首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Merlin, the neurofibromatosis 2 tumor suppressor protein, has two major isoforms with alternate C termini and is related to the ERM (ezrin, radixin, moesin) proteins. Regulation of the ERMs involves intramolecular and/or intermolecular head-to-tail associations between family members. We have determined whether merlin undergoes similar interactions, and our findings indicate that the C terminus of merlin isoform 1 is able to associate with its N-terminal domain in a head-to-tail fashion. However, the C terminus of isoform 2 lacks this property. Similarly, the N terminus of merlin can also associate with C terminus of moesin. We have also explored the effect of merlin self-association on binding to the regulatory cofactor of Na(+)-H(+) exchanger (NHE-RF), an interacting protein for merlin and the ERMs. Merlin isoform 2 captures more NHE-RF than merlin isoform 1 in affinity binding assays, suggesting that in full-length merlin isoform 1, the NHE-RF binding site is masked because of the self-interactions of merlin. Treatment with a phospholipid known to decrease self-association of ERMs enhances the binding of merlin isoform 1 to NHE-RF. Thus, although isoform 1 resembles the ERM proteins, which transition between inactive (closed) and active (open) states, isoform 2 is distinct, existing only in the active (open) state and presumably constitutively more available for interaction with other protein partners.  相似文献   

2.
Tang X  Jang SW  Wang X  Liu Z  Bahr SM  Sun SY  Brat D  Gutmann DH  Ye K 《Nature cell biology》2007,9(10):1199-1207
The neurofibromatosis-2 (NF2) tumour-suppressor gene encodes an intracellular membrane-associated protein, called merlin, whose growth-suppressive function is dependent on its ability to form interactions through its intramolecular amino-terminal domain (NTD) and carboxy-terminal domain (CTD). Merlin phosphorylation plays a critical part in dictating merlin NTD/CTD interactions as well as in controlling binding to its effector proteins. Merlin is partially regulated by phosphorylation of Ser 518, such that hyperphosphorylated merlin is inactive and fails to form productive intramolecular and intermolecular interactions. Here, we show that the protein kinase Akt directly binds to and phosphorylates merlin on residues Thr 230 and Ser 315, which abolishes merlin NTD/CTD interactions and binding to merlin's effector protein PIKE-L and other binding partners. Furthermore, Akt-mediated phosphorylation leads to merlin degradation by ubiquitination. These studies demonstrate that Akt-mediated merlin phosphorylation regulates the function of merlin in the absence of an inactivating mutation.  相似文献   

3.
4.
The function of the NF2 tumor suppressor merlin has remained elusive despite increasing evidence for its role in actin cytoskeleton reorganization. The closely related ERM proteins (ezrin, radixin, and moesin) act as linkers between the cell membrane and cytoskeleton, and have also been implicated as active actin reorganizers. We report here that merlin and the ERMs can interact with and regulate N-WASP, a critical regulator of actin dynamics. Merlin and moesin were found to inhibit N-WASP-mediated actin assembly in vitro, a function that appears independent of their ability to bind actin. Furthermore, exogenous expression of a constitutively active ERM inhibits N-WASP-dependent Shigella tail formation, suggesting that the ERMs may function as inhibitors of N-WASP function in vivo. This novel function of merlin and the ERMs illustrates a mechanism by which these proteins directly exert their effects on actin reorganization and also provides new insight into N-WASP regulation.  相似文献   

5.
Inactivation of the NF2 tumor suppressor gene has been observed in certain benign and malignant tumors. Recent studies have demonstrated that merlin, the product of the NF2 gene, is regulated by Rac/PAK signaling. However, the mechanism by which merlin acts as a tumor suppressor has remained obscure. In this report, we show that adenovirus-mediated expression of merlin in NF2-deficient tumor cells inhibits cell proliferation and arrests cells at G1 phase, concomitant with decreased expression of cyclin D1, inhibition of CDK4 activity, and dephosphorylation of pRB. The effect of merlin on cell cycle progression was partially overridden by ectopic expression of cyclin D1. RNA interference experiments showed that silencing of the endogenous NF2 gene results in upregulation of cyclin D1 and S-phase entry. Furthermore, PAK1-stimulated cyclin D1 promoter activity was repressed by cotransfection of NF2, and PAK activity was inhibited by expression of merlin. Interestingly, the S518A mutant form of merlin, which is refractory to phosphorylation by PAK, was more efficient than the wild-type protein in inhibiting cell cycle progression and in repressing cyclin D1 promoter activity. Collectively, our data indicate that merlin exerts its antiproliferative effect, at least in part, via repression of PAK-induced cyclin D1 expression, suggesting a unifying mechanism by which merlin inactivation might contribute to the overgrowth seen in both noninvasive and malignant tumors.  相似文献   

6.
The neurofibromatosis-2 (NF2) tumor suppressor protein, merlin or schwannomin, inhibits cell proliferation by modulating the growth activities of its binding partners, including the cell surface glycoprotein CD44, membrane-cytoskeleton linker protein ezrin and PIKE (PI 3-kinase Enhancer) GTPase etc. Merlin exerts its growth suppressive activity through a folded conformation that is tightly controlled through phosphorylation by numerous protein kinases including PAK, PKA and Akt. Merlin inhibits PI 3-kinase activity through binding to PIKE-L. Now, we show that merlin is a physiological substrate of Akt, which phosphorylates merlin on both T230 and S315 residues. This phosphorylation abolishes the folded conformation of merlin and inhibits its association with PIKE-L, provoking merlin polyubiquitination and proteasome-mediated degradation. This finding demonstrates a negative feed-back loop from merlin/PIKE-L/PI 3-kinase to Akt in tumors. The proliferation repressive activity of merlin is also partially regulated by S518 phosphorylation. Thus, Akt-mediated merlin T230/S315 phosphorylation, combined with S518 phosphorylation by PAK and PKA, provides new insight into abrogating merlin function in the absence of merlin mutational inactivation.  相似文献   

7.
The Nf2 tumor suppressor gene product merlin is related to the membrane-cytoskeleton linker proteins of the band 4.1 superfamily, including ezrin, radixin, and moesin (ERMs). Merlin is regulated by phosphorylation in a Rac/cdc42-dependent fashion. We report that the phosphorylation of merlin at serine 518 is induced by the p21-activated kinase PAK2. This is demonstrated by biochemical fractionation, use of active and dominant-negative mutants of PAK2, and immunodepletion. By using wild-type and mutated forms of merlin and phospho-directed antibodies, we show that phosphorylation of merlin at serine 518 leads to dramatic protein relocalization.  相似文献   

8.
p21-activated kinase links Rac/Cdc42 signaling to merlin.   总被引:21,自引:0,他引:21  
The neurofibromatosis type 2 tumor suppressor gene, NF2, is mutated in the germ line of NF2 patients and predisposes affected individuals to intracranial and spinal tumors. Moreover, somatic mutations of NF2 can occur in the sporadic counterparts of these neurological tumor types as well as in certain neoplasms of non-neuroectodermal origin, such as malignant mesothelioma and melanoma. NF2 encodes a 595-amino acid protein, merlin, which exhibits significant homology to the ezrin-radixin-moesin family of proteins. However, the mechanism by which merlin exerts its tumor suppressor activity is not well understood. In this investigation, we show that merlin is phosphorylated in response to expression of activated Rac and activated Cdc42 in mammalian cells. Furthermore, we demonstrate that merlin phosphorylation is mediated by p21-activated kinase (Pak), a common downstream target of both Rac and Cdc42. Both in vivo and in vitro kinase assays demonstrated that Pak can directly phosphorylate merlin at serine 518, a site that affects merlin activity and localization. These biochemical investigations provide insights into the regulation of merlin function and establish a framework for elucidating tumorigenic mechanisms involved in neoplasms associated with merlin inactivation.  相似文献   

9.
Mutations of the neurofibromatosis 2 (NF2) tumor suppressor gene have frequently been detected not only in schwannomas and other central nervous system tumors of NF2 patients but also in their sporadic counterparts and malignant tumors unrelated to the NF2 syndrome such as malignant mesothelioma, indicating a broader role for the NF2 gene in human tumorigenesis. However, the mechanisms by which the NF2 product, merlin or schwannomin, is regulated and controls cell proliferation remain elusive. Here, we identify a novel GTP-binding protein, dubbed NGB (referring to NF2-associated GTP binding protein), which binds to merlin. NGB is highly conserved between Saccharomyces cerevisiae, Caenorhabditis elegans, and human cells, and its GTP-binding region is very similar to those found in R-ras and Rap2. However, ectopic expression of NGB inhibits cell growth, cell aggregation, and tumorigenicity in tumorigenic schwanomma cells. Down-regulation and infrequent mutation of NGB were detected in human glioma cell lines and primary tumors. The interaction of NGB with merlin impairs the turnover of merlin, yet merlin does not affect the GTPase nor GTP-binding activity of NGB. Finally, the tumor suppressor functions of NGB require merlin and are linked to its ability to suppress cyclin D1 expression. Collectively, these findings indicate that NGB is a tumor suppressor that regulates and requires merlin to suppress cell proliferation.  相似文献   

10.
Merlin (or schwannomin) is a tumor suppressor encoded by the neurofibromatosis type 2 gene. Many studies have suggested that merlin is involved in the regulation of cell growth and proliferation through interactions with various cellular proteins. To better understand the function of merlin, we tried to identify the proteins that bind to merlin using the yeast two-hybrid screening. Characterization of the positive clones revealed a protein of 749 amino acids named merlin-associated protein (MAP), which showed wide tissue distribution in Northern blot analysis. Sequence analysis revealed that MAP is a potential homologue of a yeast check-point protein, BUB2, and contains TBC, SH3, and RUN domains, thereby implicating its role in the Ras-like GTPase signal pathways. MAP and merlin were directly associated in vitro and in vivo, and colocalized in NIH3T3 cells. The RUN domain of MAP and the C-terminus of merlin appeared to be responsible for their interaction. MAP decreased the AP-1-dependent promoter activity additively with merlin in NIH3T3 cells. In addition, merlin and MAP synergistically reduced the colony formation of NIH3T3 cells. These results suggest that MAP may play a cooperative role in the merlin-mediated growth suppression of cells.  相似文献   

11.
Moesin-ezrin-radixin-like protein (merlin) has long been considered a unique tumour suppressor that inhibits mitogenic signalling only at the membrane-cytoskeleton interface. However, the nucleocytoplasmic shuttling of merlin in a cell cycle-dependent manner has recently been observed, indicating that merlin may also exert its tumour-suppressive activity by interacting with specific nuclear protein partners. We have identified protein interacting with carboxyl terminus 1 (PICT-1) as a novel merlin-binding partner. Although the detailed mechanisms are not fully understood, several lines of evidence have previously implicated PICT-1 as a candidate tumour suppressor, including its phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-dependent growth-suppression and cell-killing activities. We show here that PICT-1 is localised to the nucleolus, and Ser518-dephosphorylated merlin (the growth-inhibitory form of merlin) can interact with PICT-1 in the nucleolus. Ectopic expression of PICT-1, both in PTEN-positive HeLa cells and in PTEN-deficient U251 cells, effectively represses cyclin D1 expression, arrests the cell cycle at G0/G1, and promotes cell apoptosis. PICT-1 (1-356), a carboxyl-terminus truncated mutant that has lost the ability to bind merlin, has a markedly reduced inhibitory effect on the cell cycle and proliferation. Knockdown of merlin expression by siRNA attenuates the inhibitory effects induced by PICT-1 over-expression. We propose that merlin mediates PICT-1-induced growth inhibition by translocating to the nucleolus and binding PICT-1.  相似文献   

12.
The neurofibromatosis type 2 gene-encoded protein, merlin, is related to the ERM (ezrin, radixin, and moesin) family of membrane-cytoskeleton-associated proteins. Recent studies suggest that the loss of neurofibromatosis type 2 function contributes to tumor development and metastasis. Although the cellular functions of merlin as a tumor suppressor are relatively well characterized, the cellular mechanism whereby merlin controls cell proliferation from membrane locations is still poorly understood. During our efforts to find potential merlin modulators through protein-protein interactions, we identified transactivation-responsive RNA-binding protein (TRBP) as a merlin-binding protein in a yeast two-hybrid screen. The interaction between TRBP and merlin was confirmed by glutathione S-transferase pull-down assays, co-immunoprecipitation, and co-localization experiments. The carboxyl-terminal regions of each protein were responsible for their interaction. Cells overexpressing TRBP showed enhanced cell growth in cell proliferation assays and also exhibited transformed phenotypes, such as anchorage-independent cell growth and tumor development in mouse xenografts. Merlin efficiently inhibited these oncogenic activities of TRBP in our experiments. These results provide the first clue to the functional interaction between TRBP and merlin and suggest a novel mechanism for the tumor suppressor function of merlin both in vitro and in vivo.  相似文献   

13.
Despite intense study of the neurofibromatosis type 2 (NF2) tumor-suppressor protein merlin, the biological properties and tumor-suppressor functions of merlin are still largely unknown. In this study, we examined the molecular activities of NF2-causing mutant merlin proteins in transfected mammalian cells, to elucidate the merlin properties that are critical for tumor-suppressor function. Most important, we found that 80% of the merlin mutants studied significantly altered cell adhesion, causing cells to detach from the substratum. This finding implies a function for merlin in regulating cell-matrix attachment, and changes in cell adhesion caused by mutant protein expression may be an initial step in the pathogenesis of NF2. In addition, five different mutations in merlin caused a significant increase in detergent solubility of merlin compared to wild type, indicating a decreased ability to interact with the cytoskeleton. Although not correlated to the cell-adhesion phenotype, four missense mutations decreased the binding of merlin to the ERM-interacting protein EBP-50, implicating this interaction in merlin inhibition of cell growth. Last, we found that some NF2 point mutations in merlin most closely resembled gain-of-function alleles in their cellular phenotype, which suggests that mutant NF2 alleles may not always act in a loss-of-function manner, as had been assumed, but may include a spectrum of allelic types with different phenotypic effects on the function of the protein. In aggregate, these cellular phenotypes provide a useful assay for identifying the functional domains and molecular partners necessary for merlin tumor-suppressor activity.  相似文献   

14.
The many faces of the tumor suppressor gene APC   总被引:7,自引:0,他引:7  
Inactivation of the tumor suppressor adenomatous polyposis coli (APC) protein is a critical early step in the development of familial and sporadic colon cancer. Close examination of the function of APC has shown that it is a multifunctional protein involved in a wide variety of processes, including regulation of cell proliferation, cell migration, cell adhesion, cytoskeletal reorganization, and chromosomal stability. Tantalizing clues to the different functions of APC have been provided by the identification of proteins interacting with several discrete motifs within APC. Each of these putative functions could link APC inactivation with tumorigenesis. Here, we will summarize recent findings regarding the diverse role of APC. We will emphasize the interaction of APC with different binding partners, the role of these complex interactions for normal functioning of the cell, and how disruption of these interactions may play a role in tumor development. The rapid progress made recently shows the many faces of APC, leading to a constant reappreciation of this multitasking tumor suppressor protein.  相似文献   

15.
Neurofibromatosis type 2 (NF2), which encodes merlin (moesin-ezrin-radixin-like protein), belongs to the band 4.1, ezrin, radixin, moesin (FERM) domain-containing 4.1 superfamily. Merlin shares sequence homology with ERM proteins, is evolutionarily conserved, and acts as a tumour suppressor. Here, we describe the molecular functions of merlin from a biophysical point of view. We describe the structural basis for merlin regulatory mechanisms based on its interaction with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) along with its interaction partners, and then describe its physiological functions in cell–cell adhesions. Elucidation of these merlin functions will lead to a clear understanding of its fundamental roles in cells and tissues.  相似文献   

16.
Neurofibromatosis type 2 (NF2) is a dominantly inherited disease associated with the central nervous system. The NF2 gene product merlin is a tumor suppressor, and its mutation or inactivation causes this disease. We report here the crystal structure of the merlin FERM domain containing a 22-residue alpha-helical segment. The structure reveals that the merlin FERM domain consists of three subdomains displaying notable features of the electrostatic surface potentials, although the overall surface potentials similar to those of ezrin/radixin/moesin (ERM) proteins indicate electrostatic membrane association. The structure also is consistent with inactivation mechanisms caused by the pathogenic mutations associated with NF2.  相似文献   

17.
Layilin, a cell surface hyaluronan receptor, interacts with merlin and radixin   总被引:13,自引:0,他引:13  
Layilin is a widely expressed integral membrane hyaluronan receptor, originally identified as a binding partner of talin located in membrane ruffles. We have identified merlin, the neurofibromatosis type 2 tumor suppressor protein and radixin, as other interactors with the carboxy-terminal domain of layilin. We show that the carboxy-terminal domain of layilin is capable of binding to the amino-terminal domain of radixin. An interdomain interaction between the amino- and the carboxy-terminal domains of radixin inhibits its ability to bind to layilin. In the presence of acidic phospholipids, the interdomain interaction of radixin is inhibited and layilin can bind to full-length radixin. In contrast, layilin binds both full-length and amino-terminal merlin-GST fusion proteins without a requirement for phospholipids. Furthermore, layilin antibody can immunoprecipitate merlin, confirming association in vivo between these two proteins, which also display similar subcellular localizations in ruffling membranes. No interaction was observed between layilin and ezrin or layilin and moesin. These findings expand the known binding partners of layilin to include other members of the talin/band 4.1/ERM (ezrin, radixin, and moesin) family of cytoskeletal-membrane linker molecules. This in turn suggests that layilin may mediate signals from extracellular matrix to the cell cytoskeleton via interaction with different intracellular binding partners and thereby be involved in the modulation of cortical structures in the cell.  相似文献   

18.
The tetraspanin web represents a new concept of molecular interactions in the immune system. Whereas most surface immune-modulating molecules involve receptor-ligand interactions, tetraspanins associate with partner proteins and facilitate their lateral positioning in the membrane. Moreover, the same tetraspanin molecule can associate with different proteins depending on the cell type. Most importantly, members of this family tend to associate with each other, together with their partners, in membrane microdomains that provide a scaffold for the transmission of external stimuli to intracellular-signalling components.  相似文献   

19.
The neurofibromatosis type 2 (NF2) gene encodes an intracellular membrane-associated protein called merlin or schwannomin, which is known to be a tumor suppressor. Numerous studies have suggested that merlin is involved in the regulation of cell growth and proliferation. Previously, merlin/schwannomin was reported to block Ras-induced cell proliferation and anchorage-independent cell growth. Also, the N-terminus of merlin was found to suppress cell proliferation, although it appears to be less effective than full-length merlin. However, the inhibitory mechanism of merlin is unknown. In this report, merlin is shown to be effective at suppressing serum/Ras-induced and Elk-mediated SRE dependent transactivation, and serum-induced ERK phosphorylation in NIH3T3 cells. In addition, merlin inhibited serum-induced Elk phosphorylation, a downstream effector of ERKs. Also, the N-terminal deficient merlin mutant could not block serum-induced and Elk-mediated SRE dependent transactivation, although the C-terminal deficient merlin mutant could. These results suggest that merlin inhibits SRE dependent transactivation by repressing serum-induced ERK phosphorylation and its downstream effector, Elk phosphorylation. Also, the N-terminus of merlin may be important for its inhibitory effect. Our results show that merlin acts as a negative regulator of the SRE signaling pathway via the Ras-ERKs pathway.  相似文献   

20.
The merlin interacting proteins reveal multiple targets for NF2 therapy   总被引:1,自引:0,他引:1  
The neurofibromatosis 2 (NF2) tumor suppressor protein merlin is commonly mutated in human benign brain tumors. The gene altered in NF2 was located on human chromosome 22q12 in 1993 and the encoded protein named merlin and schwannomin. Merlin has homology to ERM family proteins, ezrin, radixin, and moesin, within the protein 4.1 superfamily. In efforts to determine merlin function several groups have discovered 34 merlin interacting proteins, including ezrin, radixin, moesin, CD44, layilin, paxillin, actin, N-WASP, betaII-spectrin, microtubules, TRBP, eIF3c, PIKE, NHERF, MAP, RalGDS, RhoGDI, EG1/magicin, HEI10, HRS, syntenin, caspr/paranodin, DCC, NGB, CRM1/exportin, SCHIP1, MYPT-1-PP1delta, RIbeta, PKA, PAK (three types), calpain and Drosophila expanded. Many of the proteins that interact with the merlin N-terminal domain also bind ezrin, while other merlin interacting proteins do not bind other members of the ERM family. Merlin also interacts with itself. This review describes these proteins, their possible roles in NF2, and the resultant hypothesized merlin functions. Review of all of the merlin interacting proteins and functional consequences of losses of these interactions reveals multiple merlin actions in PI3-kinase, MAP kinase and small GTPase signaling pathways that might be targeted to inhibit the proliferation of NF2 tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号