首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The androgen‐signaling pathway plays critical roles in normal prostate development, benign prostatic hyperplasia, established prostate cancer, and in prostate carcinogenesis. In this study, we report that trihydrophobin 1 (TH1) is a potent negative regulator to attenuate the androgen signal‐transduction cascade through promoting androgen receptor (AR) degradation. TH1 interacts with AR both in vitro and in vivo, decreases the stability of AR, and promotes AR ubiquitination in a ligand‐independent manner. TH1 also associates with AR at the active androgen‐responsive prostate‐specific antigen (PSA) promoter in the nucleus of LNCaP cells. Decrease of endogenous AR protein by TH1 interferes with androgen‐induced luciferase reporter expression and reduces endogenous PSA expression. Taken together, these results indicate that TH1 is a novel regulator to control the duration and magnitude of androgen signal transduction and might be directly involved in androgen‐related developmental, physiological, and pathological processes. J. Cell. Biochem. 109: 1013–1024, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
6.
7.
It is important to clarify the distinct contributions of estrogen/estrogen receptor (ER) and androgen/androgen receptor (AR) signaling and their reciprocal effects on the regulation of hepatic lipid homeostasis. We studied the molecular mechanisms underlying the preventive effects of estradiol (E2), dihydrotestosterone (DHT), or E2+DHT on high-fat diet-induced nonalcoholic fatty liver disease (NAFLD) in an orchidectomized Sprague-Dawley (SD) rat model. E2 is shown to be associated with decreased fatty acid synthesis in hepatic zone 3-specific manner by increasing the phosphorylation of acetyl coenzyme-A carboxylase via an ERα-mediated pathway. DHT is shown to be associated with decreased lipid accumulation and cholesterol synthesis in a hepatic zone 1-specific manner by increasing expression of carnitine palmitotyltransferase1 and phosphorylation of 3-hydroxy-3-methyl-glutaryl-CoA reductase via an AR-mediated pathway. E2+DHT showed an additive positive effect and normalized all three impaired zones of the liver. Gene expression changes in human severe liver steatosis were similar to those of experimental rat NAFLD. Steroids reversed the histopathological NAFLD changes, likely by decreasing fatty acid and cholesterol synthesis and increasing β-oxidation. The diverse steroid effects (ER/AR) on NAFLD prevention in male rats indicate the potential applicability of ER/AR modulators for NAFLD treatment.  相似文献   

8.
Androgen receptor (AR) function is critical for the development of male reproductive organs, muscle, bone and other tissues. Functionally impaired AR results in androgen insensitivity syndrome (AIS). The interaction between AR and microRNA (miR) signaling pathways was examined to understand the role of miRs in AR function. Reduction of androgen levels in Sprague-Dawley rats by castration inhibited the expression of a large set of miRs in prostate and muscle, which was reversed by treatment of castrated rats with 3 mg/day dihydrotestosterone (DHT) or selective androgen receptor modulators. Knockout of the miR processing enzyme, DICER, in LNCaP prostate cancer cells or tissue specifically in mice inhibited AR function leading to AIS. Since the only function of miRs is to bind to 3' UTR and inhibit translation of target genes, androgens might induce miRs to inhibit repressors of AR function. In concordance, knock-down of DICER in LNCaP cells and in tissues in mice induced the expression of corepressors, NCoR and SMRT. These studies demonstrate a feedback loop between miRs, corepressors and AR and the imperative role of miRs in AR function in non-cancerous androgen-responsive tissues.  相似文献   

9.
Cyclin E as a coactivator of the androgen receptor   总被引:7,自引:0,他引:7  
Androgens play an important role in the growth of prostate cancer, but the molecular mechanism that underlies development of resistance to antiandrogen therapy remains unknown. Cyclin E has now been shown to increase the transactivation activity of the human androgen receptor (AR) in the presence of its ligand dihydrotestosterone. The enhancement of AR activity by cyclin E was resistant to inhibition by the antiandrogen 5-hydroxyflutamide. Cyclin E was shown to bind directly to the COOH terminus portion of the AB domain of the AR, and to enhance its AF-1 transactivation function. These results suggest that cyclin E functions as a coactivator of the AR, and that aberrant expression of cyclin E in tumors may contribute to persistent activation of AR function, even during androgen ablation therapy.  相似文献   

10.
Androgens and androgen receptors are vital factors involved in prostate cancer progression, and androgen ablation therapies are commonly used to treat advanced prostate cancer. However, the acquisition of androgen ablation therapy resistance remains a challenge. Recently, androgen receptor splicing variants lacking the ligand-binding domain have been reported to play a critical role in the acquisition of androgen ablation therapy resistance. In the present study, we revealed that the messenger RNA expression and the protein levels of an androgen receptor variant 7 (AR-V7) were higher in prostate cancer tissue samples and in the AR-positive prostate cancer cell line, VCaP. In contrast, microRNA (miR)-30c-1-3p/miR-103a-2-5p expression was significantly downregulated in tumor tissues and cells. miR-30c-1-3p/miR-103a-2-5p overexpression could inhibit AR-V7 expression, suppress VCaP cell growth, and inhibit AR-V7 downstream factor expression by directly targeting the 3′-untranslated region of AR-V7. Under enzalutamide (Enza) treatment, the effects of AR-V7 overexpression were the opposite of those of miR-103a-2-5p/miR-30c-1-3p overexpression; more importantly, the effects of miR-103a-2-5p/miR-30c-1-3p overexpression could be significantly reversed by AR-V7 overexpression under Enza. In summary, we demonstrated a novel mechanism of the miR-30c-1-3p/miR-103a-2-5p/AR-V7 axis modulating the cell proliferation of AR-positive prostate cancer cells via AR downstream targets. The clinical application of miR-30c-1-3p/miR-103a-2-5p needs further in vivo validation.  相似文献   

11.
OBJECTIVE: To investigate the interplay between transforming growth factor (TGF) beta 1, androgen receptors and stromal-epithelial interactions in benign prostatic hyperplasia (BPH), prostate intraepithelial neoplasia (PIN) and prostate carcinoma areas of prostate neoplasia. STUDY DESIGN: In this immunohistochemical study we investigated staining patterns and then determined the correlation between TGF-beta 1 expression and androgen receptor status in the epithelium and stroma of 60 paraffin-embedded tissues from radical prostatectomies. RESULTS: Staining patterns differed in the epithelium and stroma of tumor and peritumor prostatic tissue. TGF-beta 1 immunostaining (H-scores) in the epithelium and stroma increased significantly from BPH to PIN and from BPH to prostate carcinoma in the epithelium (P < .05), whereas androgen receptor (AR) immunoreactivity significantly (P < .05) increased from BPH to PIN to prostatic carcinoma in epithelium and stroma. TGF-beta 1 did not correlate with histologic grade of differentiation, whereas AR proteins were more strongly expressed in Gleason score 5 and 6 than score 7 tumors (P < .05). Nonlinear regression showed a significant correlation (P < .01) between TGF-beta 1 and AR expression only in the stromal compartment of PIN. CONCLUSION: These findings argue in favor of an interaction between TGF-beta 1 and AR in the early stages of prostate carcinogenesis and suggest that TGF-beta 1 plays a central role in stromal-epithelial interactions during the early stages of malignant transformation.  相似文献   

12.
13.
Versican, one of the key components of prostatic stroma, plays a central role in tumor initiation and progression. Here, we investigated promoter elements and mechanisms of androgen receptor (AR)-mediated regulation of the versican gene in prostate cancer cells. Using transient transfection assays in prostate cancer LNCaP and cervical cancer HeLa cells engineered to express the AR, we demonstrate that the synthetic androgen R1881 and dihydrotestosterone stimulate expression of a versican promoter-driven luciferase reporter vector (versican-Luc). Further, both basal and androgen-stimulated versican-Luc activities were significantly diminished in LNCaP cells, when AR gene expression was knocked down using a short hairpin RNA. Methylation-protection footprinting analysis revealed an AR-protected element between positions +75 and +102 of the proximal versican promoter, which strongly resembled a consensus steroid receptor element. Electrophoretic mobility shift and supershift assays revealed strong and specific binding of the recombinant AR DNA binding domain to oligonucleotides corresponding to this protected DNA sequence. Site-directed mutagenesis of the steroid receptor element site markedly diminished R1881-stimulated versican-Luc activity. In contrast to the response seen using LNCaP cells, R1881 did not significantly induce versican promoter activity and mRNA levels in AR-positive prostate stromal fibroblasts. Interestingly, overexpression of beta-catenin in the presence of androgen augmented versican promoter activity 10- and 30-fold and enhanced versican mRNA levels 2.8-fold in fibroblasts. In conclusion, we demonstrate that AR transactivates versican expression, which may augment tumor-stromal interactions and may contribute to prostate cancer progression.  相似文献   

14.
Many recent evidences indicate that androgen-sensitive prostate cancer cells have a lower malignant phenotype that is in particular characterized by a reduced migration and invasion. We previously demonstrated that expression of androgen receptor (AR) by transfection of the androgen-independent prostate cancer cell line PC3 decreases invasion and adhesion of these cells (PC3-AR) through modulation of alpha6beta4 integrin expression. The treatment with the synthetic androgen R1881 further reduced invasion of the cells without, however, modifying alpha6beta4 expression on the cell surface, suggesting an interference with the invasion process in response to EGF. We investigated whether the presence of the AR could affect EGF receptor (EGFR)-mediated signaling in response to EGF by evaluating autotransphosphorylation of the receptor as well as activation of downstream signalling pathways. Immunoprecipitation studies demonstrated a reduction of EGF-induced tyrosine phosphorylation of EGFR in PC3-AR cells. In addition, EGF-stimulated PI3K activity, a key signalling pathway for invasion of these cells, was decreased in PC3-AR cells and further reduced by treatment with R1881, indicating decreased functionality of EGFR. An interaction between EGFR and AR has been demonstrated by immunoconfocal and co-immunoprecipitation analysis in PC3-AR cells, suggesting a possible interference of AR on EGFR signalling by interaction of the two proteins. In conclusion, our results suggest that the expression of AR by transfection in PC3 cells confers a less malignant phenotype by interfering with EGFR autophosphorylation and signalling in response to EGF leading to invasion through a mechanism involving an interaction between AR and EGFR.  相似文献   

15.
16.
Androgen receptors (AR) play a crucial role in androgen-mediated processes and prostate cancer progression. The pineal hormone melatonin attenuates the androgen-dependent growth of benign and cancer prostate epithelial cells in vitro and may reverse clinical resistance to androgen ablation therapy in patients progressing on gonadotropin releasing hormone (GnRH) analogue. Where along the AR cascade does melatonin act remains to be determined. The effects of melatonin on AR localization, level and activity were assessed using androgen-insensitive prostate carcinoma PC3 cells stably transfected with a wild-type AR-expressing vector (PC3-AR).AR was localized to the PC3-AR cell nucleus in the absence of dihydrotestosterone (DHT). Melatonin caused a robust exclusion of the AR from the cell nucleus to the cytoplasm. The nuclear export inhibitor, leptomycin B prevented this process. The exclusion was selective since melatonin had no such effect on the nuclear localization of estrogen receptors alpha (ERalpha) in these cells.Melatonin also caused nuclear exclusion of the AR in the presence of DHT. In addition, it attenuated androgen induced reporter gene activity in PC3 cells co-transfected with the human AR and AR reporter plasmids. Elevated androgen concentrations counteracted melatonin's effects. Melatonin did not decrease AR level or androgen binding in the cells.The nuclear localization of the AR is a hallmark of its cellular activity. These data point to AR nuclear exclusion as a possible mechanism to attenuate androgen responses in target tissues.  相似文献   

17.
Epilepsy is very often related to strong impairment of neuronal networks, particularly in the hippocampus. Previous studies of brain tissue have demonstrated that long-term administration of the anti-epileptic drug (AED) phenytoin leads to enhanced metabolism of testosterone mediated by cytochrome P450 (CYP) isoforms. Thus, we speculate that AEDs affect androgen signalling in the hippocampus. In the present study, we investigated how the AED phenytoin influences the levels of testosterone, 17beta-oestradiol, and androgen receptor (AR) in the hippocampus of male C57Bl/6J mice. Phenytoin administration led to a 61.24% decreased hippocampal testosterone level as compared with controls, while serum levels were slightly enhanced. 17beta-Oestradiol serum level was elevated 2.6-fold. Concomitantly, the testosterone metabolizing CYP isoforms CYP3A11 and CYP19 (aromatase) have been found to be induced 2.4- and 4.2-fold, respectively. CYP3A-mediated depletion of testosterone-forming 2beta-, and 6beta-hydroxytestosterone was significantly enhanced. Additionally, AR expression was increased 2-fold (mRNA) and 1.8-fold (protein), predominantly in the CA1 region. AR was shown to concentrate in nuclei of CA1 pyramidal neurons. We conclude that phenytoin affects testosterone metabolism via induction of CYP isoforms. The increased metabolism of testosterone leading to augmented androgen metabolite formation most likely led to enhanced expression of CYP19 and AR in hippocampus. Phenytoin obviously modulates the androgen signalling in the hippocampus.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号