首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the report molecularly imprinted polymer (MIP) with salicylaldehyde-Cu(OAc)(2) as the template was synthesized and characterized by SEM, porosity and elemental analysis. Copper acetate was introduced since salicylaldehyde alone cannot display imprinting effect for its intramolecular hydrogen bond. The strong coordination interaction between salicylaldehyde and copper acetate made the complex have high retention on the HPLC column based on the SAD-Cu(OAc)(2) imprinted polymer. Several structural analogues such as salicylaldoxime, sulfosalicylic acid, p-hydroxybenzaldehyde and their complexes with copper acetate were chosen to study the selectivity of the MIPs. The influence of acetic acid and H(2)O in methanol mobile phase was studied. The experimental results showed that small amount of either acetic acid or H(2)O in mobile phase would weaken the interaction between the complex and the polymer, therefore, the retention of the complex was lowered to a large extent, but that of salicylaldehyde remained almost unchanged. The polymer imprinted with the complex showed high selectivity to both the acetate and copper (II). In addition, the MIP showed an enhanced selectivity to its template compared with the polymer prepared without copper acetate.  相似文献   

2.
Three new complexes of transition metals as copper, nickel and cobalt with 5-formyluracil thiosemicarbazone (H3ut) have been synthesised and characterised by single-crystal X-ray diffraction. In all compounds the ligand behaves as SNO terdentate. In the copper complex the coordination geometry is square pyramidal with the ligand lying on the basal plane and two water molecules that complete the metal environment, the nickel compound is surrounded by six donor atoms (three of the ligand, two water oxygen atoms and a chlorine atom) in an octahedral fashion, and cobalt also shows an octahedral geometry but determined only by two terdentate ligand molecules. These three compounds have been tested on human leukemic cell lines K562 and CEM. The nickel and cobalt complexes have demonstrated low activity in cell growth, while the copper complex that is more active has been tested also on a third leukemic human cell line (U937), but it was not able to induce apoptosis on all cell lines.  相似文献   

3.
Nine coordination compounds of Cu(II) and Co(II) with Ciprofloxacin (HCp) and Enoxacin (HEx) as ligands have been prepared and characterized. Single crystal structural determinations of [Cu(HCp)2(ClO4)2].6H2O (1) and [Co(HEx)2(Ex)]Cl.2CH(3)OH.12H2O (4) are reported. The crystal of 1 is composed of [Cu(HCp)2(ClO4)2] units with the two perchlorate anions semicoordinated, and uncoordinated water molecules. The copper ion, at a crystallographic inversion centre, is in a tetragonally distorted octahedral environment. The structure of 4 consists of cationic monomeric [Co(HEx)2(Ex)]+ units, chloride anions, and uncoordinated methanol and water molecules. The complex is six-coordinate, with a slightly distorted octahedral environment around the metal centre. Some complexes of ciprofloxacin and enoxacin were screened for their activity against several bacteria, showing activity similar to that of the corresponding free ligands. All compounds tested were more active against Gram-negative bacteria than against Gram-positive bacteria. Ciprofloxacin hydrochloride and its complexes were more active than enoxacin and its complexes. In addition, the bactericidal studies against Staphylococcus aureus ATCC 25923 reveal that one complex exhibits the "paradoxical effect" (diminution in the number of bacteria killed at high drug concentration), which has been described and related to the mechanism of action of quinolones, but three other complexes do not, suggesting different mechanisms of bactericidal action. The ability of Cu(HCp)2(NO3)2.6H2O to cleave DNA has been determined. The results show that the complex behaves as an efficient chemical nuclease with ascorbate/hydrogen peroxide activation. Mechanistic studies using different inhibiting reagents reveal that hydroxyl radicals are involved in the DNA scission process mediated by this compound.  相似文献   

4.
Schiff bases derived from salicylaldehyde and 2-substituted aniline and their metal chelates with Cu(II), Ni(II), and Co(II) ions were synthesized and screened for the antiinflammatory and antiulcer activity. The compound salicylidene anthranilic acid (SAA) was found to possess the antiinflammatory and antiulcer activity. The copper complexes showed an increased antiulcer activity. The SAA is perhaps acting by influencing prostaglandin biosynthesis.  相似文献   

5.
A series of acylhydrazones of salicylaldehyde and their transition metal complexes, predominantly copper(II), have been prepared and characterized. The crystal structure of the Cu(II) complex of the sterically hindered t-butyl derivative contains a phenolato bridged dimer with the ligand coordinated as a tridentate moiety. QSAR analyses of the cytotoxicity of the chelators and their Cu(II) complexes reveals that solubility is the dominant factor for activity. Compounds display a maximum with respect to lipophilicity, allowing optimization of the bioactivity for both the ligands and their complexes. Copper complexes are significantly more cytotoxic than the metal-free ligands and complexes of other metals: Cu > Ni > Zn = Mn > Fe = Cr > Cr > Co.  相似文献   

6.
Copper(II) and nickel(II) complexes of macrocyclic polyamine derivatives possessing partial oligopeptide-like structures are found to suppress the xanthine-xanthine oxidase-mediated reduction of nitroblue tetrazolium and also to suppress formazan formation by potassium superoxide. The activity in the superoxide dismutase assay is dependent on ring size, type and number of donor atoms, metal ion, and substituents on the macrocycles. Some of those are more active than the known O2? scavengers such as copper(II)-salicylate and copper(II)-amino acid (or peptide) complexes. Nickel (II)-naphthylmethyl-dioxo-[16]ane N5, 13, 1 : 1 complex (NiH?2L) is the most active among the 30 chelates examined.  相似文献   

7.
Copper (II) complexes of Schiff bases derived from [1+1] condensation of salicylaldehyde, 2,3-dihydroxybenzaldehyde and 2,3,4-trihydroxybenzaldehyde with anthranilic acid (L1-L3) have been synthesized and characterized by elemental analyses, IR, UV-Vis spectra, room temperature magnetic susceptibility, electron paramagnetic resonance spectroscopy and cyclic voltammetry. The X-ray structure of [CuL1]n has been solved and refined to R = 0.0314. The crystals are monoclinic with space group P2(1) with cell constants a = 9.6820(13), b = 7.1446(11), c = 9.9315(13) A, beta = 98.385(8) degrees, Z = 2. The copper (II) ions are in a distorted tetrahedral environment sequentially bridged by carboxylate groups in the syn-anti conformation giving rise to a helix-like chain. The copper complexes with the inherent redox active hydroquinone functionality cleave plasmid pBR322 DNA without exogenous agents by a self-activating mechanism.  相似文献   

8.
By reacting thiosemicarbazides substituted on the aminic nitrogen with both alkyl or aryl groups, and methyl pyruvate a new group of methylpyruvate thiosemicarbazones (Hmpt) derivatives was obtained. These ligands were then treated with copper and zinc inorganic salts. All isolated compounds were characterized using spectroscopic methods. The single crystal structural analysis of the ligands Me-Hmpt x 0.5H2O 1, Et-Hmpt x H2O 2, Ph-Hmpt 5, Meph-Hmpt 6 showed that only compound 6 presents significant deviation from planarity. The X-ray structure of [Zn(Me-Hmpt)Cl2] x H2O 8 showed that in this complex Me-Hmpt behaves as a neutral ligand SNO terdentate and that the penta coordination is achieved by chloride ions according to spectroscopic and elemental analyses. On the basis of the analytical data the same behavior is proposed for the other zinc complexes. All the ligands in copper complexes seem to be monodeprotonated; nevertheless the same SNO behavior is expected. Tests on cell proliferation of human leukemic cell line U937 showed that the copper complex Cu(Et-mpt)Cl x H2O is the most active compound among those reported even though it is not able to induce apoptosis.  相似文献   

9.
Manganese, iron, cobalt, nickel, copper and zinc complexes of isatin-beta-thiosemicarbazone (H2L) have been synthesized and spectroscopically characterized The X-ray crystal structures of two nickel complexes, namely [Ni(HL)2]. EtOH (1) and [Ni(HL)2]. 2DMF (2), reveal a distorted octahedral coordination with the monodeprotonated ligand that behaves as an O,N,S terdentate. Different packing interactions are determined by the presence of different crystallization solvents, i.e., ethanol in 1 and dimethylformamide (DMF) in 2. 1H and 13C NMR studies of the ligand and zinc complexes in solution were carried out and a complete assignment for the ligand was made by homodecoupling, gradient assisted 2D 1H-13C HMQC and HMBC NMR spectroscopy. Biological studies, carried out in vitro on human leukaemic cell lines U937, have shown that the free ligand and the copper (II) complex are more active in the inhibition of cell proliferation than the nickel complexes. No compound was able to induce apoptosis.  相似文献   

10.
A number of ruthenium complexes were tested for their ability to induce filamentation in Escherichia coli. These included monomeric and dimeric complexes with ruthenium in the II or III oxidation states, as well as mixed-valence complexes with ruthenium in the (II,III) oxidation states. In general, dimeric mixed-valence Ru(II,III) complexes were the most active class of compound, although some complexes of this type were relatively inactive. These were pyrazine- or bipyridyl-bridged complexes which are known to involve strong metal-ligand interaction, which stabilizes the Ru(II) oxidation state. Some Ru(III) complexes were also significantly active in induction of filamentous growth in E. coli. One of these was [Ru(NH3)5Cl]Cl2, which did not inhibit electron transport, Mg2+-ATPase activity or DNA synthesis in E. coli, but like [Ru2(NH3)6Br3]Br2 X H2O was a potent inhibitor of respiration-driven calcium transport in the organism. Filament-inducing activity of the complex was reduced in the presence of NaCl, but not in the presence of added Ca2+, ethanol, calcium pantothenate, or E. coli 'division promoting extract'. This behaviour is also similar to that of [Ru2(NH3)6Br3]Br2 X H2O. It is suggested that both complexes may induce filamentation in E. coli by a common mechanism, which may involve interference with calcium metabolism, or a wall or membrane target, rather than interaction with DNA.  相似文献   

11.
Considering the important role of antioxidants in biological systems, the group of copper(II) complexes derived from salicylaldehyde and alpha- or beta-alanine and its thiourea derivative and copper(II) complexes derived from pyruvic acid and beta-alanine were studied. The antiradical activity of the tested compounds was studied by both in vitro and in vivo methods. The chemical methods based on inhibition of INT-formazane or 3-nitrotyrosine formation were used for the evaluation of SOD-mimic and antiperoxynitrite activity, respectively. In the case of in vivo activity evaluation, an alloxan-induced diabetes mellitus model in mice was used, the mechanism of action of alloxan being closely connected with the formation of free radicals selectively damaging the pancreatic beta-cells. Since all the substances studied showed different positive effects, it is obvious that they have not acted only as a source of copper(II) ions but their effect is related to their specific chelate structure. The obtained results are a contribution to the knowledge of copper(II) Schiff base complexes with ligands of aldimine or ketimine type and form the basis for further preclinical tests of these bioactive agents in biological models of oxidative stress.  相似文献   

12.
A new quinolone-metal complex was prepared by a hydrothermal reaction in the presence of L-histidine that served as a reducing agent for a metal. The title compound [Cu(II)(cfH)(2)(Cu(I)Cl(2))(2)] (1) is a mixed-valence Cu(II)-Cu(I) complex, which contains two ciprofloxacin (cfH) molecules bonded to the central copper(II) atom and two almost planar [Cu(I)Cl(2)](-) moieties. Both metal centers are connected through two bridging atoms (chloride and quinolone oxygen). The electrochemical methods (differential-pulse polarography and cyclovoltammetric measurements) confirmed the presence of various copper-ciprofloxacin complex species in aqueous solution at low concentrations used in biological activity tests and also indicated that the equilibria in this system are very complex. The biological properties of the title compound and some previously isolated copper-ciprofloxacin complexes ([Cu(cfH)(2)Cl(2)].6H(2)O (2) and [CuCl(cfH)(phen)]Cl.2H(2)O (3)) (phen=1, 10-phenantroline) were determined and compared. The DNA gyrase inhibition tests and antibacterial activity tests have shown that the effect of copper complexes is comparable to that of free quinolone. Additionally, an interesting DNA cleavage activity of the title compound was also discovered.  相似文献   

13.
A series of copper(II) and zinc(II) complexes involving a tridentate O,N,O'-donor Schiff base derived from salicylaldehyde and beta-alanine {i.e. N-salicylidene-beta-alanine(2-), (L)}, having the composition [Cu(2)(L)(2)(H(2)O)].H(2)O (1), [Cu(L)(H(2)O)](n) (2), and [Zn(L)(H(2)O)](n) (3), have been prepared and characterized by elemental analyses, UV-visible (UV-VIS), FT-IR and ESI-MS spectra, and thermal analyses. Complexes 1 and 2 have been investigated by single crystal X-ray analysis and also by temperature dependent magnetic susceptibility measurements (294-80K). All prepared complexes have been evaluated by the antiperoxynitrite activity assay and alloxan-induced diabetes model. The significant antioxidant and antidiabetic activities have been found in the case of both copper(II) complexes 1 and 2. In spite of first two complexes, the zinc(II) complex 3, as well as the potassium salt of the ligand (KHL) showed only insignificant protective effect against the tyrosine nitration in vitro.  相似文献   

14.
A series of surfactant–copper(II) Schiff base complexes (1–6) of the general formula, [Cu(sal-R2)2] and [Cu(5-OMe-sal-R2)2], {where, sal?=?salicylaldehyde, 5-OMe-sal?=?5-methoxy- salicylaldehyde, and R2?=?dodecylamine (DA), tetradecylamine (TA), or cetylamine (CA)} have been synthesized and characterized by spectroscopic, ESI-MS, and elemental analysis methods. For a special reason, the structure of one of the complexes (2) was resolved by single crystal X-ray diffraction analysis and it indicates the presence of a distorted square-planar geometry in the complex. Analysis of the binding of these complexes with DNA has been carried out adapting UV-visible-, fluorescence-, as well as circular dichroism spectroscopic methods and viscosity experiments. The results indicate that the complexes bind via minor groove mode involving the hydrophobic surfactant chain. Increase in the length of the aliphatic chain of the ligands facilitates the binding. Further, molecular docking calculations have been performed to understand the nature as well as order of binding of these complexes with DNA. This docking analysis also suggested that the complexes interact with DNA through the alkyl chain present in the Schiff base ligands via the minor groove. In addition, the cytotoxic property of the surfactant–copper(II) Schiff base complexes have been studied against a breast cancer cell line. All six complexes reduced the visibility of the cells but complexes 2, 3, 5, and 6 brought about this effect at fairly low concentrations. Analyzed further, but a small percentage of cells succumbed to necrosis. Of these complexes (6) proved to be the most efficient aptotoxic agent.  相似文献   

15.
A series of salicylaldehyde benzoylhydrazone derivatives, their copper(II) complexes and a range of transition metal complexes of the unsubstituted ligand has been synthesized and evaluated for cytotoxicity against a human adenocarcinoma cell line. A QSAR analysis revealed ligand cytotoxicity is strongly correlated with electronic and transport factors and can be modeled by treating each 'half' of the molecule as an isolated unit. Activity increases when substituents in the benzoyl ring were electron withdrawing whereas, for the salicylaldehyde ring, electron donation was required. The cytotoxicity of the Cu(II) complexes was greater than, and paralleled the ligands. Activity for the transition metal complexes of the unsubstituted ligand mirrored charge density on the metal.  相似文献   

16.
Schiff bases derived from oxaldiamide/oxalylhydrazine and pyrrol-2-carbaldehyde, or salicylaldehyde respectively, as well as their Zn(II) complexes have been prepared and tested as antibacterial agents. These Schiff bases function as tetradentate ligands, forming octahedral Zn(II) complexes. The ketonic form for the diamide derived Schiff base and the enolic form of the hydrazide derived Schiff base were the preferred tautomers for coordination of the metal ions. The title compounds and their Zn(II) derivatives were evaluated for antibacterial activity against several bacterial strains which easily develop resistance to classical antibiotics, such as Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Some of them showed promising biological activity in inhibiting the growth of such organisms.  相似文献   

17.
Copper-catalyzed oxidation of ascorbic acid was retarded in the presence of the biological disulfide compounds cystine and oxidized glutathione. The evidence suggested that this effect was due to the formation of a stable complex involving the copper ion, the disulfide compound, and ascorbic acid or a derivative formed during the oxidative process. This indicated that less copper was available for the formation of oxygen complexes which are not as stable as the disulfide complexes. Ellman's reagent (Nbs2) was reduced when it was substituted for the biological disulfides or when added, with EDTA, to solutions in which ascorbic acid, copper ion, and the biological disulfides had been allowed to interact. The complex formed with cystine was detected at 360 nm but the glutathione complex was not detected at this wavelength. It is proposed that disruption of cystine or glutathione complexes by EDTA results in formation of 2,3-diketogulonic acid which acts as a reductant of Ellman's reagent.  相似文献   

18.
Three hydrazone ligands, H2L1-H2L3, made from salicylaldehyde and ibuprofen- or naproxen-derived hydrazides, were prepared and transformed into the corresponding copper(II) complexes [Cu(II)L1] x H2O, [Cu(II)L2], and [(Cu(II))2(L3)2] x H2O x DMF (Scheme). The X-ray crystal structure of the last-mentioned complex was solved (Fig. 1), showing a square-planar complexation geometry, and the single units were found to form a one-dimensional chain structure (Fig. 2). The interactions of these complexes with CT-DNA were studied by different techniques, indicating that they all bind to DNA by classical and/or non-classical intercalation modes.  相似文献   

19.
A dimeric copper complex of the unsubstituted pyridoxal thiosemicarbazone (H(2)L), [[Cu(HL)(OH(2))](2)]Cl(2).2H(2)O, previously tested on Friend murine cell lines has been recently resynthesized to evaluate its behavior on different murine and human leukemic cell lines and has been compared, in vitro and in vivo, with its monomeric counterpart [Cu(H(2)L)(OH(2))Cl]Cl. On TS/A murine adenocarcinoma cell line in vitro, both compounds significantly inhibit cell proliferation at micromolar concentrations, although the dimeric compound is more active. Despite this cytotoxicity they lack in vivo activity on TLX5 lymphoma. The unsubstituted dimeric [[Cu(HL)(OH(2))](2)]Cl(2).2H(2)O induces apoptosis on CEM and U937 human cell lines, with IC(50) concentrations of 1.2 x 10(-5) and 6.7 x 10(-6) M, respectively, but it is inactive on K562. Moreover, it alters significantly the cell cycle of U937 and CEM lines and decreases the telomerase activity of U937. To verify if other dimeric copper complexes show relevant biological activity new complexes with N-substituted pyridoxal thiosemicarbazones have been synthesized and characterized using spectroscopic techniques. Three of them, namely [Cu(Me(2)-HL)Cl](2).6H(2)O (Me(2)-H(2)L=pyridoxal N1,N1-dimethylthiosemicarbazone) (1), [Cu(MeMe-HL)Cl](2)Cl(2).4H(2)O (MeMe-HL=pyridoxal N1,N2-dimethylthiosemicarbazone) (2), [Cu(Et-H(2)L)Cl](2)Cl(2).2H(2)O (Et-H(2)L=pyridoxal N1-ethylthiosemicarbazone) (3), were also characterized by X-ray diffractometry. These complexes are dimeric and all three present a square pyramidal coordinative geometry with the ligand showing an SNO tridentate behavior. Their biological activities have been tested in vitro on U937, CEM and K562 cell lines to ascertain their effectiveness in comparison to the corresponding unsubstituted complex [[Cu(HL)(OH(2))](2)]Cl(2).2H(2)O. Compound 1 shows weak proliferation inhibition on all three cell lines, but it does not induce apoptosis and it does not inhibit telomerase activity, compound 2 is not effective at low concentration and is toxic at higher doses; compound 3 inhibits CEM cell growth better than complex 1 but it does not exert any other biological effect.  相似文献   

20.
Properties of the reactions of dithiocarbamates and their Cu(II) or Fe(III) complexes with Ehrlich cells were determined and related to their effects on the inhibition of cell proliferation caused by bleomycin and Cu bleomycin. In complete culture medium containing Eagle's minimal essential medium plus Earles salts and 2.5% fetal calf serum, dimethyl- and diethyldithiocarbamates and their copper complexes inhibit cell proliferation and cause cell death. The copper complexes are more effective agents. Ferric tris-diethyldithiocarbamate is also a cytotoxic species. In contrast, when cells are exposed to dimethyldithiocarbamate or its copper complex in Ringer's buffer under metal-restricted condition, washed, and then placed in complete medium, the copper complex is much more active in inhibiting cell growth. The difference is magnified when dihydroxyethyldithiocarbamate and N-methylglucamine dithiocarbamate and their copper complexes are compared in complete media. Incubation of bleomycin or copper bleomycin with Ehrlich cells in Ringer's buffer with or without dimethyldithiocarbamate or bis-dimethyldithiocarbamato Cu(II) leads to no enhancement of cytotoxicity from combinations of agents, except when the two copper complexes are present. Diethyl- or dimethyldithiocarbamate readily extracts copper from Cu(II)bleomycin and iron from Fe(III)bleomycin when ethylacetate is present to remove the tris-dithiocarbamato Fe(III) complex from aqueous solution. When bis-dimethyldithiocarbamato Cu(II) is incubated with Ehrlich cells, copper is released from the complex and bound to high molecular weight and metallothionein fractions. A reductive mode of dissociation of the copper complexes in cells is supported by ESR experiments. Reactions of diethyl- and dimethyldithiocarbamato Cu(II) with thiol compounds demonstrates one possible mechanism of reduction of these complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号