首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present report, we studied the effect of the diglyceride (DG) lipase inhibitor, RHC 80267 on basal and thyrotropin (TSH) - stimulated prostaglandin (PG) release from rat thyroid lobes Further, we tested the effect of RHC 80267 on phosphatidylinositol phospholipase C (PIPLC), DG lipase, and arachidonate cyclo-oxygenase acdtivities in rat thyroid cytosol, plasma membrane, and whole homogenate preparations, r espectively. Whereas RHC 80267 inhibited DG lipase activity in a dose - re;ated manner from 0.5 – 10 μM (17 – 80% inhibition), it failed either PIPLC or arachidonate cyclo-oxygenase activities by more than 9% when tested at 5 and 10 μM (n = 3). RHC 80267 reduced TSH-stimulated 6-keto-PGF and PGE relase by 100 ± 14% and 57 ± 12%, respectively 9x + S.E.; p < 0.01 for both; n = 10 – 12; the diglyceride lipase inhibitor did not reduce basal release of either PG. These data provide additional evidence which implicate a PIPLC - DG lipase pathway in TSH-stimulated PG synthesis in thyroid.  相似文献   

2.
Glycoprotein (GP) VI is a critical platelet collagen receptor. Phosphoinositide 3-kinase (PI3K) plays an important role in GPVI-mediated platelet activation, yet the major PI3K isoforms involved in this process have not been identified. In addition, stimulation of GPVI results in the activation of Akt, a downstream effector of PI3K. Thus, we investigated the contribution of PI3K isoforms to GPVI-mediated platelet activation and Akt activation. A protein kinase C inhibitor GF 109203X or a P2Y12 receptor antagonist AR-C69931MX partly reduced GPVI-induced Akt phosphorylation. Platelets from mice dosed with clopidogrel also showed partial Akt phosphorylation, indicating that GPVI-mediated Akt phosphorylation is regulated by both secretion-dependent and -independent pathways. In addition, GPVI-induced Akt phosphorylation in the presence of ADP antagonists was completely inhibited by PI3K inhibitor LY294002 and PI3Kβ inhibitor TGX-221 indicating an essential role of PI3Kβ in Akt activation directly downstream of GPVI. Moreover, GPVI-mediated platelet aggregation, secretion, and intracellular Ca2+ mobilization were significantly inhibited by TGX-221, and less strongly inhibited by PI3Kα inhibitor PIK75, but were not affected by PI3Kγ inhibitor AS252424 and PI3Kδ inhibitor IC87114. Consistently, GPVI-induced integrin αIIbβ3 activation of PI3Kγ−/− and PI3Kδ−/− platelets also showed no significant difference compared with wild-type platelets. These results demonstrate that GPVI-induced Akt activation in platelets is dependent in part on Gi stimulation through P2Y12 receptor activation by secreted ADP. In addition, a significant portion of GPVI-dependent, ADP-independent Akt activation also exists, and PI3Kβ plays an essential role in GPVI-mediated platelet aggregation and Akt activation.  相似文献   

3.
4.
Eukaryotic cells store oils in the chemical form of triacylglycerols in distinct organelles, often called lipid droplets. These dynamic storage compartments have been intensely studied in the context of human health and also in plants as a source of vegetable oils for human consumption and for chemical or biofuel feedstocks. Many microalgae accumulate oils, particularly under conditions limiting to growth, and thus have gained renewed attention as a potentially sustainable feedstock for biofuel production. However, little is currently known at the cellular or molecular levels with regard to oil accumulation in microalgae, and the structural proteins and enzymes involved in the biogenesis, maintenance, and degradation of algal oil storage compartments are not well studied. Focusing on the model green alga Chlamydomonas reinhardtii, the accumulation of triacylglycerols and the formation of lipid droplets during nitrogen deprivation were investigated. Mass spectrometry identified 259 proteins in a lipid droplet-enriched fraction, among them a major protein, tentatively designated major lipid droplet protein (MLDP). This protein is specific to the green algal lineage of photosynthetic organisms. Repression of MLDP gene expression using an RNA interference approach led to increased lipid droplet size, but no change in triacylglycerol content or metabolism was observed.Triacylglycerols (TAGs) are stored in lipid droplets which are subcellular structures in specialized cells ubiquitous to eukaryotes but have more recently also been identified in some prokaryotes (26). In plants and animals, lipid droplets are surrounded by cytosol and are believed to bud off the endoplasmic reticulum (ER) (15, 26). While traditionally considered merely as storage compartments, recent studies suggest that lipid droplets in animals play important additional roles in lipid homeostasis and protein storage (8). In oilseed plants, TAG accumulated in seeds is used as a reservoir of energy and membrane lipid building blocks to support rapid growth after germination (15). Many green algae are capable of accumulating large amounts of TAG in lipid droplets, particularly as a result of abiotic stresses, such as nutrient deprivation or high-light exposure. Although TAG metabolism in algae has not yet been extensively studied at the biochemical or molecular level, it is proposed that TAG turnover contributes primarily to the assembly of membrane lipids to facilitate rapid cell division after the cessation of nutrient limitation (14, 38).The general structure of lipid droplets is conserved in different species with a globular neutral lipid core enclosed by a membrane lipid monolayer (26). In addition, specific proteins are associated with lipid droplets and play important roles in lipid droplet structure and function. A number of recent proteomic studies of lipid droplets from different animals and tissues (8, 40), Saccharomyces cerevisiae (4), and plants (16, 17) have revealed that the lipid droplet-associated proteins of these organisms are quite distinct. For example, the abundant lipid droplet proteins in animals—the so-called “PAT” family of proteins comprised of perilipin, adipose differentiation-related protein (ADRP), and TIP47 (21)—have no apparent orthologs in the desiccating seed plant Arabidopsis thaliana; conversely, the oleosins which coat the oil bodies of Arabidopsis and many other seed plants are not found in animals (26). Reverse genetic studies of these proteins have helped to elucidate the role of A. thaliana oleosins in regulating lipid droplet size and preventing droplet fusion (35, 36) or that of mouse adipocyte perilipin in regulating lipolytic activity at the lipid droplet surface (37). Moreover, recent genomewide RNAi screens in Drosophila cells implicated 1.5 to 3.0% of all genes as directly or indirectly involved in lipid droplet formation and/or regulation and resulted in the identification of a new role for the Arf1-COPI vesicular transport machinery in regulating droplet morphology and lipid utilization (7, 12). In contrast, few molecular details are known about algal lipid droplet biogenesis although many TAG-rich algal species have been described (14).Our efforts to identify proteins related to the PAT protein family or oleosins in the Chlamydomonas reinhardtii genome (24) or genomes of other green algal and diatom species, including Thalassiosira pseudonana, Volvox carteri, and Chlorella sp. NC64A, revealed no putative algal orthologs. In order to identify both potentially novel and conserved proteins which function in algal lipid droplet biogenesis, we studied the accumulation of TAG in lipid droplets of nitrogen-limited C. reinhardtii cells and identified candidate lipid droplet-associated proteins by mass spectrometry.  相似文献   

5.
6.

Background

Tuberous sclerosis complex (TSC), a tumor syndrome caused by mutations in TSC1 or TSC2 genes, is characterized by the development of hamartomas. We previously isolated, from an angiomyolipoma of a TSC2 patient, a homogenous population of smooth muscle-like cells (TSC2−/− ASM cells) that have a mutation in the TSC2 gene as well as TSC2 loss of heterozygosity (LOH) and consequently, do not produce the TSC2 gene product, tuberin. TSC2−/− ASM cell proliferation is EGF-dependent.

Methods and Findings

Effects of EGF on proliferation of TSC2−/− ASM cells and TSC2−/− ASM cells transfected with TSC2 gene were determined. In contrast to TSC2−/− ASM cells, growth of TSC2-transfected cells was not dependent on EGF. Moreover, phosphorylation of Akt, PTEN, Erk and S6 was significantly decreased. EGF is a proliferative factor of TSC2−/− ASM cells. Exposure of TSC2−/− ASM cells to anti-EGFR antibodies significantly inhibited their proliferation, reverted reactivity to HMB45 antibody, a marker of TSC2−/− cell phenotype, and inhibited constitutive phosphorylation of S6 and ERK. Exposure of TSC2−/− ASM cells to rapamycin reduced the proliferation rate, but only when added at plating time. Although rapamycin efficiently inhibited S6 phosphorylation, it was less efficient than anti-EGFR antibody in reverting HMB45 reactivity and blocking ERK phosphorylation. In TSC2−/− ASM cells specific PI3K inhibitors (e.g. LY294002, wortmannin) and Akt1 siRNA had little effect on S6 and ERK phosphorylation. Following TSC2-gene transfection, Akt inhibitor sensitivity was observed.

Conclusion

Our results show that an EGF independent pathway is more important than that involving IGF-I for growth and survival of TSC−/− ASM cells, and such EGF-dependency is the result of the lack of tuberin.  相似文献   

7.
The perilipins are the most abundant proteins at the surfaces of lipid droplets in adipocytes and are also found in steroidogenic cells. To investigate perilipin function, perilipin A, the predominant isoform, was ectopically expressed in fibroblastic 3T3-L1 pre-adipocytes that normally lack the perilipins. In control cells, fluorescent staining of neutral lipids with Bodipy 493/503 showed a few minute and widely dispersed lipid droplets, while in cells stably expressing perilipin A, the lipid droplets were more numerous and tightly clustered in one or two regions of the cytoplasm. Immunofluorescence microscopy revealed that the ectopic perilipin A localized to the surfaces of the tiny clustered lipid droplets; subcellular fractionation of the cells using sucrose gradients confirmed that the perilipin A localized exclusively to lipid droplets. Cells expressing perilipin A stored 6-30-fold more triacylglycerol than control cells due to reduced lipolysis of triacylglycerol stores. The lipolysis of stored triacylglycerol was 5 times slower in lipid-loaded cells expressing perilipin A than in lipid-loaded control cells, when triacylglycerol synthesis was blocked with 6 microm triacsin C. This stabilization of triacylglycerol was not due to the suppression of triacylglycerol lipase activity by the expression of perilipin A. We conclude that perilipin A increases the triacylglycerol content of cells by forming a barrier that reduces the access of soluble lipases to stored lipids, thus inhibiting triacylglycerol hydrolysis. These studies suggest that perilipin A plays a major role in the regulation of triacylglycerol storage and lipolysis in adipocytes.  相似文献   

8.
9.

Background

The activation of complement during platelet activation is incompletely understood. Objectives: We sought to explore the formation of C5b-9 and anaphylatoxins binding to collagen-activated platelets.

Methods

C5b-9, anaphylatoxins C3a, C4a and C5a, and anaphylatoxin receptors C3aR1 and C5aR were measured by flow cytometry and/or confocal microscopy. Platelet microparticles were quantified by flow cytometry, and their C5b-9 content was determined by western blot analyses. In all experiments, sodium citrate was used for blood anticoagulation.

Results

C5b-9 rapidly formed on the platelet surface following activation with collagen, TRAP, ADP or A23187, but was surprisingly restricted to a subset of platelets (1 to 15%) independently of P-selectin or phosphatidylserine exposure. Following collagen activation, C5b-9-positive platelets in thrombi were found associated with collagen fibres. C5b-9 formation was obliterated by Mg2+-EGTA and significantly reduced by the thrombin inhibitor hirudin (−37%, p<0.05), but was unaffected by chondroitinase, compstatin, SCH79797 (PAR-1 inhibitor), or in the PRP of a MBL-deficient donor. Compstatin and Mg2+-EGTA, but not hirudin, SCH79797 or chondroitinase, inhibited the formation of collagen-induced microparticles (−71% and −44%, respectively, p<0.04). These microparticles contained greater amounts of C5b-9 compared with the other agonists. Platelet activation by collagen or convulxin resulted in the strong binding of anaphylatoxins and the exposure of receptors C3aR1 and C5aR (CD88) on their surface.

Conclusions

C5b-9 formation on collagen-activated platelets is i) partially controlled by thrombin, ii) restricted to a subset of platelets, and iii) can occur without P-selectin expression or phosphatidylserine exposure. Activated platelets bind anaphylatoxins on their surface and express C3a and C5a receptors, which may contribute to the localization of inflammatory processes during thrombosis.  相似文献   

10.
To understand the mechanism for ion transport through the sodium/bicarbonate transporter SLC4A4 (NBCe1), we examined amino acid residues, within transmembrane domains, that are conserved among electrogenic Na/HCO3 transporters but are substituted with residues at the corresponding site of all electroneutral Na/HCO3 transporters. Point mutants were constructed and expressed in Xenopus oocytes to assess function using two-electrode voltage clamp. Among the mutants, D555E (charge-conserved substitution of the aspartate at position 555 with a glutamate) produced decreasing HCO3 currents at more positive membrane voltages. Immunohistochemistry showed D555E protein expression in oocyte membranes. D555E induced Na/HCO3-dependent pH recovery from a CO2-induced acidification. Current-voltage relationships revealed that D555E produced an outwardly rectifying current in the nominally CO2/HCO3-free solution that was abolished by Cl removal from the bath. In the presence of CO2/HCO3, however, the outward current produced by D555E decreased only slightly after Cl removal. Starting from a Cl-free condition, D555E produced dose-dependent outward currents in response to a series of chloride additions. The D555E-mediated chloride current decreased by 70% in the presence of CO2/HCO3. The substitution of Asp555 with an asparagine also produced a Cl current. Anion selectivity experiments revealed that D555E was broadly permissive to other anions including NO3. Fluorescence measurements of chloride transport were done with human embryonic kidney HEK 293 cells expressing NBCe1 and D555E. A marked increase in chloride transport was detected in cells expressing D555E. We conclude that Asp555 plays a role in HCO3 selectivity.The electrogenic Na/HCO3 cotransporter NBCe1 (SLC4A4) is one of the SLC4A gene family members transporting HCO3 across the plasma membrane (13). NBCe1 plays a role in transepithelial HCO3 movement and pHi regulation in many tissues (46). NBCe1 is responsible for HCO3 reabsorption in the proximal tubules of the kidney (7). The proximal tubule cells reclaim HCO3 from the lumen through a series of reactions involving titration of HCO3 by H+ secretion via the apical Na/H exchanger, production of CO2, and regeneration of HCO3 and H+ in the tubule cells. HCO3 then moves to the interstitium via the basolateral NBCe1. The essential feature driving this basolateral Na+/HCO3 exit is the stoichiometry of 1:3 Na+:HCO3, which makes the equilibrium potential for NBCe1 more positive than the resting membrane potential of the proximal tubule cells (8). The stoichiometry of 1Na+:1HCO3 or 1Na+:2HCO3 causes both ions to move into cells in other tissues such as pancreas, brain, and cardiovascular tissues (9, 10).Despite the importance of NBCe1 for basolateral HCO3 reabsorption in the proximal tubules, the mechanism of electrogenic Na/HCO3 transport via the transporter is not well understood. Ion movement depends on loading ions at their translocation or binding sites that likely reside within the membrane field at some distance from the bath solution (11). This implies that the transmembrane domains (TMs)2 of NBCe1 and amino acid residues within TMs play critical roles in ion transport.Sequence analysis of different SLC4A proteins shows similar hydropathy plots, predicting that these proteins share structural elements of transport function (12). Such similarities have facilitated structure/function studies to define molecular domains or motifs responsible for conferring Na/HCO3 transport of NBCe1. Abuladze et al. (13) performed a large scale mutagenesis on acidic and basic amino acids in non-TMs and found many residues affecting Na+-dependent base flux. McAlear et al. (14) identified amino acids in TM8 involving ion translocation. By a systematic approach of chimeric transporters between NBCe1 and the electroneutral Na/HCO3 cotransporter NBCn1 (SLC4A7) (15), we and our colleagues (16) demonstrated that electrogenic Na/HCO3 transport of NBCe1 requires interactions between the regions TM1–5 and TM6–13 of the protein. Zhu et al. (17) recently proposed TM1 as a domain lining the ion translocation pathway. On the other hand, Chang et al. (18) reported that the cytoplasmic N-terminal domain might contribute to HCO3 permeation.In the present study, we searched amino acid residues that are highly conserved among electrogenic Na/HCO3 transporters but not among electroneutral Na/HCO3 transporters and examined their role in electrogenic Na/HCO3 transport. Nine candidate residues in human renal NBCe1-A (5, 19) were selected and mutated by replacement with the amino acids at the corresponding sites of NBCn1. Mutant transporters were expressed in Xenopus oocytes and assessed via two-electrode voltage clamp. Our data show that Asp555 of NBCe1 plays an important role in HCO3 selectivity.  相似文献   

11.
Mutations in BSCL2 underlie human congenital generalized lipodystrophy type 2 disease. We previously reported that Bscl2 −/− mice develop lipodystrophy of white adipose tissue (WAT) due to unbridled lipolysis. The residual epididymal WAT (EWAT) displays a browning phenotype with much smaller lipid droplets (LD) and higher expression of brown adipose tissue marker proteins. Here we used targeted lipidomics and gene expression profiling to analyze lipid profiles as well as genes involved in lipid metabolism in WAT of wild-type and Bscl2−/− mice. Analysis of total saponified fatty acids revealed that the residual EWAT of Bscl2−/− mice contained a much higher proportion of oleic18:1n9 acid concomitant with a lower proportion of palmitic16:0 acid, as well as increased n3- polyunsaturated fatty acids (PUFA) remodeling. The acyl chains in major species of triacylglyceride (TG) and diacylglyceride (DG) in the residual EWAT of Bscl2−/− mice were also enriched with dietary fatty acids. These changes could be reflected by upregulation of several fatty acid elongases and desaturases. Meanwhile, Bscl2−/− adipocytes from EWAT had increased gene expression in lipid uptake and TG synthesis but not de novo lipogenesis. Both mitochondria and peroxisomal β-oxidation genes were also markedly increased in Bscl2−/− adipocytes, highlighting that these machineries were accelerated to shunt the lipolysis liberated fatty acids through uncoupling to dissipate energy. The residual subcutaneous white adipose tissue (ScWAT) was not browning but displays similar changes in lipid metabolism. Overall, our data emphasize that, other than being essential for adipocyte differentiation, Bscl2 is also important in fatty acid remodeling and energy homeostasis.  相似文献   

12.
As a stable analog for ADP-sensitive phosphorylated intermediate of sarcoplasmic reticulum Ca2+-ATPase E1PCa2·Mg, a complex of E1Ca2·BeFx, was successfully developed by addition of beryllium fluoride and Mg2+ to the Ca2+-bound state, E1Ca2. In E1Ca2·BeFx, most probably E1Ca2·BeF3, two Ca2+ are occluded at high affinity transport sites, its formation required Mg2+ binding at the catalytic site, and ADP decomposed it to E1Ca2, as in E1PCa2·Mg. Organization of cytoplasmic domains in E1Ca2·BeFx was revealed to be intermediate between those in E1Ca2·AlF4 ADP (transition state of E1PCa2 formation) and E2·BeF3·(ADP-insensitive phosphorylated intermediate E2P·Mg). Trinitrophenyl-AMP (TNP-AMP) formed a very fluorescent (superfluorescent) complex with E1Ca2·BeFx in contrast to no superfluorescence of TNP-AMP bound to E1Ca2·AlFx. E1Ca2·BeFx with bound TNP-AMP slowly decayed to E1Ca2, being distinct from the superfluorescent complex of TNP-AMP with E2·BeF3, which was stable. Tryptophan fluorescence revealed that the transmembrane structure of E1Ca2·BeFx mimics E1PCa2·Mg, and between those of E1Ca2·AlF4·ADP and E2·BeF3. E1Ca2·BeFx at low 50–100 μm Ca2+ was converted slowly to E2·BeF3 releasing Ca2+, mimicking E1PCa2·Mg → E2P·Mg + 2Ca2+. Ca2+ replacement of Mg2+ at the catalytic site at approximately millimolar high Ca2+ decomposed E1Ca2·BeFx to E1Ca2. Notably, E1Ca2·BeFx was perfectly stabilized for at least 12 days by 0.7 mm lumenal Ca2+ with 15 mm Mg2+. Also, stable E1Ca2·BeFx was produced from E2·BeF3 at 0.7 mm lumenal Ca2+ by binding two Ca2+ to lumenally oriented low affinity transport sites, as mimicking the reverse conversion E2P· Mg + 2Ca2+E1PCa2·Mg.Sarcoplasmic reticulum Ca2+-ATPase (SERCA1a),2 a representative member of the P-type ion transporting ATPases, catalyze Ca2+ transport coupled with ATP hydrolysis (Fig. 1) (19). The enzyme forms phosphorylated intermediates from ATP or Pi in the presence of Mg2+ (1013). In the transport cycle, the enzyme is first activated by cooperative binding of two Ca2+ ions at high affinity transport sites (E2 to E1Ca2, steps 1–2) (14) and autophosphorylated at Asp351 with MgATP to form the ADP-sensitive phosphoenzyme (E1P, step 3), which reacts with ADP to regenerate ATP in the reverse reaction. Upon this E1P formation, the two bound Ca2+ are occluded in the transport sites (E1PCa2). Subsequent isomeric transition to the ADP-insensitive form (E2PCa2), i.e. loss of ADP sensitivity at the catalytic site, results in rearrangement of the Ca2+ binding sites to deocclude Ca2+, reduce the affinity, and open the lumenal gate, thus releasing Ca2+ into the lumen (E2P, steps 4–5). Finally Asp351-acylphosphate in E2P is hydrolyzed to form the Ca2+-unbound inactive E2 state (steps 6 and 7). Mg2+ bound at the catalytic site is required as a physiological catalytic cofactor in phosphorylation and dephosphorylation and thus for the transport cycle. The cycle is totally reversible, e.g. E2P can be formed from Pi in the presence of Mg2+ and absence of Ca2+, and subsequent Ca2+ binding at lumenally oriented low affinity transport sites of E2P reverses the Ca2+-releasing step and produces E1PCa2, which is then decomposed to E1Ca2 by ADP.Open in a separate windowFIGURE 1.Ca2+ transport cycle of Ca2+-ATPase.Various intermediate structural states in the transport cycle were fixed as their structural analogs produced by appropriate ligands such as AMP-PCP (non-hydrolyzable ATP analog) or metal fluoride compounds (phosphate analogs), and their crystal structures were solved at the atomic level (1522). The three cytoplasmic domains, N, P, and A, largely move and change their organization state during the transport cycle, and the changes are coupled with changes in the transport sites. Most remarkably, in the change from E1Ca2·AlF4·ADP (the transition state for E1PCa2 formation, E1PCa2·ADP·Mg) to E2·BeF3 (the ground state E2P·Mg) (2325), the A domain largely rotates by more than 90° approximately parallel to the membrane plane and associates with the P domain, thereby destroying the Ca2+ binding sites, and opening the lumenal gate, thus releasing Ca2+ into the lumen (see Fig. 2). E1PCa2·Ca·AMP-PN formed by CaAMP-PNP without Mg2+ is nearly the same as E1Ca2·AlF4·ADP and E1Ca2·CaAMP-PCP in their crystal structures (17, 18, 22).Open in a separate windowFIGURE 2.Structure of SERCA1a and its change during processing of phosphorylated intermediate. E1Ca2·AlF4·ADP (the transition state analog for phosphorylation E1PCa2·ADP·Mg) and E2·BeF3 (the ground state E2P analog (25)) were obtained from the Protein Data Bank (PDB accession code 1T5T (17) and 2ZBE (21), respectively). Cytoplasmic domains N (nucleotide binding), P (phosphorylation), and A (actuator), and 10 transmembrane helices (M1–M10) are indicated. The arrows on the domains, M1′ and M2 (Tyr122) in E1Ca2·AlF4·ADP, indicate their approximate motions predicted for E1PCa2·ADP·MgE2P·Mg. The phosphorylation site Asp351, TGES184 of the A domain, Arg198 (tryptic T2 site) on the Val200 loop (DPR198AV200NQD) of the A domain, and Thr242 (proteinase K site) on the A/M3-linker are shown. Seven hydrophobic residues gather in the E2P state to form the Tyr122-hydrophobic cluster (Y122-HC); Tyr122/Leu119 on the top part of M2, Ile179/Leu180/Ile232 of the A domain, and Val705/Val726 of the P domain. The overall structure of E1Ca2·AlF4·ADP is virtually the same as those of E1Ca2·CaAMP-PCP and E1PCa2·Ca·AMP-PN (17, 18, 22).Despite these atomic structures, yet unsolved is the structure of E1PCa2·Mg, the genuine physiological intermediate E1PCa2 with bound Mg2+ at the catalytic site without the nucleotide. Its stable structural analog has yet to be developed. E1PCa2·Mg is the major intermediate accumulating almost exclusively at steady state under physiological conditions. Its rate-limiting isomerization results in Ca2+ deocclusion/release producing E2P·Mg as a key event for Ca2+ transport. In E1Ca2·CaAMP-PCP, E1Ca2·AlF4·ADP, and E1PCa2·Ca·AMP-PN, the N and P domains are cross-linked and strongly stabilized by the bound nucleotide and/or Ca2+ at the catalytic site, thus they are crystallized (17, 18, 22). Kinetically, E1PCa2·Ca formed with CaATP is markedly stabilized due to Ca2+ binding at the catalytic Mg2+ site, and its isomerization to E2P is strongly retarded in contrast to E1PCa2·Mg (26, 27). Thus, the bound Ca2+ at the catalytic Mg2+ site likely produces a significantly different structural state from that with bound Mg2+.Therefore, it is now essential to develop a genuine E1PCa2·Mg analog without bound nucleotide and thereby gain further insight into the structural mechanism in the Ca2+ transport process. It is also crucial to further clarify the structural importance of Mg2+ as the physiological catalytic cation. In this study, we successfully developed the complex E1Ca2·BeFx, most probably E1Ca2·BeF3, as the E1PCa2·Mg analog by adding beryllium fluoride (BeFx) to the E1Ca2 state without any nucleotides. For its formation, Mg2+ binding at the catalytic site was required and Ca2+ substitution for Mg2+ was absolutely unfavorable, revealing a likely structural reason for its preference as the physiological cofactor. In E1Ca2·BeF3, two Ca2+ ions bound at the high affinity transport sites are occluded. It was also produced from E2·BeF3 by lumenal Ca2+ binding at the lumenally oriented low affinity transport sites, mimicking E2P·Mg + 2Ca2+E1PCa2·Mg. All properties of the newly developed E1Ca2·BeF3 fulfilled the requirements as the E1PCa2·Mg analog, and hence we were able to uncover the hitherto unknown nature of E1PCa2·Mg as well as structural events occurring in the phosphorylation and isomerization processes. Also, we successfully found the conditions that perfectly stabilize the E1Ca2·BeF3 complex.  相似文献   

13.
The snake venom MT-III is a group IIA secreted phospholipase A2 (sPLA2) enzyme with functional and structural similarities with mammalian pro-inflammatory sPLA2s of the same group. Previously, we demonstrated that MT-III directly activates the innate inflammatory response of macrophages, including release of inflammatory mediators and formation of lipid droplets (LDs). However, the mechanisms coordinating these processes remain unclear. In the present study, by using TLR2−/− or MyD88−/− or C57BL/6 (WT) male mice, we report that TLR2 and MyD88 signaling have a critical role in MT-III-induced inflammatory response in macrophages. MT-III caused a marked release of PGE2, PGD2, PGJ2, IL-1β and IL-10 and increased the number of LDs in WT macrophages. In MT-III-stimulated TLR2−/− macrophages, formation of LDs and release of eicosanoids and cytokines were abrogated. In MyD88−/− macrophages, MT-III-induced release of PGE2, IL-1β and IL-10 was abrogated, but release of PGD2 and PGJ2 was maintained. In addition, COX-2 protein expression seen in MT-III-stimulated WT macrophages was abolished in both TLR2−/− and MyD88−/− cells, while perilipin 2 expression was abolished only in MyD88−/− cells. We further demonstrated a reduction of saturated, monounsaturated and polyunsaturated fatty acids and a release of the TLR2 agonists palmitic and oleic acid from MT-III-stimulated WT macrophages compared with WT control cells, thus suggesting these fatty acids as major messengers for MT-III-induced engagement of TLR2/MyD88 signaling. Collectively, our findings identify for the first time a TLR2 and MyD88-dependent mechanism that underlies group IIA sPLA2-induced inflammatory response in macrophages.  相似文献   

14.

Background

Concern about costs and antiretroviral therapy (ART)-associated toxicities led to the consideration of CD4 driven strategies for the management of HIV. That approach was evaluated in the SMART trial that reported an unexpected increase of cardiovascular events after treatment interruption (TI). Our goal was to evaluate fasting metabolic changes associated with interruption of antiretroviral therapy and relate them to changes of immune activation markers and cardiovascular risk.

Methodology

ACTG 5102 enrolled 47 HIV-1-infected subjects on stable ART, with <200 HIV RNA copies/mL and CD4 cell count ≥500 cells/µL. Subjects were randomly assigned to continue ART for 18 weeks with or without 3 cycles of interleukin-2 (IL-2) (cycle = 4.5 million IU sc BID x 5 days every 8 weeks). After 18 weeks ART was discontinued in all subjects until the CD4 cell count dropped below 350 cells/µL. Glucose and lipid parameters were evaluated every 8 weeks initially and at weeks 2, 4, 8 and every 8 weeks after TI. Immune activation was evaluated by flow-cytometry and soluble TNFR2 levels.

Principal Findings

By week 8 of TI, levels of total cholesterol (TC) (median (Q1, Q3) (−0.73 (−1.19, −0.18) mmol/L, p<0.0001), LDL, HDL cholesterol (−0.36(−0.73,−0.03)mmol/L, p = 0.0007 and −0.05(−0.26,0.03), p = 0.0033, respectively) and triglycerides decreased (−0.40 (−0.84, 0.07) mmol/L, p = 0.005). However the TC/HDL ratio remained unchanged (−0.09 (−1.2, 0.5), p = 0.2). Glucose and insulin levels did not change (p = 0.6 and 0.8, respectively). After TI there was marked increase in immune activation (CD8+/HLA-DR+/CD38+ cells, 34% (13, 43), p<0.0001) and soluble TNFR2 (1089 ng/L (−189, 1655), p = 0.0008) coinciding with the rebound of HIV viremia.

Conclusions

Our data suggests that interrupting antiretroviral therapy does not reduce cardiovascular disease (CVD) risk, as the improvements in lipid parameters are modest and overshadowed by the decreased HDL levels. Increased immune cell activation and systemic inflammatory responses associated with recrudescent HIV viremia may provide a more cogent explanation for the increased cardiovascular risk associated with treatment interruption and HIV infection.

Trial Registration

ClinicalTrials.gov NCT00015704  相似文献   

15.

Background

Despite intensive insulin treatment, many patients with type-1 diabetes (T1DM) have longstanding inadequate glycaemic control. Metformin is an oral hypoglycaemic agent that improves insulin action in patients with type-2 diabetes. We investigated the effect of a one-year treatment with metformin versus placebo in patients with T1DM and persistent poor glycaemic control.

Methodology/Principal Findings

One hundred patients with T1DM, preserved hypoglycaemic awareness and HaemoglobinA1c (HbA1c) ≥8.5% during the year before enrolment entered a one-month run-in on placebo treatment. Thereafter, patients were randomized (baseline) to treatment with either metformin (1 g twice daily) or placebo for 12 months (double-masked). Patients continued ongoing insulin therapy and their usual outpatient clinical care. The primary outcome measure was change in HbA1c after one year of treatment. At enrolment, mean (standard deviation) HbA1c was 9.48% (0.99) for the metformin group (n = 49) and 9.60% (0.86) for the placebo group (n = 51). Mean (95% confidence interval) baseline-adjusted differences after 12 months with metformin (n = 48) versus placebo (n = 50) were: HbA1c, 0.13% (−0.19; 0.44), p = 0.422; Total daily insulin dose, −5.7 U/day (−8.6; −2.9), p<0.001; body weight, −1.74 kg (−3.32; −0.17), p = 0.030. Minor and overall major hypoglycaemia was not significantly different between treatments. Treatments were well tolerated.

Conclusions/Significance

In patients with poorly controlled T1DM, adjunct metformin therapy did not provide any improvement of glycaemic control after one year. Nevertheless, adjunct metformin treatment was associated with sustained reductions of insulin dose and body weight. Further investigations into the potential cardiovascular-protective effects of metformin therapy in patients with T1DM are warranted.

Trial Registration

ClinicalTrials.gov NCT00118937  相似文献   

16.

Background

Elevated total white blood cell (WBC) count is associated with an increased risk of coronary heart disease and death. Aerobic exercise is associated with lower total WBC, neutrophil, and monocyte counts. However, no studies have evaluated the effect of the amount of aerobic exercise (dose) on total WBC and WBC subfraction counts.

Purpose

To examine the effects of 3 different doses of aerobic exercise on changes in total WBC and WBC subfraction counts and independent effects of changes in fitness, adiposity, markers of inflammation (IL-6, TNF-α, C-reactive protein), fasting glucose metabolism, and adiponectin.

Methods

Data from 390 sedentary, overweight/obese postmenopausal women from the DREW study were used in these analyses. Women were randomized to a non-exercise control group or one of 3 exercise groups: energy expenditure of 4, 8, or 12 kcal kg−1⋅week−1 (KKW) for 6 months at an intensity of 50% VO2peak.

Results

A dose-dependent decrease in total WBC counts (trend P = 0.002) was observed with a significant decrease in the 12KKW group (−163.1±140.0 cells/µL; mean±95%CI) compared with the control (138.6±144.7 cells/µL). A similar response was seen in the neutrophil subfraction (trend P = 0.001) with a significant decrease in the 12KKW group (−152.6±115.1 cells/µL) compared with both the control and 4KKW groups (96.4±119.0 and 21.9±95.3 cells/µL, respectively) and in the 8KKW group (−102.4±125.0 cells/µL) compared with the control. When divided into high/low baseline WBC categories (median split), a dose-dependent decrease in both total WBCs (P = 0.003) and neutrophils (P<0.001) was observed in women with high baseline WBC counts. The effects of exercise dose on total WBC and neutrophil counts persisted after accounting for significant independent effects of change in waist circumference and IL-6.

Conclusion

Aerobic exercise training reduces total WBC and neutrophil counts, in a dose-dependent manner, in overweight/obese postmenopausal women and is especially beneficial for those with systemic low grade inflammation.

Clinical Trials Identifier: NCT00011193

  相似文献   

17.
18.
Sialidase Neu4 is reported to be dominantly expressed in the mouse brain, but its functional significance is not fully understood. We previously demonstrated that sialidase Neu3, also rich in mouse brain, is up-regulated during neuronal differentiation with involvement in acceleration of neurite formation. To elucidate physiological functions of Neu4, as well as Neu3, we determined expression during mouse brain development by quantitative RT-PCR. Expression was relatively low in the embryonic stage and then rapidly increased at 3–14 days after birth, whereas Neu3 demonstrated high levels in the embryonic stage and down-regulation after birth. Murine Neu4 was found to possess two isoforms differing in expression levels, developmental pattern, and enzymatic character. Distinct from the human isoforms, the murine forms, to a different extent, both catalyzed the removal of sialic acid from gangliosides as well as glycoproteins, and one isoform seemed to act on polysialylated NCAM efficiently, despite the low activity toward ordinary substrates. In situ hybridization demonstrated Neu4 mRNA to be present mainly in the hippocampus in which NCAM is rich and decreases after birth. During retinoic acid-induced differentiation, Neu4 expression was down-regulated in Neuro2a cells. Overexpression of Neu4 resulted in suppression of neurite formation, and its knockdown showed the acceleration. Thin layer chromatography of the glycolipids from Neu4-transfected cells showed ganglioside compositions to be only slightly affected, although lectin blot analysis revealed increased binding to Ricinus communis agglutinin (RCA) lectin of a ∼95-kDa glycoprotein, which decreased with cell differentiation. These results suggest that mouse Neu4 plays an important regulatory role in neurite formation, possibly through desialylation of glycoproteins.Sialidases catalyze the removal of sialic acid from non-reducing ends of glycoproteins and glycolipids. In mammals, four types of sialidases have so far been cloned, classified according to their subcellular localization and enzymatic properties (abbreviated to Neu1, Neu2, Neu3, and Neu4) (13). Studies have provided strong evidence that these sialidases play crucial roles in various physiological functions such as cell differentiation, cell growth, and malignant transformation. Among these sialidases, Neu4 is unique in its tissue expression pattern and enzymatic properties. In the mouse, it is dominantly expressed in brain, but its sialidase activity is very weak compared with other mouse sialidases (4). In contrast, human NEU4 is expressed not only in brain, but also in liver, kidney, and colon (57). We have demonstrated that NEU4 has two isoforms, differing in the N-terminal 12-amino acid residues that act as a mitochondrial-targeting sequence (7). Except for the subcellular localization, enzymatic properties are very similar. The short form of NEU4 (NEU4S) suppresses malignancy in colon cancer cells, mainly through desialylation of some glycoproteins, whereas the long form of NEU4 (NEU4L) may be involved in apoptosis with hydrolysis of ganglioside GD3 in mitochondria (8). Recently, Neu4 knockout mice (Neu4−/−) were generated for pathological analysis (9). Neu4−/− grew normally with a normal lifespan and proved fertile, but vacuolization of the lung and spleen was observed with a lysosomal storage phenotype, and the GM1/GD1a ratio was decreased in the brain. The observations on Neu4−/− are very interesting, but there is some ambiguity in the available previous reports, because, as mentioned above, mouse Neu4 has been reported to have weak sialidase activity in vitro, and its expression is restricted in brain. To clarify this ambiguity and further understand the physiological functions of Neu4, we examined expression in the mouse brain and observed a possible involvement in neural differentiation in connection with another sialidase, Neu3, which greatly increases during differentiation of neuroblastoma cells (10, 11) and causes acceleration of neurite formation (1013).In the GenBankTM data base, nucleotide sequences of mouse Neu4 have been submitted as AY258421 and AK034236. The former contains a complete coding sequence of 1506 bp, with two ATGs at positions 1 and 70, and AK034236 encodes only the second ATG (4). The gene from AY258421 has been reported to encode Neu4, showing weak sialidase activity, but there is no information on whether the gene based on AK034236 encodes Neu4 with sialidase activity toward natural substrates. We have now extended our studies to the existence of different mouse Neu4 isoforms, focusing on their significance in neuronal cells by measuring expression levels during cell differentiation. We present, here, evidence that two murine Neu4 isoforms contribute to neurite formation.  相似文献   

19.
Cellular lipid metabolism is regulated in part by protein-protein interactions near the surface of intracellular lipid droplets. This work investigated functional interactions between Abhd5, a protein activator of the lipase Atgl, and Mldp, a lipid droplet scaffold protein that is highly expressed in oxidative tissues. Abhd5 was highly targeted to individual lipid droplets containing Mldp in microdissected cardiac muscle fibers. Mldp bound Abhd5 in transfected fibroblasts and directed it to lipid droplets in proportion to Mldp concentration. Analysis of protein-protein interactions in situ demonstrated that the interaction of Abhd5 and Mldp occurs mainly, if not exclusively, on the surface of lipid droplets. Oleic acid treatment rapidly increased the interaction between Abhd5 and Mldp, and this effect was suppressed by pharmacological inhibition of triglyceride synthesis. The functional role of the Abhd5-Mldp interaction was explored using a mutant of mouse Abhd5 (E262K) that has greatly reduced binding to Mldp. Mldp promoted the subcellular colocalization and interaction of Atgl with wild type, but not mutant, Abhd5. This differential interaction was reflected in cellular assays of Atgl activity. In the absence of Mldp, wild type and mutant Abhd5 were equally effective in reducing lipid droplet formation. In contrast, mutant Abhd5 was unable to prevent lipid droplet accumulation in cells expressing Mldp despite considerable targeting of Atgl to lipid droplets containing Mldp. These results indicate that the interaction between Abhd5 and Mldp is dynamic and essential for regulating the activity of Atgl at lipid droplets containing Mldp.Growing evidence indicates that lipogenesis and lipolysis are regulated by protein-protein interactions that occur on the surface of specialized intracellular lipid droplets (1, 2). PAT3 (perilipin, adipophilin, and TIP-47) proteins, are thought to be key regulators of these processes by serving as scaffolds that organize and regulate the protein trafficking at lipid droplet surfaces (13). Mldp (muscle lipid droplet protein; alternatively, OXPAT, LSDP5) is a PAT family member that is highly expressed in tissues, like muscle and liver, having high oxidative capacity (46). Expression of Mldp is up-regulated under conditions such as fasting and diabetes, in which the systemic supply of lipid to target tissues is increased, and in vitro studies suggest that Mldp plays a role in facilitating triglyceride storage as well as fatty acid oxidation (46). It is not presently known how Mldp is involved in these functions, but we hypothesize that it is likely to involve direct or indirect interactions with lipases and lipase co-activators (3, 7).Abhd5 (α/β hydrolase domain-containing protein 5; alternatively CGI-58) is an evolutionarily conserved protein that acts as a potent activator of Atgl (adipose triglyceride lipase; alternatively, PNPLA2, desnutrin, TTS-2.1) (8). Both proteins are expressed in a variety of tissues, and rare homozygous mutations of either gene in humans produces a similar (but not identical) lipid storage disease that is characterized by ectopic lipid accumulation in skin, muscle, and liver (911). Regulation of lipid metabolism by Abhd5 is not fully understood. Abhd5 has been shown to bind perilipin (Plin) (12, 13), and it has been proposed that the phosphorylation-dependent release of Abhd5 is a means of initiating lipolysis via activation of Atgl (3, 7). Abhd5 is expressed in several tissues that lack Plin (12), raising the possibility that this co-activator might interact with additional PAT proteins.In the experiments detailed below, we investigated the potential interaction of Mldp and Abhd5 in vivo and in vitro. Our results show that Mldp and Abhd5 interact in vivo and in vitro. This interaction occurs on the surface of intracellular lipid droplets and is promoted by triglyceride synthesis. Atgl and Mldp are targeted to the same lipid droplets, and the interaction of Abhd5 with Mldp appears to be critical for regulating Atgl activity at these droplets.  相似文献   

20.

Background

Cysteinyl-leukotrienes (cys-LT) are powerful spasmogenic and immune modulating lipid mediators involved in inflammatory diseases, in particular asthma. Here, we investigated whether cys-LT signaling, in the context of atherosclerotic heart disease, compromises the myocardial microcirculation and its response to hypoxic stress. To this end, we examined Apoe−/− mice fed a hypercholesterolemic diet and analysed the expression of key enzymes of the cys-LT pathway and their receptors (CysLT1/CysLT2) in normal and hypoxic myocardium as well as the potential contribution of cys-LT signaling to the acute myocardial response to hypoxia.

Methods and principal findings

Myocardial biopsies from Apoe−/− mice demonstrated signs of chronic inflammation with fibrosis, increased apoptosis and expression of IL-6, as compared to biopsies from C57BL/6J control mice. In addition, we found increased leukotriene C4 synthase (LTC4S) and CysLT1 expression in the myocardium of Apoe−/− mice. Acute bouts of hypoxia further induced LTC4S expression, increased LTC4S enzyme activity and CysLT1 expression, and were associated with increased extension of hypoxic areas within the myocardium. Inhibition of cys-LT signaling by treatment with montelukast, a selective CysLT1 receptor antagonist, during acute bouts of hypoxic stress reduced myocardial hypoxic areas in Apoe−/− mice to levels equal to those observed under normoxic conditions. In human heart biopsies from 14 patients with chronic coronary artery disease mRNA expression levels of LTC4S and CysLT1 were increased in chronic ischemic compared to non-ischemic myocardium, constituting a molecular basis for increased cys-LT signaling.

Conclusion

Our results suggest that CysLT1 antagonists may have protective effects on the hypoxic heart, and improve the oxygen supply to areas of myocardial ischemia, for instance during episodes of sleep apnea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号