as the express methods for the detection of active citric acid producers on the solid media with chalk and bromocresol containing a limiting concentration of amine nitrogen and an excess of glucose.  相似文献   

20.
Mutations in the white locus emerged in highly mutable isofemale Drosophila melanogaster lines from the populations of Novosibirsk 2013 (NS3 line), Nalchik 2014 (N119 line), and Sakhalin Island 2014 (S46 line). A single white-eyed male found in the NS3 line was sterile. Phenotypically mutant derivatives (white gene alleles) differing in eye color (pure white, different shades of yellow (honey), orange (apricot), cherry, and red (wild type)) emerged during the N119 and S46 line breeding in the laboratory. Molecular genetic study of the structure of wild type white locus in initial lines and white-mutant derivatives de novo emerging from them, as well as other white lines from the fund of the Laboratory of Population Genetics of the Institute of Cytology and Genetics (Siberian Branch, Russian Academy of Sciences), was conducted. The pairs of primers flanking different white gene regions were selected. Six such pairs overlapped the coding part of the gene. Molecular genetic analysis demonstrated that most DNA defects were limited to the region which includes the first exon (34 lines). Among them, four mutant events were accompanied by an insertion of DNA fragments of approximately 800 bp; one mutation event was accompanied by a deletion of approximately 200 bp; in 29 cases, no PCR product was obtained (this can indicate that as a minimum one of the primer binding sites is damaged). The inserted DNA fragments have no homology with known D. melanogaster sequences presented in the NCBI database. The complete white gene deletion with the manifestation of mutant “white eyes” phenotype was registered in four cases (and only in the N119 line derivatives). Normal PCR product was obtained in 22 cases for all six DNA fragments. Among them, there are both alleles phenotypically mutant by the eye color (white, cherry, or orange) and revertants to the wild type (red). The abundance of defects in the beginning of the gene can indicate a multiplicity of mobile genetic element insertion sites in this part of the white gene in D. melanogaster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号