首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disulfide bridges strongly constrain the native structure of many proteins and predicting their formation is therefore a key sub-problem of protein structure and function inference. Most recently proposed approaches for this prediction problem adopt the following pipeline: first they enrich the primary sequence with structural annotations, second they apply a binary classifier to each candidate pair of cysteines to predict disulfide bonding probabilities and finally, they use a maximum weight graph matching algorithm to derive the predicted disulfide connectivity pattern of a protein. In this paper, we adopt this three step pipeline and propose an extensive study of the relevance of various structural annotations and feature encodings. In particular, we consider five kinds of structural annotations, among which three are novel in the context of disulfide bridge prediction. So as to be usable by machine learning algorithms, these annotations must be encoded into features. For this purpose, we propose four different feature encodings based on local windows and on different kinds of histograms. The combination of structural annotations with these possible encodings leads to a large number of possible feature functions. In order to identify a minimal subset of relevant feature functions among those, we propose an efficient and interpretable feature function selection scheme, designed so as to avoid any form of overfitting. We apply this scheme on top of three supervised learning algorithms: k-nearest neighbors, support vector machines and extremely randomized trees. Our results indicate that the use of only the PSSM (position-specific scoring matrix) together with the CSP (cysteine separation profile) are sufficient to construct a high performance disulfide pattern predictor and that extremely randomized trees reach a disulfide pattern prediction accuracy of on the benchmark dataset SPX, which corresponds to improvement over the state of the art. A web-application is available at http://m24.giga.ulg.ac.be:81/x3CysBridges.  相似文献   

2.
Lydie Viatte  Sophie Vaulont   《Biochimie》2009,91(10):1223-1228
Hepcidin, a peptide hormone produced by the liver, constitutes the master regulator of iron homeostasis in mammals allowing iron adaptation according to the body iron needs. In recent years there has been important breakthrough in our knowledge of hepcidin regulation that has also implications for understanding the physiopathology of human iron disorders. Different aspects of hepcidin regulation will be considered in this review, including regulation by the iron status and the BMP6/HJV/SMAD pathway. Hepcidin dysregulation in iron disorders will be also discussed. Although much can already be accomplished for treating iron disorders using the knowledge that has currently been developed, additional issues will be challenging for the coming years.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
蛋白质二硫键异构酶家族的结构与功能   总被引:1,自引:0,他引:1  
蛋白质二硫键异构酶(protein disulfide isomerase,PDI)家族是一类在内质网中起作用的巯基-二硫键氧化还原酶.它们通常含有CXXC(Cys-Xaa-Xaa-Cys,CXXC)活性位点,活性位点的两个半胱氨酸残基可催化底物二硫键的形成、异构及还原.所有PDI家族成员包含至少一个约100个氨基酸残基的硫氧还蛋白同源结构域.PDI家族的主要职能是催化内质网中新生肽链的氧化折叠,另外在内质网相关的蛋白质降解途径(ERAD)、蛋白质转运、钙稳态、抗原提呈及病毒入侵等方面也起重要作用.  相似文献   

11.
Stress-induced changes in functional brain connectivity have been linked to the etiology of stress-related disorders. Resting state functional connectivity (rsFC) is especially informative in characterizing the temporal trajectory of glucocorticoids during stress adaptation. Using the imaging Maastricht Acute Stress Test (iMAST), we induced acute stress in 39 healthy volunteers and monitored the neuroendocrine stress levels during three runs of resting state functional magnetic resonance imaging (rs-fMRI): before (run 1), immediately following (run 2), and 30min after acute stress (run 3). The iMAST resulted in strong increases in cortisol levels. Whole-brain analysis revealed that acute stress (run 2 - 1) was characterized by changes in connectivity of the amygdala with the ventrolateral prefrontal cortex (vlPFC), ventral posterior cingulate cortex (PCC), cuneus, parahippocampal gyrus, and culmen. Additionally, cortisol responders were characterized by enhanced amygdala - medial prefrontal cortex (mPFC) connectivity. Stress recovery (run 3 - 2) was characterized by altered amygdala connectivity with the dorsolateral prefrontal cortex (dlPFC), ventral and dorsal anterior cingulate cortex (ACC), anterior hippocampal complex, cuneus, and presupplementary motor area (preSMA). Opposite to non-responders, cortisol responders were characterized by enhanced amygdala connectivity with the anterior hippocampal complex and parahippocampal gyrus, and reduced connectivity with left dlPFC, dACC, and culmen during early recovery. Acute stress responding and recovery are thus associated with changes in the functional connectivity of the amygdala network. Our findings show that these changes may be regulated via stress-induced neuroendocrine levels. Defining stress-induced neuronal network changes is pertinent to developing treatments that target abnormal neuronal activity.  相似文献   

12.
13.
14.
15.
At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P. aeruginosa “core lineage” and typically exhibited the exoS +/exoU genotype and group B oprL and oprD alleles. This is to our knowledge the first report of an MST analysis conducted on a polyphasic data set.  相似文献   

16.
Infectious diseases can cause population declines and even extinctions. The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), has caused population declines and extinctions in amphibians on most continents. In the tropics, research on the dynamics of this disease has focused on amphibian populations in mountainous areas. In most of these areas, high and low elevation sites are connected by an assemblage of streams that may transport the infectious stage of the pathogen from high to low elevations, and, also, this pathogen, which grows well at cool temperatures, may persist better in cooler water flowing from high elevations. Thus, the dynamics of disease at low elevation sites without aquatic connections to higher elevation sites, i.e., non-contiguous low elevation sites, may differ from dynamics at contiguous low elevation sites. We sampled adult common mistfrogs (Litoria rheocola) at six sites of three types: two at high (> 400m) elevations, two at low elevations contiguous with high elevation streams, and two at low elevations non-contiguous with any high elevation site. Adults were swabbed for Bd diagnosis from June 2010 to June 2011 in each season, over a total of five sampling periods. The prevalence of Bd fluctuated seasonally and was highest in winter across all site types. Site type significantly affected seasonal patterns of prevalence of Bd. Prevalence remained well above zero throughout the year at the high elevation sites. Prevalence declined to lower levels in contiguous low sites, and reached near-zero at non-contiguous low sites. Patterns of air temperature fluctuation were very similar at both the low elevation site types, suggesting that differences in water connectivity to high sites may have affected the seasonal dynamics of Bd prevalence between contiguous and non-contiguous low elevation site types. Our results also suggest that reservoir hosts may be important in the persistence of disease at low elevations.  相似文献   

17.
The effect of the type of metal ion (i.e., Ca2+, Mg2+, or none) bound to the high-affinity divalent cation binding site (HAS) of actin on filament assembly, structure, and dynamics was investigated in the absence and presence of the mushroom toxin phalloidin. In agreement with earlier reports, we found the polymerization reaction of G-actin into F-actin filaments to be tightly controlled by the type of divalent cation residing in its HAS. Moreover, novel polymerization data are presented indicating that LD, a dimer unproductive by itself, does incorporate into growing F-actin filaments. This observation suggests that during actin filament formation, in addition to the obligatory nucleation– condensation pathway involving UD, a productive filament dimer, a facultative, LD-based pathway is implicated whose abundance strongly depends on the exact polymerization conditions chosen. The “ragged” and “branched” filaments observed during the early stages of assembly represent a hallmark of LD incorporation and might be key to producing an actin meshwork capable of rapidly assembling and disassembling in highly motile cells. Hence, LD incorporation into growing actin filaments might provide an additional level of regulation of actin cytoskeleton dynamics. Regarding the structure and mechanical properties of the F-actin filament at steady state, no significant correlation with the divalent cation residing in its HAS was found. However, compared to native filaments, phalloidin-stabilized filaments were stiffer and yielded subtle but significant structural changes. Together, our data indicate that whereas the G-actin conformation is tightly controlled by the divalent cation in its HAS, the F-actin conformation appears more robust than this variation. Hence, we conclude that the structure and dynamics of the Mg–F-actin moiety within the thin filament are not significantly modulated by the cyclic Ca2+ release as it occurs in muscle contraction to regulate the actomyosin interaction via troponin.  相似文献   

18.
Potassium channels are a diverse family of integral membrane proteins through which K+ can pass selectively. There is ongoing debate about the nature of conformational changes associated with the opening/closing and conductive/nonconductive states of potassium channels. The channels partly exert their function by varying their conductance through a mechanism known as C-type inactivation. Shortly after the activation of K+ channels, their selectivity filter stops conducting ions at a rate that depends on various stimuli. The molecular mechanism of C-type inactivation has not been fully understood yet. However, the X-ray structure of the KcsA channel obtained in the presence of low K+ concentration is thought to be representative of a K+ channel in the C-type inactivated state. Here, extensive, fully atomistic molecular dynamics and free-energy simulations of the low-K+ KcsA structure in an explicit lipid bilayer are performed to evaluate the stability of this structure and the selectivity of its binding sites. We find that the low-K+ KcsA structure is stable on the timescale of the molecular dynamics simulations performed, and that ions preferably remain in S1 and S4. In the absence of ions, the selectivity filter evolves toward an asymmetric architecture, as already observed in other computations of the high-K+ structure of KcsA and KirBac. The low-K+ KcsA structure is not permeable by Na+, K+, or Rb+, and the selectivity of its binding sites is different from that of the high-K+ structure.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号