首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deng C  Tian H  Zhang P  Sun J  Chen X  Jing X 《Biomacromolecules》2006,7(2):590-596
Advances in tissue engineering require biofunctional scaffolds that can provide not only physical support for cells but also chemical and biological cues needed in forming functional tissues. To achieve this goal, a novel RGD peptide grafted poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-glutamic acid) (PEG-PLA-PGL/RGD) was synthesized in four steps (1) to prepare diblock copolymer PEG-PLA-OH and to convert its -OH end group into -NH(2) (to obtain PEG-PLA-NH(2)), (2) to prepare triblock copolymer PEG-PLA-PBGL by ring-opening polymerization of NCA (N-carboxyanhydride) derived from benzyl glutamate with diblock copolymer PEG-PLA-NH(2) as macroinitiator, (3) to remove the protective benzyl groups by catalytic hydrogenation of PEG-PLA-PBGL to obtain PEG-PLA-PGL, and (4) to react RGD (arginine-glycine-(aspartic amide)) with the carboxyl groups of the PEG-PLA-PGL. The structures of PEG-PLA-PGL/RGD and its precursors were confirmed by (1)H NMR, FT-IR, amino acid analysis, and XPS analysis. Addition of 5 wt % PEG-PLA-PGL/RGD into a PLGA matrix significantly improved the surface wettability of the blend films and the adhesion and proliferation behavior of human chondrocytes and 3T3 cells on the blend films. Therefore, the novel RGD-grafted triblock copolymer is expected to find application in cell or tissue engineering.  相似文献   

2.
A luminance thresholding procedure was developed to quantify cell attachment of a variety of cell lines to CBD/RGD, a hybrid attachment factor comprising a cellulose binding domain and the fibronectin-like RGD attachment peptide. The technique used local thresholding, median filtering, and opening to separate and count cells on each image. Cell lines exhibited three different patterns of attachment to CBD/RGD, depending on whether it was immobilized on polystyrene or cellulose acetate. Vero, COS, HFF, 3T3, 293, and U373 cells attached well to CBD/RGD immobilized on polystyrene or cellulose acetate. CHO, MRC-5, and HEp-2 cells attached to CBD/RGD immobilized on polystyrene, but not to CBD/RGD immobilized on cellulose acetate. BHK and L cells failed to attach to CBD/RGD immobilized on either polystyrene or cellulose acetate. The attachment of many cell lines to CBD/RGD was comparable with attachment of these cells to fibronectin. (c) 1995 John Wiley & Sons, Inc.  相似文献   

3.
The effects of tether length on cell adhesion to poly(methyl methacrylate)-graft-poly(ethylene oxide), PMMA-g-PEO, comb copolymer films functionalized with the adhesion peptide RGD were investigated. Copolymers having PEO tether lengths of 10 and 22 EO segments were synthesized and coupled with a synthetic peptide that contained both RGD and the synergy sequence PHSRN. Cell spreading assays revealed that the longer polymer tethers increased the rate of spreading and reduced the time required for fibroblasts to form focal adhesions. Fluorescence resonance energy transfer (FRET) measurements indicated a mean separation between integrin-bound peptides of 15.6 +/- 1.4 nm for combs with long (22-mer) tethers, compared with 17.5 +/- 1.3 nm for short (10-mer) tethers, on films of comparable peptide density (approximately 2500 peptides/microm2). The results suggest that the added mobility afforded by the more extensible tethers encouraged the formation of focal adhesions by allowing cells to reorganize tethered peptides on the nanometer length scale. In addition, adhesion peptides were selectively coupled to 10-mer or 22-mer PEO tethers within a bimodal brush to investigate stratification effects on cell adhesion. Peptides bound by short tethers in a bed of long unsubstituted chains resulted in surfaces that resisted, rather than promoted, cell adhesion. By contrast, when long peptide tethers were employed with short unsubstituted chains, cell attachment and spreading were comparable to that found on a monomodal brush of long chains at equivalent peptide density.  相似文献   

4.
The mesoporous silica SBA-15 was modified by carboxyl-functionalized ionic liquid (COOH-IL-SBA). The prepared support was used to immobilize porcine pancreatic lipase (PPL) by physical adsorption (PPL-COOH-IL-SBA) and covalent attachment (PPL-CON-IL-SBA). Enzymatic properties of the immobilized PPL were investigated in the triacetin hydrolysis reaction. It was found that carboxyl functionalized ionic liquid modification of the support surface was an effective method to improve the properties of immobilized PPL. Incorporating into the functionalized SBA-15 made PPL more resistant to temperature and pH changes, compared with PPL immobilized on parent SBA-15 (PPL-SBA). Especially, after the covalent attachment to a functionalized support, the stability of PPL was improved obviously, which retained 81.25% and 52.50% of the original activity after incubation for 20 days and four times recycling, respectively, whereas PPL-SBA exhibited only 58.80% and 27.78% of the original activity under the same conditions. In addition, physical and chemical properties of the supports and immobilized PPL were characterized by small-angle X-ray powder diffraction (SAXRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), nitrogen adsorption, nuclear magnetic resonance (NMR) and thermogravimetry (TG). The images and data confirmed chemical modification in SBA-15 and PPL immobilization on the tested support.  相似文献   

5.
Copolymers composed of an Arg-Gly-Asp (RGD) sequence for the adhesion molecule and sugar moieties were synthesized for an insulinoma cell (MIN6) culture. MIN6 cells attached on the poly(N-p-vinylbenzyl-D-maltonamide-co-6-(p-vinylbenzamido)-hexanoic acid-g-GRGDS) (p(VMA-co-VBGRGDS))-coated dishes were in a more aggregated form than other polymer-coated surfaces. P(VMA-co-VBGRGDS) also shows faster proliferation of MIN6 cells (about 18% higher) than with p(VLA-co-VBGRGDS). By interaction between cell and matrix, about 80% greater insulin secretion from MIN6 cells was produced with the p(VMA-co-VBGRGDS), and about 50% greater insulin secretion was produced with the poly(N-p-vinylbenzyl-D-lactonamide-co-6-(p-vinylbenzamido)-hexanoic acid-g-GRGDS) (p(VLA-co-VBGRGDS) as compared with unstimulated cells. Moreover, attachment of MIN6 cells treated with RGD monomer was suppressed approximately 50% for the p(VMA-co-VBGRGDS) surface. This result supported the idea that conjugation of adhesion molecules of RGD peptide in p(VMA-co-VBGRGDS) copolymer specifically interact with integrin families on MIN6 cell membrane.  相似文献   

6.
Li W  Lang L  Niu G  Guo N  Ma Y  Kiesewetter DO  Shen B  Chen X 《Amino acids》2012,43(3):1349-1357
RGD peptides, radiolabeled with (18)F, have been used in the clinic for PET imaging of tumor angiogenesis in cancer patients. RGD peptides are typically labeled using a prosthetic group such as N-succinimidyl 4-[(18)F]-fluorobenzoate ([(18)F]SFB) or 4-nitrophenyl 2-[(18)F]-fluoropropionate ([(18)F]NPFP). However, the complex radiosynthetic procedures have impeded their broad application in clinical studies. We previously radiolabeled proteins and peptides with the prosthetic group, N-succinimidyl 4-[(18)F]-fluoromethylbenzoate ([(18)F]SFMB), which was prepared in a simple one-step procedure. In this study, we labeled a PEGylated cyclic RGD peptide dimer, PEG(3)-E[c(RGDyK)](2) (PRGD2), using [(18)F]SFMB and evaluated for imaging tumor αvβ3 integrin expression with positron emission tomography (PET). [(18)F]SFMB was prepared in one step using [(18)F]fluoride displacement of a nitrobenzenesulfonate leaving group under mild reaction conditions followed by HPLC purification. The (18)F-labeled peptide, [(18)F]FMBPRGD2 was prepared by coupling PRGD2 with [(18)F]SFMB in pH 8.6 borate buffer and purified with HPLC. The direct labeling on BMBPRGD2 was also attempted. A Siemens Inveon PET was used to image the uptake of the [(18)F]FMBPRGD2 into a U87MG xenograft mouse model. [(18)F]FMBPRGD2, was prepared with a 15% overall radiochemical yield (uncorrected) in a total synthesis time of 90?min, which was considerably shorter than the preparation of [(18)F]SFB- and [(18)F]NPFP-labeled RGD peptides. The direct labeling, however, was not successful. High quality microPET images using [(18)F]FMBPRGD2 clearly visualized tumors by 15?min with good target to background ratio. Early tracer accumulation in the bladder suggests fast renal clearance. No obvious bone uptake can be detected even at 4-h time point indicating that fluorine attachment is stable in mice. In conclusion, N-succinimidyl 4-[(18)F]-fluoromethylbenzoate ([(18)F]SFMB) prosthetic group can be a good alternative for labeling RGD peptides to image αvβ3 integrin expression and for labeling other peptides.  相似文献   

7.
This paper presents a comparative study on the antifouling properties of poly(ethylene glycol) (PEG)-based polymer coatings prepared by surface-initiated polymerization (SIP). Three types of poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMEMA) polymer thin films of approximate 100 nm thickness were grafted from a catechol initiator that was immobilized on a Ti substrate. OEGMEMA monomers containing side chains of 4, 9, and 23 EG units were used in surface-initiated atom transfer radical polymerization (SI-ATRP) to form POEGMEMA-4, -9, and -23 polymer brushes. The chemical composition, thickness, and wettability of the polymer brushes were characterized by X-ray photoelectron spectroscopy (XPS), ellipsometry, and static water contact angle measurements, respectively. The dependence of antifouling performance on EG side chain length was systemically tested and compared by 3T3 fibroblast cell adhesion assays. Results from 4-h cell culture experiments revealed the complete absence of cell attachment on all the grafted Ti substrates. Excellent cell fouling resistance continued with little dependence on EG side chain length up to three weeks, after which long-term antifouling performance depended on the EG chain length as the grafted samples reached confluent cell coverage in 7, 10, and 11 weeks for POEGMEMA-4, -9, and -23, respectively.  相似文献   

8.
9.
The graft copolymer, poly(maleic anhydride/styrene)-co-polyethylene was prepared. The copolymer immobilized bovine serum albumin (BSA), but the amount coupled appeared to be effected by the amount of styrene in the graft copolymer, temperature, and pH of the coupling medium. Competition existed between hydrolysis of the grafted anhydride groups and the protein. A graft copolymer with 66% add-on immobilized 4.5 mg/glucose oxidase/g copolymer, 4.6 mg alkaline phosphates/g copolymer and 0.2 mg cell of Bacillus stearothermophilus/g copolymer. A number of copolymers containing poly(maleic anhydride/vinyl acetate)-co-polyethylene were prepared to cover a range of grafting levels. These immobilized larger quantities of BSA, alkaline phosphatase, and cells of B. stearothermophilus than did the styrene graft copolymer. The copolymer was also hydrolyzed to release the hydroxyl group from the poly(vinyl acetate) component of the grafted chains. Using p-benzoquinone as the "activating agent," the copolymer coupled to BSA and to acid phosphatase. Using p-toluene-sulfonyl chloride, the copolymer was very effective in immobilizing trypsin.  相似文献   

10.
Highly selective molecular binding and the subsequent dynamic protein assemblies control the adhesion of mammalian cells. Molecules that inhibit cell adhesion have the therapeutic potential for a wide range of diseases. Here, we report an efficient synthesis (2–4 steps) of a class of squaramide molecules that mimics the natural tripeptide ligand Arg-Gly-Asp (RGD) that mediates mammalian cell adhesion through binding with membrane protein integrin. In solution, this class of squaramides exhibits a higher potency at inhibiting mammalian cell adhesion than RGD tripeptides. When immobilized on a bio-inert background formed by self-assembled monolayers of alkanethiols on gold films, squaramide ligands mediate vastly different intracellular structures than RGD ligands. Immunostaining revealed that the focal adhesions are smaller, but with a larger quantity, for cells adhered on squaramides than that on RGD ligands. Furthermore, the actin filaments are also more fibrous and well distributed for cell adhesion mediated by squaramide than that by RGD ligands. Quantification reveal that squaramide ligands mediate about 1.5 times more total focal adhesion (measured by the summation of the area of all focal adhesions) than that by natural RGD ligands. This result suggests that cell adhesion inhibitors, while blocking the attachment of cells to surfaces, may induce more focal adhesion proteins. Finally, this work demonstrates that immobilizing new ligands on bioinert surfaces provide a powerful tool to study mammalian cell adhesion.  相似文献   

11.
A synthetic nonapeptide (Tyr-Ala-Val-Thr-Gly-Arg-Gly-Asp-Ser), which includes the adhesive Arg-Gly-Asp (RGD) sequence, was covalently immobilized on chemically well-defined polyacrylamide gel surfaces utilizing N-succinimidyl active esters. The amount of peptide immobilized varied linearly with the concentration added to the gels. Immobilization was approximately 80% efficient (based on peptide added), resulting in up to 17.5 nmol peptide/cm2 gel surface. Balb/c 3T3 mouse fibroblast cells adhered readily to peptide-derivatized surfaces, even in the absence of serum. Furthermore, surfaces derivatized with 2 nmol peptide/cm2 gel supported long-term fibroblast growth at a rate and to an extent comparable to that on tissue culture plastic. Surfaces derivatized with a control nonapeptide having no RGD sequence were nonsupportive of cell attachment or growth. The immobilization technology used to derivatize the gel surfaces with adhesive nonapeptide can be modified to allow coderivatization with proteins, glycoproteins, glycosides, or other amine-containing compounds to test their effects on long-term cell behaviors.  相似文献   

12.
Zhang P  Wu H  Wu H  Lù Z  Deng C  Hong Z  Jing X  Chen X 《Biomacromolecules》2011,12(7):2667-2680
Various surface modification methods of RGD (Arg-Gly-Asp) peptides on biomaterials have been developed to improve cell adhesion. This study aimed to examine a RGD-conjugated copolymer RGD/MPEG-PLA-PBLG (RGD-copolymer) for its ability to promote bone regeneration by mixing it with the composite of poly(lactide-co-glycotide) (PLGA) and hydroxyapatite nanoparticles surface-grafted with poly(L-lactide) (g-HAP). The porous scaffolds were prepared using solvent casting/particulate leaching method and grafted to repair the rabbit radius defects after seeding with autologous bone marrow mesenchymal cells (MSCs) of rabbits. After incorporation of RGD-copolymer, there were no significant influences on scaffold's porosity and pore size. Nitrogen of RGD peptide, and calcium and phosphor of g-HAP could be exposed on the surface of the scaffold simultaneously. Although the cell viability of its leaching liquid was 92% that was lower than g-HAP/PLGA, its cell adhesion and growth of 3T3 and osteoblasts were promoted significantly. The greatest increment in cell adhesion ratios (131.2-157.1% higher than g-HAP/PLGA) was observed when its contents were 0.1-1 wt % but only at 0.5 h after cell seeding. All the defects repaired with the implants were bridged after 24 weeks postsurgery, but the RGD-copolymer contained composite had larger new bone formation and better fusion interface. The composites containing RGD-copolymer enhanced bone ingrowth but presented more woven bones than others. The combined application of RGD-copolymer and bone morphological protein 2 (BMP-2) exhibited the best bone healing quality and was recommended as an optimal strategy for the use of RGD peptides.  相似文献   

13.
Xie Z  Hu X  Chen X  Sun J  Shi Q  Jing X 《Biomacromolecules》2008,9(1):376-380
Novel biodegradable poly(carbonate ester)s with photolabile protecting groups were synthesized by ring-opening copolymerization of L-lactide (LA) with 5-methyl-5-(2-nitro-benzoxycarbonyl)-1,3-dioxan-2-one (MNC) with diethyl zinc (Et2Zn) as catalyst. The poly(L-lactide-co-5-methyl-5-carboxyl-1,3-dioxan-2-one) (P(LA-co-MCC)) was obtained by UV irradiation of poly(L-lactide acid-co-5-methyl-5-(2-nitro-benzoxycarbonyl)-1,3-dioxan-2-one) (P(LA-co-MNC)) to remove the protective 2-nitrobenzyl group. The free carboxyl groups on the copolymers P(LA-co-MCC) were reacted with paclitaxel, a common antitumor drug. Gel permeation chromatography and NMR studies confirmed the copolymer structures and successful attachment of paclitaxel to the copolymer.  相似文献   

14.
Poly[(R)-3-hydroxybutyric acid] and its copolymers were prepared by biosynthetic and chemosynthetic methods. The films of polyesters were prepared by both the solution-cast and melt-crystallized techniques. The enzymatic degradation of polyester films was carried out at 37 degrees C in an aqueous solution (pH 7.4) of PHB depolymerase from Alcaligenes faecalis. The rate of enzymatic erosion on the solution-cast films increased markedly with an increase in the fraction of second monomer units up to 10-20 mol% to reach a maximum value followed by a decrease in the erosion rate. Analysis of the water-soluble products liberated during the enzymatic degradation of polyester films showed the formation of a mixture of monomers and oligomers of (R)-3HB and hydroxyalkanoic acids units, suggesting that the active site of PHB depolymerase recognizes at least three monomeric units as substrate for the hydrolysis of ester bonds in a polymer chain. The rate of enzymatic erosion of melt-crystallized polyester films decreased with an increase in crystallinity. PHB depolymerase predominantly hydrolyzed the polymer chains in the amorphous phase and subsequently eroded crystalline phase. In addition, the enzymatic degradation of crystalline phase by PHB depolymerase progressed from the edges of crystalline lamellar stacks. The enzymatic erosion rate of crystalline phase in polyester films decreased with an increase in the lamellar thickness.  相似文献   

15.
Four hexaazacyclophanes, 16a-d, incorporating two pyridine units and a (pyridin-2-yl)methyl or (quinolin-2-yl)methyl pendant group at one of the ring N-atoms have been prepared. The key step of the synthesis is an intermolecular cyclization of N,N-bis{[6-(tosyloxymethyl)pyridin-2-yl]methyl}-2-nitrobenzenesulfonamide (7) with either tert-butyl bis{2-[(2-nitrophenylsulfonyl)amino]ethyl}carbamate (2a) or tert-butyl bis{3-[(2-nitrophenylsulfonyl)amino]propyl}carbamate (2b) in the presence of anhydrous Cs(2)CO(3). Removal of the acid-labile tert-butoxycarbonyl protection then allows attachment of the pendant group by reductive alkylation to the exposed secondary amino group, and deprotection of the remaining aliphatic ring N-atoms completes the synthesis. The ability of the cyclophanes and their dinuclear Cu(2+) and Zn(2+) complexes to cleave the mRNA cap structure, m(7)G(5')pppG(5') (1), has been studied.  相似文献   

16.
Some RGD-type integrins rely on a synergistic site in addition to the canonical RGD site for ligand binding. However, the precise involvement of each of these recognition sites during cell adhesion is still unclear. Here we review recent investigations on integrin alphaIIbbeta3-mediated cell adhesion to immobilized fibrinogen providing evidence that the fibrinogen synergy gamma(400-411) sequence by itself promotes cell attachment by initiating alphaIIbbeta3 clustering and recruitment of intracellular proteins to focal complexes, while the RGD motif subsequently acts as a molecular switch on the beta3 subunit to induce a conformational change necessary for RhoA activation and full cell spreading.  相似文献   

17.
Phase-separated biodegradable polymer blends were prepared from poly(epsilon-caprolactone) (PCL) and poly(L-lactide) (PLLA), and Rhizopus arrhizus lipase-catalyzed hydrolysis and phase structure of the blend films were investigated. Gravimetry revealed that the lipase-catalyzed hydrolysis of PCL in PCL- and PLLA-rich phases is disturbed by the presence of PLLA. Polarimetry confirmed the occurrence of a predominant hydrolysis of PCL and subsequent removal of the hydrolyzed water-soluble PCL oligomers in the blend films. Gravimetry and gel permeation chromatography of the non-blended PLLA film indicated that R. arrhizus lipase has no catalytic effect on the hydrolysis of PLLA. The phase structure of the blend films could be visualized by selective enzymatic removal of one component and subsequent scanning electron microscopic observation.  相似文献   

18.
Alpha-amylase was covalently immobilized onto maleic anhydride copolymer films preserving activity. The initial activity of the immobilized layers strongly depended on the immobilization solution, and on the physicochemical properties of the copolymer film. Higher enzyme loading (quantified by amino acid analysis using HPLC) and activity (measured by following starch hydrolysis) were attainable onto hydrophilic, highly swelling 3-D poly(ethylene-alt-maleic anhydride) (PEMA) copolymer films, while immobilization onto hydrophobic poly(octadecene-alt-maleic anhydride) (POMA) copolymer films resulted in low content enzyme layers and lower activity. No significant activity was lost upon dehydration/re-hydration or storage of enzyme containing PEMA copolymer layers in deionised water for up to 48 h. In contrast, α-amylase decorated POMA films suffered a significant activity loss under those conditions. The distinct behaviours may be attributed to the different intrinsic physicochemical properties of the copolymer films. The compact, hydrophobic POMA films possibly favours hydrophobic interactions between the hydrophobic moieties of the protein and the surface, which may result in conformational changes, and consequent loss of activity. Surprisingly, residual activity was found after harsh treatments of active α-amylase PEMA based layers revealing that immobilization onto the hydrophilic polymer films improved the stability of the enzyme.  相似文献   

19.
Copolymers composed of an Arg-Gly-Asp (RGD) sequence for the adhesion molecule and sugar moieties were synthesized for an insulinoma cell (MIN6) culture. MIN6 cells attached on the poly(N-p-vinylbenzyl-D-maltonamide-co-6-(p-vinylbenzamido)-hexanoic acid-g-GRGDS) (p(VMA-co-VBGRGDS))-coated dishes were in a more aggregated form than other polymer-coated surfaces. P(VMA-co-VBGRGDS) also shows faster proliferation of MIN6 cells (about 18% higher) than with p(VLA-co-VBGRGDS). By interaction between cell and matrix, about 80% greater insulin secretion from MIN6 cells was produced with the p(VMA-co-VBGRGDS), and about 50% greater insulin secretion was produced with the poly(N-p-vinylbenzyl-D-lactonamide-co-6-(p-vinylbenzamido)-hexanoic acid-g-GRGDS) (p(VLA-co-VBGRGDS) as compared with unstimulated cells. Moreover, attachment of MIN6 cells treated with RGD monomer was suppressed approximately 50% for the p(VMA-co-VBGRGDS) surface. This result supported the idea that conjugation of adhesion molecules of RGD peptide in p(VMA-co-VBGRGDS) copolymer specifically interact with integrin families on MIN6 cell membrane.  相似文献   

20.
Tyrosine-functionalized polyphosphazenes were synthesized, and their hydrolytic stability, pH-sensitive behavior, and hydrogel-forming capabilities were investigated. The physical and chemical properties of the polymers varied with the type of linkage between the tyrosine unit and phosphazene backbone. Poly[(ethyl glycinat-N-yl)(ethyl tyrosinat-N-yl)phophazenes] (linkage via the amino group of tyrosine) were found to be hydrolytically erodible. The rate of hydrolysis was dependent on the ratio of the two side groups, the slowest rate being associated with the highest concentration of tyrosine. The hydrolysis products were identified as phosphates, tyrosine, glycine, ammonia, and ethanol derived from the ester group. The hydrolytically stable phenolic-linked tyrosine derivatives were prepared from N-t-BOC-L-tyrosine methyl ester and alkoxy-based cosubstituents. Polyphosphazenes with both propoxy and phenolic-linked tyrosine side groups showed a pH-sensitive solubility behavior, which was dependent on the ratio and nature of the two side groups. The polymer was soluble in aqueous media below pH 3 and above pH 4. From pH 3-4, the polymer was insoluble. Replacement of propoxy by trifluoroethoxy units yielded a polymer that was insoluble in aqueous media at all pH values. Replacement of propoxy by methoxyethoxyethoxy groups gave a polymer that was soluble at all pH values. Exposure of both the propoxy and methoxyethoxyethoxy polymers to calcium ions in aqueous media caused gel formation due to ionic cross-linking through the carboxylate groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号