首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between subsurface contaminant concentrations and indoor air concentrations, arising from the migration of contaminant vapors into buildings, is affected by a number of complex processes and parameters, many of which are subject to uncertainty. A study was undertaken to develop a simplified relationship between subsurface contaminant concentrations and indoor air concentrations. This relationship is intended for use as a screening tool to determine the relative significance of vapor transport and inhalation as an exposure scenario in the establishment of soil quality guidelines. The relationship was developed using a proprietary model to analyze the infiltration of subsurface vapors into buildings. A probabilistic analysis of the relationship, using a form of Monte Carlo simulation, was undertaken to estimate the dilution of contaminant concentrations between the source (soil gas) and point of exposure (indoor air). Using standardized values for certain parameters and generic distributions for key variables, probability distributions were generated for the dilution factor as a function of contaminant depth and soil type.  相似文献   

2.
This study used field data from three sites in Southern California to evaluate vapor phase transport from: (1) free product (die-sel and gasoline spill) on groundwater; (2) dissolved benzene (gasoline spill) in groundwater; and (3) hydrocarbon-impacted soil (gasoline spill) in the vadose zone. A sampling program to evaluate the vapor pathway included the following: vertical profile data, minimal purging prior to sample collection, field analysis of data, confirmation of field data using a fixed laboratory analysis, and soil physical property data. Comparison of hydrocarbon vapor concentrations measured in this field study with those calculated using vapor diffusion models suggest that an additional attenuation factor of between 500 and 35,000 is needed to account for observed concentrations. Comparison of hydrocarbon profiles with oxygen, carbon dioxide, and methane values is consistent with the interpretation that biodegradation is primarily responsible for the observed attenuation. Therefore, vapor pathway models that do not account for bioattenuation will result in a large overesti-mation of the risk at spill sites and will not be consistent with field data.  相似文献   

3.
Vapor intrusion (VI) is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), from the subsurface to indoor air. The VI exposure pathway extends from the contaminant source, which can be impacted soil or groundwater, to indoor air-exposure points. VOC contaminants of concern typically include halogenated solvents as well as petroleum hydrocarbons. Radon, a colorless radioactive gas that is released by radioactive decay of radionuclides in rock and soil, migrates into homes through VI in a similar fashion to VOCs. This project focused on the performance of permanent versus temporary sub-slab sampling ports for the determination of VI of halogenated VOCs and radon into an unoccupied house. VOC and radon concentrations measured simultaneously in soil gas using collocated temporary and permanent ports appeared to be independent of the type of port. The variability between collocated temporary and permanent ports was much less than the spatial variability between different locations within a single residential duplex. Post sampling leak test results suggested that the temporary SSP desiccation and cracking of the clay portion of the seal were not as detrimental to the port seal performance as would have been expected, this suggests that the Teflon tape portion of the seals served an important function. Pre and post sampling leak tests are advisable when temporary ports are used to collect a time-integrated sample. These results suggest that temporary sub-slab sampling ports can provide data equivalent to that collected from a permanent sub-slab sampling port.  相似文献   

4.
The soil vapor to indoor air exposure pathway is considered in a wide number of risk-based site management programs. In screening-level assessments of this exposure pathway, models are typically used to estimate the transport of vapors from either subsurface soils or groundwater to indoor air. Published studies indicate that the simple models used to evaluate this exposure pathway often over estimate the impact for aromatic hydrocarbons (e.g., benzene, toluene, ethylbenzene, and xy-lene or BTEX), while showing reasonable agreement for estimates of chlorinated hydrocarbon impacts (e.g., PCE, TCE, DCE). Aerobic biodegradation of the petroleum hydrocarbons is most often attributed as the source of this disparity in the model/ data comparisons. This paper looks at the significance of aerobic biodegradation of aromatic hydrocarbons as part of the assessment of chemical vapor intrusion from soil or groundwater to indoor air. A review of relevant literature summarizing the available field data as well as various modeling approaches that include biodegradation is presented. This is followed by a simple modeling analysis that demonstrates the potential importance of biodegradation in the assessment of the soil vapor to indoor air exposure pathway. The paper concludes with brief discussions of other model considerations that are often not included in simple models but may have a significant impact on the intrusion of vapors into indoor air.  相似文献   

5.
The indoor air inhalation pathway for volatile contaminants in soil and groundwater has received much attention recently. The risk of exposure may be higher when volatile organic compounds (VOCs) reside as constituents of a free product plume below residential or commercial structures than when dissolved in groundwater or adsorbed on soil. A methodology was developed for assessing the potential for vapor phase migration—and associated risk of indoor air inhalation—of volatile constituents from a light nonaqueous phase liquid (LNAPL) plume on top of the water table. The potential risk from inhalation of VOCs in indoor air emanating from a subsurface Jet Fuel 4 (JP-4) plume by hypothetical residential receptors was assessed at a site. Chemicals of concern (COCs) were identified and evaluated using data from the composition of JP-4 mixtures and published chemical, physical, and toxicological data. The method estimates the equilibrium vapor concentrations of JP-4 constituents using Raoult's Law for partial vapor pressure of mixtures based on assumptions about the mixture composition of JP-4. The maximum allowable vapor concentration at the source (immediately above the LNAPL) corresponding to an indoor air target concentration based on acceptable risk levels are calculated using the Johnson and Ettinger model. The model calculates the attenuation factor caused by the migration of the vapor phase VOCs through the soil column above the JP-4 plume and through subsurface foundation slabs. Finally, the maximum allowable soil gas concentrations above the LNAPL for individual constituents were calculated using this methodology and compared to the calculated equilibrium vapor concentrations of each COC to assess the likelihood of potential risk from the indoor air inhalation pathway.  相似文献   

6.
Significant media and regulatory attention has been given to hazardous waste sites and to the remediation of such sites to protect nearby building occupants. Soil vapor intrusion (SVI) can be a major factor contributing to increased occupant expo sure to chemicals. However, there are many possible sources of indoor air pollution, thus complicating routine assessments. The intent of this paper is to provide an overview of the state of understanding related to chemical fate in the indoor environment. A generalized model is presented in the form of an ordinary differential equation that includes several terms that are not commonly accounted for in models involving the effects of SVI in indoor air. In addition to soil vapor intrusion several other sources of indoor contamination are described. Typical air exchange rates for residential dwellings are presented. Finally, recent findings related to the sorptive interactions between indoor air pollutants and indoor materials, as well as homogeneous and heterogeneous chemical reactions that can affect indoor air pollutants are described.  相似文献   

7.
This article develops mathematical relationships for quantifying how the stack effect, wind effect, and effective leakage area influence the rates of subslab soil gas entry and outdoor air infiltration into residential buildings. The equations developed in the article are based on combining existing theory for air infiltration into buildings with existing vapor intrusion modeling methods. Use of the equations for estimating the subslab soil gas attenuation factor for assessing inhalation exposure via vapor intrusion into residential buildings is illustrated with example simulations using 1 year of hourly temperature and wind speed data from a Northeastern U.S. city and with several distributions of the effective leakage area from a U.S. residential air leakage database. The simulation results make clear that the soil gas entry rate and the building's ventilation rate are positively correlated, and this correlation mutes the influence of stack and wind effects on the subslab attenuation factor. The examples also suggest that the subslab attenuation factor for most residential buildings is likely to be less than 0.003 most of the time.  相似文献   

8.
The use of models to predict indoor air quality and health risk for the soil vapor transport to indoor air pathway is commonplace; however, there is significant uncertainty surrounding processes and factors affecting this pathway, and the accuracy of models used. Available screening models were evaluated through a review of model characteristics and sensitivity, and through comparisons to measured conditions at field sites. Model simulations and comparisons to field data indicate that the vapor attenuation ratio (α) is highly sensitive to certain processes (e.g., biodegradation and ad-vection) and input parameters. Comparisons of model predicted to measured a values indicate that models based on the Johnson and Ettinger (1991) framework in most cases result in predictions that are conservative by up to one to two orders of magnitude for field sites that were assessed, providing that appropriate input parameters are used. However, for sites where the advection potential is high, these models may not be conservative. The potential for advective transport of vapors into building may be significant for sites with shallow contamination, high permeability soil and foundation and high building underpressurization. The paper concludes with possible tiered management framework for the soil vapor pathway.  相似文献   

9.
The increasing concern with bioaerosols in large office buildings prompted this prospective study of airborne fungal concentrations in a newly constructed building on the Gulf coast. We collected volumetric culture plate air samples on 14 occasions over the 18-month period immediately following building occupancy. On each sampling occasion, we collected duplicate samples from three sites on three floors of this six-story building, and an outdoor sample. Fungal concentrations indoors were consistently below those outdoors, and no sample clearly indicated fungal contamination in the building, although visible growth appeared in the ventilation system during the course of the study. We conclude that modern mechanically ventilated buildings prevent the intrusion of most of the outdoor fungal aerosol, and that even relatively extensive air sampling protocols may not sufficiently document the microbial status of buildings. Received: 7 April 1999 / Accepted: 2 August 1999  相似文献   

10.
Bioventing soils contaminated with petroleum hydrocarbons   总被引:4,自引:0,他引:4  
Summary Bioventing combines the capabilities of soil venting and enhanced bioremediation to cost-effectively remove light and middle distillate hydrocarbons from vadose zone soils and the groundwater table. Soil venting removes the more volatile fuel components from unsaturated soil and promotes aerobic biodegradation by driving large volumes of air into the subsurface. In theory, air is several thousand times more effective than water in penetrating and aerating fuel-saturated and low permeability soil horizons. Aerobic microbial degradation can mitigate both residual and vapor phase hydrocarbon concentrations. Soil venting is being evaluated at a number of U.S. military sites contaminated with middle distillate fuels to determine its potential to stimulate in situ aerobic biodegradation and to develop techniques to promote in situ vapor phase degradation. In situ respirometric evaluations and field pilot studies at sites with varying soil conditions indicate that bioventing is a cost-effective method to treat soils contaminated with jet fuels and diesel.  相似文献   

11.
Portable meters and simplified gas Chromatographic (GC) techniques were investigated for monitoring volatile hydrocarbon (HC), CO2, and O2, concentrations in groundwater, exhaust gases, and soil vapor during in situ remediation using soil vapor extraction (SVE) and air sparging (AS). Results of groundwater samples analyzed in‐house using a headspace technique compared well to split samples analyzed by a certified analytical laboratory (r2 = 0.94). SVE exhaust gas HC and CO2 concentrations measured using a GT201 portable HC/O2 meter and a RA‐411A meter (GasTech), respectively, were highly correlated with in‐house laboratory GC analyses (r2 = 0.91). O2 concentrations fell in a small range and meter analyses were not well correlated with laboratory analyses. Results of soil gas monitoring were not as well correlated as those for exhaust gases for HC, CO2, or O2, perhaps due to environmental conditions such as changes in relative humidity or the wider range of soil gas values. Overall, the meters were good indicators of vapor contamination, they greatly simplified estimates of total HC mass removal, and they allowed estimates of the biological contribution to contaminant removal during the remediation process.  相似文献   

12.
Risk-based management of contaminated sites often requires timely screening and identification of source areas that release contaminants to groundwater and other reception of concern. Over-reliance on total concentrations often results in costly site characterization, delays in remediation, and overestimation of the soil volumes targeted for removal or treatment. Advances in diagnostic tools to accelerate source area characterization will improve the reliability of management decisions. The objective of this work was to determine the potential of using vapor pressure measurements as a rapid indicator of the mass release potential of suspected source area soils.

The current work has focused on determining the relationship between partial pressure and mobility for monoaromatic and polycyclic aromatic hydrocarbon (PAH) contaminants in source area soils. This work ascertained that for a wide spectrum of non-ionized, aromatic contaminants in MGP soils, total vapor pressure and benzene partial pressure could be measured with good repeatability. Under controlled conditions, photoionization detector (PID) measurements on 16 soil samples from two MGP sites were found to correlate well to laboratory measurements of equilibrium partitioning and resin-mediated soil contaminant desorption with R2 values of over 0.9. Results indicate that vapor pressure correlates well to contaminant mobility in soils.  相似文献   


13.
An integrated soil vacuum extraction/ biofiltration system has been designed and installed at a gasoline‐contaminated leaking underground storage tank (LUST) site in southern Delaware. The system remediates contaminated moisture entrained in the air stream, employs automatic water level controls in the filters, and achieves maximum vapor extraction and VOC destruction efficiency with an optimum power input. In addition, the valving and piping layout allows the sequence of air flow through the filters to be reversed at given time intervals, which minimizes biofouling, thereby increasing efficiency by decreasing system backpressure. This integrated system achieves VOC destruction rates of up to 69%. The modular design allows for easy mobilization, setup, and demobilization at LUST sites throughout Delaware.  相似文献   

14.
Cr(VI) is a characteristic soil and groundwater contaminant in the chromite ore processing residue (COPR) disposal regions. Investigation of Cr(VI) adsorption and migration characteristics in topsoils has great significance for the supervision of contaminated sites. The methods of adsorption and soil column leaching experiments were used to study Cr(VI) migration characteristics in this research, and a Cr(VI) contaminated site in Hanqingba region of Baotou was chosen as the study area. Based on the adsorption experiment results, the soil adsorption properties of Cr(VI) were interpreted by the Langmuir and Freundlich adsorption isotherm, and the saturation adsorption capacity of the soil sample for Cr(VI) was 70.4 mg/kg. Cr(VI) migration characteristic in the soils was studied through the tracer and migration experiments. The permeability coefficient of the soil sample was 0.059 m/d, and the dispersion coefficient was 0.0371 cm2/s. The breakthrough curves of Br and Cr(VI) showed that the retardation effect of Cr(VI) in the soil was not obvious, and the computed retardation factor was 2.39. Under the circumstances of precipitation or irrigation, Cr(VI) in the COPR could be leached out, and the groundwater may be polluted for the weak soil adsorption capacity of Cr(VI). The research results could provide scientific support for the soil and groundwater pollution prevention and control plan of local government.  相似文献   

15.
Adsorption of organic chemicals onto soils is affected by a number of factors related to the soil properties, chemical type, and environment. Organic chemical adsorption has significant impact on soil and groundwater cleanup criteria and on the time required for remediation using in situ vapor extraction, bioventing, and biosparging methods. Phase equilibrium relationships will permit specifying the contaminant concentration levels in soil that would prevent groundwater contamination beyond the limits prescribed by provincial regulations. Computer programs that neglect the adsorption effects will significantly underestimate the time required for soil remediation by vapor extraction.  相似文献   

16.
The costs of environmental remediation at leaking petroleum underground storage tank (UST) sites are influenced significantly by soil cleanup levels. The use of conservative generic soil cleanup levels may be inappropriate at some sites contaminated by leaking petroleum USTs. At many contaminated sites, a primary objective of site remediation is long‐term protection of water resources (e.g., groundwater) from pollution. Leaching of pollutants from residual soil contamination to groundwater is a primary consideration in establishing site‐specific soil cleanup levels at fuel‐contaminated sites. The use of laboratory soil leachability testing methods may be useful in objectively evaluating the leaching potential of contaminants from residual soil contamination and estimating potential groundwater impacts. Developing soil cleanup levels that are protective of water resources must include a technically sound integration of site‐specific soil leachability data and contaminant attenuation factors. Evaluation of the leaching potentials of soil contaminants may also provide essential supplementary information for other site characterization methods that may be used to evaluate risks to human health. Contaminant leachability testing of soils may provide a cost‐effective and technically based method for determining soil cleanup levels that are protective of groundwater resources at contaminated petroleum UST sites.  相似文献   

17.
A combination of geochemical, microbiological and isotopic methods were used to evaluate in-situ bioremediation of petroleum hydrocarbons at one site contaminated with refinery waste and a second site contaminated with aviation gasoline at Alameda Point, California. At each site, geochemical and microbiological characteristics from four locations in the contaminated zone were compared to those from two uncontaminated background locations. At both sites, the geochemical indicators of in-situbiodegradation includeddepleted soil gas and groundwater oxygen, elevated groundwater alkalinity, and elevated soil gas carbon dioxide and methane in the contaminated zone relative to the background. Radiocarbon content of methane and carbon dioxide measured in soil gas at both sites indicated that they were derived from hydrocarbon contaminant degradation. Direct microscopy of soil core samples using cell wall stains and activity stains, revealed elevated microbial numbers and enhanced microbial activities in contaminated areas relative to background areas, corroborating geochemical findings. While microbial plate counts and microcosm studies using soil core samples provided laboratory evidence for the presence of some microbial activity and contaminant degradation abilities, they did not correlate well with either contaminant location, geochemical, isotopic, or direct microscopy data.  相似文献   

18.
ABSTRACT

We have utilized the California GeoTracker database to evaluate field duplicate variability and the significance of sample contamination for groundwater and vapor samples collected from contaminated sites in California. Vapor duplicates are more variable than water duplicates with median percent difference in concentration of 25% compared to 7% for water samples. In addition, large differences in concentration were more common in vapor duplicates. For vapor analyte pairs, 20% of pairs had a percent difference in concentration of >300% while, for groundwater analyte pairs, only 3% had a percent difference of >300%. Contamination of samples during collection or analysis is also more significant for vapor samples. For water samples, sample contamination appears unlikely to result in false positive exceedances of drinking water standards; however, for vapor samples, sample contamination may result in false positive exceedances of indoor air screening values. For vapor samples, the use of reusable canisters and flow controllers is likely an important source of sample contamination.  相似文献   

19.
Comparisons of soil volatile organic compound (VOC) measurement techniques and soil properties expected to influence these measurements were performed at two dissimilar sites. A total of 41 soil gas, 52 heated headspace, and 51 methanol extraction/purge‐and‐trap measurements were obtained on collocated samples. Contaminants present at both sites included cis‐1,2‐dichloroethene, 1, 1, 1‐trichloroethane, trichloroethene, and tetrachloroethene. Heated headspace offered the highest sensitivity, as indicated by the greatest percentage of detections per number of analyses. The statistical regression between headspace concentrations and methanol extraction concentrations was highly significant (p < 0.001) with r2 = 0.53. Headspace concentrations (range, 7 to 4250 ng/g) ran approximately 20 to 30% of the methanol extraction concentrations (range, 260 to 7300 ng/g), indicating that the methanol was able to extract significantly more of the chlorinated hydrocarbons (CHCs) than the headspace extraction, even in soils with relatively low organic carbon contents (< 0.25%). None of the soil properties (gravimetric moisture content, organic carbon content, percent sand, and percent clay) significantly improved the regression fit. The soil gas responses were unlike either headspace or methanol extraction data. CHC measurements by vapor extraction/soil gas could not be used to predict soil CHC concentrations at these sites.  相似文献   

20.
Denitrification in a Sand and Gravel Aquifer   总被引:11,自引:6,他引:5       下载免费PDF全文
Denitrification was assayed by the acetylene blockage technique in slurried core material obtained from a freshwater sand and gravel aquifer. The aquifer, which has been contaminated with treated sewage for more than 50 years, had a contaminant plume greater than 3.5-km long. Near the contaminant source, groundwater nitrate concentrations were greater than 1 mM, whereas 0.25 km downgradient the central portion of the contaminant plume was anoxic and contained no detectable nitrate. Samples were obtained along the longitudinal axis of the plume (0 to 0.25 km) at several depths from four sites. Denitrification was evident at in situ nitrate concentrations at all sites tested; rates ranged from 2.3 to 260 pmol of N2O produced (g of wet sediment)−1 h−1. Rates were highest nearest the contaminant source and decreased with increasing distance downgradient. Denitrification was the predominant nitrate-reducing activity; no evidence was found for nitrate reduction to ammonium at any site. Denitrifying activity was carbon limited and not nitrate limited, except when the ambient nitrate level was less than the detection limit, in which case, even when amended with high concentrations of glucose and nitrate, the capacity to denitrify on a short-term basis was lacking. These results demonstrate that denitrification can occur in groundwater systems and, thereby, serve as a mechanism for nitrate removal from groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号