首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many plants support symbiotic microbes, such as endophytic fungi, that can alter interactions with herbivores. Most endophyte research has focused on agronomically important species, with less known about the ecological roles of native endophytes in native plants. In particular, whether genetic variation among endophyte symbionts affects herbivores of plant hosts remains unresolved for most native endophytes. Here, we investigate the importance of native isolates of the endophyte Epichlo? elymi in affecting herbivory of the native grass host, Elymus hystrix. Experimental fungal isolate-plant genotype combinations and endophyte-free control plants were grown in a common garden and exposed to natural arthropod herbivory. Fungal isolates differed in their effects on two types of herbivory, chewing and scraping. Isolates exhibiting greater sexual reproduction were associated with greater herbivore damage than primarily asexual isolates. Endophyte infection also altered patterns of herbivory within plants, with stroma-bearing tillers experiencing up to 30% greater damage than nonstroma-bearing tillers. Results suggest that intraspecific genetic variation in endophytes, like plant genetic variation, can have important 'bottom-up' effects on herbivores in native systems.  相似文献   

2.
The plant hormone salicylic acid (SA) is recognized as an effective defence against biotrophic pathogens, but its role as regulator of beneficial plant symbionts has received little attention. We studied the relationship between the SA hormone and leaf fungal endophytes on herbivore defences in symbiotic grasses. We hypothesize that the SA exposure suppresses the endophyte reducing the fungal‐produced alkaloids. Because of the role that alkaloids play in anti‐herbivore defences, any reduction in their production should make host plants more susceptible to herbivores. Lolium multiflorum plants symbiotic and nonsymbiotic with the endophyte Epichloë occultans were exposed to SA followed by a challenge with the aphid Rhopalosiphum padi. We measured the level of plant resistance to aphids, and the defences conferred by endophytes and host plants. Symbiotic plants had lower concentrations of SA than did the nonsymbiotic counterparts. Consistent with our prediction, the hormonal treatment reduced the concentration of loline alkaloids (i.e., N‐formyllolines and N‐acetylnorlolines) and consequently decreased the endophyte‐conferred resistance against aphids. Our study highlights the importance of the interaction between the plant immune system and endophytes for the stability of the defensive mutualism. Our results indicate that the SA plays a critical role in regulating the endophyte‐conferred resistance against herbivores.  相似文献   

3.
Stanley H. Faeth 《Oikos》2002,99(1):25-36
Endophytic fungi, especially asexual, systemic endophytes in grasses, are generally viewed as plant mutualists, mainly through the action of mycotoxins, such as alkaloids in infected grasses, which protect the host plant from herbivores. Most of the evidence for the defensive mutualism concept is derived from studies of agronomic grass cultivars, which may be atypical of many endophyte-host interactions. I argue that endophytes in native plants, even asexual, seed-borne ones, rarely act as defensive mutualists. In contrast to domesticated grasses where infection frequencies of highly toxic plants often approach 100%, natural grass populations are usually mosaics of uninfected and infected plants. The latter, however, usually vary enormously in alkaloid levels, from none to levels that may affect herbivores. This variation may result from diverse endophyte and host genotypic combinations that are maintained by changing selective pressures, such as competition, herbivory and abiotic factors. Other processes, such as spatial structuring of host populations and endophytes that act as reproductive parasites of their hosts, may maintain infection levels of seed-borne endophytes in natural populations, without the endophyte acting as a mutualist.  相似文献   

4.
Neotyphodium endophytes are assumed to have mutualistic relationship with their grass hosts, mainly resulting from mycotoxin production increasing plant resistance to herbivores by the fungus that subsists on the plant. To study importance of often ignored environmental effects on these associations, we performed a greenhouse experiment to examine the significance of endophyte infection and nutrient availability for bird-cherry aphid (Rhopalosiphum padi) performance on meadow fescue (Lolium pratense). Naturally endophyte-infected (E+), uninfected (E–), or manipulatively endophyte-free (ME–) half-sib families of meadow fescue were grown on two soil nutrient levels. Endophyte infection reduced aphid performance in general. However, to our knowledge, this is the first study to demonstrate experimentally that herbivore performance decreases on E+ host plants with increasing availability of nutrients in soils. Potential improvement in herbivore performance in high nutrient soils and decreased plant performance in low nutrient soils in ME– plants, compared to E– and E+ plants, suggests that loss of endophyte infection after long coevolutionary relationship may be critical to plant fitness.  相似文献   

5.
Fungal endophytes modify plant–herbivore interactions by producing toxic alkaloids that deter herbivory. However, studies have neglected the direct effects herbivores may have on endophytes. Antifungal properties and signalling effectors in herbivore saliva suggest that evolutionary pressures may select for animals that mitigate the effects of endophyte-produced alkaloids. Here, we tested whether saliva of moose (Alces alces) and European reindeer (Rangifer tarandus) reduced hyphal elongation and production of ergot alkaloids by the foliar endophyte Epichloë festucae associated with the globally distributed red fescue Festuca rubra. Both moose and reindeer saliva reduced the growth of isolated endophyte hyphae when compared with a treatment of distilled water. Induction of the highly toxic alkaloid ergovaline was also inhibited in plants from the core of F. rubra''s distribution when treated with moose saliva following simulated grazing. In genotypes from the southern limit of the species'' distribution, ergovaline was constitutively expressed, as predicted where growth is environmentally limited. Our results now present the first evidence, to our knowledge, that ungulate saliva can combat plant defences produced by a grass–endophyte mutualism.  相似文献   

6.
The interaction between two species often depends on the presence or absence of a third species. One widespread three-species interaction involves fungal endophytes infecting grasses and the herbivores that feed upon them. The endophytes are allied with the fungal family Clavicipitaceae and grow systemically in intercellular spaces in above-ground plant tissues including seeds. Like relatedClaviceps species, the endophytes produce a variety of alkaloids that make the host plants toxic or distasteful to herbivores. A large number of grass species are infected, especially cool-season grasses in temperate areas. Field and laboratory studies have shown that herbivores avoid infected plants in choice trials and suffer increased mortality and decreased growth on infected grasses in feeding experiments. Resistance to herbivores may provide a selective advantage to infected plants in competitive interactions with noninfected plants. Recent studies have shown that differential herbivory can reverse competitive hierarchies among plant species. Both endophyte-infected and noninfected tall fescue grass (Festuca arundinacea) are outcompeted by orchardgrass (Dactylis glomerata) in the absence of insect herbivory. However, when herbivores are present infected tall fescue outcompetes orchardgrass. These results suggest that the frequency of infection in grass species and grassland communities will increase over time. Several studies are reviewed illustrating increases in infection frequency within grass populations subject to herbivore pressure. Endophytic fungi may be important regulators of plant-herbivore interactions and so indirectly affect the structure and dynamics of plant communities.  相似文献   

7.
Neotyphodium endophytes in introduced agronomic grasses are well known to increase resistance to herbivores, but little is known of interactions between Neotyphodium endophytes and herbivores in native grass populations. We investigated whether endophytes mediate plant-herbivore interactions in a native grass species, Festuca arizonica in the southwestern United States, in two ways. First, to test the prediction that the presence and frequency of endophyte-infected (E+) plants should increase with increasing herbivory, we determined endophyte frequencies over a 4-year period in six natural Arizona fescue populations. We compared Neotyphodium frequency among plants growing inside and outside long-term vertebrate grazing exclosures. Second, we experimentally tested the effects of Neotyphodium infection, plant clone, and soil nutrients on plant resistance to the native grasshopper Xanthippus corallipes. Contrary to predictions based upon the hypothesis that endophytes increase herbivore resistance, levels of infection did not increase in plants subjected to grazing outside of exclosures relative to ungrazed plants within exclosures. Instead, endophyte frequencies tended to be greater inside the exclosures, where long-term vertebrate grazing was reduced. The grasshopper bioassay experiment corroborated these long-term patterns. Survival of grasshoppers did not differ between infected (E+) and uninfected (E–) plants. Instead, mean relative growth rate of grasshoppers was higher on E+ grasses than on E– ones. Growth performance of newly hatched grasshopper nymphs varied among host plant clones, although two of six clones accounted for most of this variation. Our results suggest that Neotyphodium-grass-herbivore interactions may be much more variable in natural communities than predicted by studies of agronomically important Neotyphodium-grass associations, and herbivory is not always the driving selective force in endophyte-grass ecology and evolution. Thus, alternative hypotheses are necessary to explain the wide distribution and variable frequencies of endophytes in natural plant populations. Received: 15 February 1999 / Accepted: 19 July 1999  相似文献   

8.
1. All plants form symbioses with microfungi, known as endophytes, which live within plant tissues. Numerous studies have documented endophyte–herbivore antagonism in grass systems, but plant–endophyte–insect interactions are highly variable for forbs and woody plants. 2. The net effect of endophytes on insect herbivory may be modified by their interactions with higher trophic levels, such as predators. Including these multitrophic dynamics may explain some of the variability among endophyte studies of non‐grass plants, which are currently based exclusively on bitrophic studies. 3. The abundance of natural foliar endophytes in a Neotropical vine was manipulated and beetles were fed high or low endophyte diets. Experimental assays assessed whether dietary endophyte load affected beetle growth, leaf consumption, and susceptibility to ant predation. 4. Beetles feeding on high‐ versus low‐endophyte plants had almost identical growth and leaf consumption rates. 5. In a field bioassay, however, it was discovered that feeding on an endophyte‐rich diet increased a beetle's odds of capture by predatory ants nine‐fold. 6. Endophytes could thus provide an indirect, enemy‐mediated form of plant defence that operates even against specialist herbivores. We argue that a multitrophic approach is necessary to untangle the potentially diverse types of endophyte defence among plants.  相似文献   

9.
Established theory addresses the idea that herbivory can have positive feedbacks on nutrient flow to plants. Positive feedbacks likely emerge from a greater availability of organic carbon that primes the soil by supporting nutrient turnover through consumer and especially microbially-mediated metabolism in the detrital pool. We developed an entirely novel stoichiometric model that demonstrates the mechanism of a positive feedback. In particular, we show that sloppy or partial feeding by herbivores increases detrital carbon and nitrogen allowing for greater nitrogen mineralization and nutritive feedback to plants. The model consists of differential equations coupling flows among pools of: plants, herbivores, detrital carbon and nitrogen, and inorganic nitrogen. We test the effects of different levels of herbivore grazing completion and of the stoichiometric quality (carbon to nitrogen ratio, C:N) of the host plant. Our model analyses show that partial feeding and plant C:N interact because when herbivores are sloppy and plant biomass is diverted to the detrital pool, more mineral nitrogen is available to plants because of the stoichiometric difference between the organisms in the detrital pool and the herbivore. This model helps to identify how herbivory may feedback positively on primary production, and it mechanistically connects direct and indirect feedbacks from soil to plant production.  相似文献   

10.
Tatyana A. Rand 《Oecologia》2002,132(4):549-558
Herbivore damage and impact on plants often varies spatially across environmental gradients. Although such variation has been hypothesized to influence plant distribution, few quantitative evaluations exist. In this study I evaluated patterns of insect herbivory on an annual forb, Atriplex patula var. hastata, across a salt marsh tidal gradient, and performed experiments to examine potential causes and consequences of variation in herbivory. Damage to plants was generally twice as great at mid-tidal elevations, which are more frequently inundated, than at higher, less stressful, elevations at five of six surveyed sites. Field herbivore assays and herbivore preference experiments eliminated the hypothesis that plant damage was mediated by herbivore response to differences in host plants across the gradient. Alternately, greater herbivore densities in the mid-marsh, where densities of an alternate host plant (Salicornia europaea) were high, were associated with greater levels of herbivory on Atriplex, suggesting spillover effects. The effect of insect herbivores on host plant performance varied between the two sites studied more intensively. Where overall herbivore damage to plants was low, herbivory had no detectable effect on plant survival or seed production, and plant performance did not significantly differ between zones. However, where herbivore damage was high, herbivores dramatically reduced both plant survival (>50%) and fruit production (40-70%), and their effects were stronger in the harsher mid-marsh than the high marsh. Thus herbivores likely play a role in maintaining lower Atriplex densities in mid-marsh. Overall, these results suggest that variation in herbivore pressure can be an important determinant of patterns of plant abundance across environmental gradients.  相似文献   

11.
高嘉卉  南志标 《生态学报》2007,27(6):2531-2546
综述了国内外近20a以来在禾草内生真菌生物碱方面的研究进展。目前,已发现至少4大类10余种生物碱与内生真菌有关。各类生物碱中典型代表物的分子结构已完全清楚,部分内生真菌在离体条件下可产生除黑麦草碱外的生物碱,但产碱量较其在植物体中所产生的低很多,可相差150余倍之多。随着生物技术的发展,美国、新西兰等国在波胺、麦角碱和loline的生物合成途径方面已有了初步的进展,对个别具有重要功能基因以及其所编码的酶已有了深入研究。各种生物碱的致毒机理尚未完全清楚,除饱和吡咯化合物为新陈代谢类毒素和神经性毒素外,其余3类生物碱均为神经性毒素。生物碱可增加禾草对40余种害虫的抗性,并可增加对某些线虫和病害的抗性。诸多因素均可影响寄主植株中生物碱的种类和浓度,包括寄主植株:种群和生态型,植物品种和基因型,植株的部位和生长期;环境:气候因素,土壤养分,季节和年度变化;内生真菌菌株和草地管理利用方式等。用于生物碱检测的主要方法为预分离检测法和直接检测法,其中高效液相色谱法以其分离能力强、选择性高、测定灵敏度高,操作简单,可在室温下进行,应用范围极广的优点而广泛应用。目前,国际关于禾草内生真菌生物碱研究的重点包括创造不含对家畜有毒素的有益禾草-内生真菌共生体,开展基因工程研究以及合理利用生物碱,使其成为新一代的“生物农药”。  相似文献   

12.
It has been historically difficult to manipulate secondary compounds in living plants to assess how these compounds influence plant-herbivore and plant-pollinator interactions. Using a hemiparasitic plant that takes up secondary compounds from host plants, I experimentally manipulated secondary compounds in planta and assessed their effects on herbivores and pollinators in the field. Here, I show that the uptake of alkaloids in the annual hemiparasite Castilleja indivisa resulted in decreased herbivory, increased visitation by pollinators, and increased lifetime seed production. These results indicate that resistance traits such as alkaloids can increase plant fitness directly by reducing herbivore attack and indirectly by increasing pollinator visitation to defended plants. Thus, selection for production of secondary compounds may be underestimated by considering only the direct effect of herbivores on plant fitness.  相似文献   

13.
Despite their minute biomass, microbial symbionts of plants potentially alter herbivory, diversity and community structure. Infection of grasses by asexual endophytic fungi often decreases herbivore loads and alters arthropod diversity. However, most studies to date have involved agronomic grasses and often consider only infection status (infected vs. uninfected), without explicitly measuring endophyte-produced alkaloids, which vary among endophyte isolates and may impact consumers. We combined field experiments and population surveys to investigate how endophyte infection and associated alkaloids influence abundances, species richness, evenness and guild structure of arthropod communities on a native grass, Achnatherum robustum (sleepygrass). Surprisingly, we found that endophyte-produced alkaloids were associated with increased herbivore abundances and species richness. Our results suggest that, unlike what has been found in agronomic grass systems, high alkaloid levels in native grasses may not protect host grasses from arthropod herbivores, and may instead more negatively affect natural enemies of herbivores.
Ecology Letters (2010) 13: 106–117  相似文献   

14.
Abstract 1. Variation in plant chemistry does not only mediate interactions between plants and herbivores but also those between herbivores and their natural enemies, and plants and natural enemies. 2. Endophytic fungi complete their whole life cycle within the host plant’s tissue and are associated with a large diversity of plant species. Endophytes of the genus Neotyphodium alter the chemistry of the host plant by producing herbivore toxic alkaloids. 3. Here we asked whether the endophyte‐tolerant aphid species Metopolophium festucae could be defended against its parasitoid Aphidius ervi when feeding on endophyte‐infected plants. In a laboratory experiment, we compared life‐history traits of A. ervi when exposed to hosts on endophyte‐infected or endophyte‐free Lolium perenne. 4. The presence of endophytes significantly increased larval and pupal development times, but did not affect the mortality of immature parasitoids or the longevity of the adults. Although the number of parasitoid mummies tended to be reduced on endophyte‐infected plants, the number of emerging parasitoids did not differ significantly between the two treatments. 5. This shows that the metabolism of individual aphids feeding on infected plants may be changed and help in the defence against parasitoids. An increase in parasitoid development time should ultimately reduce the population growth of A. ervi. Therefore, endophyte presence may represent an advantage for endophyte‐tolerant aphid species through extended parasitoid development and its effect on parasitoid population dynamics.  相似文献   

15.
Asexual systemic fungi that live symbiotically within grasses are viewed as strong mutualists on the basis of theory and empirical studies of introduced agronomic grasses. Evolutionary theory predicts that microbial symbionts that lose sexuality and rely on propagules of their hosts for transmission should evolve to benefit their hosts. Fungal endophytes of some cultivated turf and pasture grasses are well known for increasing plant performance and competitive abilities, especially under stress, and increasing resistance to herbivores, pathogens, and root-feeders by virtue of fungal alkaloids. The assumption of mutualism, however, has rarely been tested in native grasses, which often harbor high but variable frequencies of systemic asexual endophytes. We tested the effect of Neotyphodium infections for the native grass Arizona fescue in a 3-yr field experiment. We strictly controlled host genotype and manipulated soil moisture and nutrients. Infection generally decreased host growth in terms of plant volume, number of tillers, and dry mass of shoots and roots. Infected plants also showed decreased reproduction in terms of number and mass of seeds, and the seeds produced by infected plants had lower germination success than plants without their endophytes, suggesting that the negative effects of the symbiont are transferred to the next generation. Plant genotype strongly influenced host's growth and reproduction and interacted with the presence of the endophyte, but the interaction was usually in the direction of negative effects. Our results challenge the notion that systemic asexual endophytes must be plant mutualists for infections to persist in nature. We propose other hypotheses to explain the variable but usually high endophyte frequencies in natural populations of grasses.  相似文献   

16.
Genetic variation for fitness‐relevant traits may be maintained in natural populations by fitness differences that depend on environmental conditions. For herbivores, plant quality and variation in chemical plant defences can maintain genetic variation in performance. Apart from plant secondary compounds, symbiosis between plants and endosymbiotic fungi (endophytes) can produce herbivore‐toxic compounds. We show that there is significant variation among aphid genotypes in response to endophytes by comparing life‐history traits of 37 clones of the bird cherry‐oat aphid Rhopalosiphum padi feeding on endophyte‐free and endophyte‐infected tall fescue Lolium arundinaceum. Clonal variation for life‐history traits was large, and most clones performed better on endophyte‐free plants. However, the clones differed in the relative performance across the two environments, resulting in significant genotype × environment interactions for all reproductive traits. These findings suggest that natural variation in prevalence of endophyte infection can contribute to the maintenance of genetic diversity in aphid populations.  相似文献   

17.
Endophytic fungal symbionts of grasses are well known for their protective benefit of herbivory reduction. However, the majority of studies on endophyte–grass symbioses have been conducted on economically important, agricultural species—particularly tall fescue (Lolium arundinaceum) and perennial ryegrass (Lolium perenne)—raising the hypothesis that strong benefits are the product of artificial selection. We examined whether fungal endophytes found in natural populations of native grass species deterred insect herbivores. By testing several native grass–endophyte symbiota, we examined phylogenetic signals in the effects of endophytes on insects and compared the relative importance of herbivore and symbiotum identity in the outcome of the interactions. Preference was assessed using three herbivore species [Spodoptera frugiperda (Lepidoptera), Schistocerca americana (Orthoptera), Rhopalosiphum padi (Hemiptera)] and ten native symbiota, which spanned seven grass genera. We also assessed herbivore performance in a no choice experiment for five native symbiota against S. frugiperda. We compared greenhouse and laboratory trials with natural levels of herbivory measured in experimental field populations. In all cases, we included the agronomic grass species, L. arundinaceum, to compare with results from the native grasses. Both in the field and in experimental trials, herbivores showed a significant preference for endophyte-free plant material for the majority of native grasses, with up to three times lower herbivory for endophyte-symbiotic plants; however, the degree of response depended on the identity of the herbivore species. Endophyte presence also significantly reduced performance of S. frugiperda for the majority of grass species. In contrast, the endophyte in L. arundinaceum had few significant anti-herbivore effects, except for a reduction in herbivory at one of two field sites. Our results demonstrate that the mechanisms by which native symbionts deter herbivores are at least as potent as those in model agricultural systems, despite the absence of artificial selection.  相似文献   

18.
When plants are sequentially attacked by multiple herbivores, herbivore identity and host specialization can greatly influence the patterns of herbivore–herbivore and plant–herbivore interactions. However, how prior herbivory and the resulting induced plant responses potentially affect subsequent herbivores deserves further investigation. In this study, we conducted a common-garden experiment that manipulated sequential herbivory by the specialist caterpillar Gadirtha fusca Pogue (Lepidoptera: Nolidae) and the generalist caterpillar Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) on Chinese tallow, Triadica sebifera (L.) Small (Euphorbiaceae). We tested how prior exposure to herbivores with different levels of host specialization affected the performance of subsequently arriving con- and heterospecifics, as well as plant growth and defense responses under subsequent herbivory. We found that prior exposure to the specialist G. fusca facilitated the performance of subsequent conspecifics, resulting in a significant decrease in the growth (height and stem diameter at ground level) of tallow plants. However, prior exposure to the generalist S. litura did not affect the feeding of subsequent con- or heterospecifics or the growth of tallow plants. Sequential herbivory by specialist and generalist conspecifics resulted in lower levels of tannins and flavonoids, respectively, in leaves of tallow plants, whereas sequential herbivory by the two species did not affect the levels of tannins or flavonoids, compared to a single damage event. We conclude that herbivore species-specific plant responses appear to be more important than herbivore identity or specialization in determining herbivore–herbivore interactions and plant responses to sequential herbivore attack.  相似文献   

19.
Alkaloids produced by systemic fungal endophytes of grasses are thought to act as defensive agents against herbivores. Endophytic alkaloids may reduce arthropod herbivore abundances and diversity in agronomic grasses. Yet, accumulating evidence, particularly from native grasses, shows that herbivore preference, abundances and species richness are sometimes greater on endophyte-infected plants, even those with high alkaloids, contrary to the notion of defensive mutualism. We argue that these conflicting results are entirely consistent with well-developed concepts of plant defence theory and tri-trophic interactions. Plant secondary chemicals and endophytic alkaloids often fail to protect plants because: (1) specialist herbivores evolve to detoxify and use defensive chemicals for growth and survival; and (2) natural enemies of herbivores may be more negatively affected by alkaloids than are herbivores. Endophytes and their alkaloids may have profound, but often highly variable, effects on communities, which are also consistent with existing theories of plant defence and community genetics.  相似文献   

20.
1. Fungal endophytes are ubiquitous associates of virtually all plant species. Although many studies have focused on the role of these microorganisms as mediators of plant–herbivore interactions, these studies have usually been conducted using short‐term experiments. 2. Truly effective defences against herbivores may require normal functioning of the plant, as excised leaves may be less resistant as compared with those still attached to the plant. Yet, most studies investigating possible effects of endophytes in conferring host resistance to herbivores have been conducted with plant parts rather than intact plants. 3. Using the root endophytic fungus (Acremonium strictum)—broad bean (Vicia faba)—generalist herbivore (Helicoverpa armigera) model, we conducted experiments to examine whether endophyte effects on herbivory would depend on the experimental setting used in the investigation and whether they would translate into a subsequent generation of the herbivore. 4. Acremonium strictum negative effects on the fitness of H. armigera first generation were more evident when the larvae foraged freely on inoculated intact whole plants than when offered leaf discs of inoculated plants. Furthermore, these effects were carried over into H. armigera second generation reared on an artificial diet. 5. Acremonium strictum could not be re‐isolated from V. faba leaves; hence direct contact between the endophyte and the insect could be excluded. Alternatively, loss of volatiles or inhibitory effects of compounds that were stronger in situ might have caused changes in larval feeding and performance on leaf discs as compared with intact plants, regardless of infection status. 6. We suggest that the reduction in fitness parameters of H. armigera across two generations is caused indirectly via an endophyte‐triggered reduction in plant quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号