共查询到20条相似文献,搜索用时 46 毫秒
1.
H A Koshinsky R H Cosby G G Khachatourians 《Biotechnology and applied biochemistry》1992,16(3):275-286
A trichothecene mycotoxin, T-2 toxin, inhibits several aspects of cellular physiology in Saccharomyces cerevisiae, including protein synthesis and mitochondrial functions. We have studied growth of, glucose utilization by, and ethanol production by S. cerevisiae and show that they are inhibited by T-2 toxin between 20 and 200 micrograms/ml in a dose-dependent manner. At 200 micrograms/ml, T-2 toxin causes cell death. This apparent inhibition of ethanol production was found to be the result of growth inhibition. On the basis of biomass or glucose consumption, T-2 toxin increased the amount of ethanol present in the culture. This suggests that T-2 inhibits oxidative but not fermentative energy metabolism by inhibiting mitochondrial function and shifting glucose catabolism toward ethanol formation. As T-2 toxin does not directly inhibit ethanol production by S. cerevisiae, this system could be used for ethanol production from trichothecene-contaminated grain products. 相似文献
2.
Effects of Fusariotoxin T-2 on Saccharomyces cerevisiae and Saccharomyces carlsbergensis 总被引:4,自引:3,他引:1 下载免费PDF全文
A Fusarium metabolite, T-2 toxin, inhibits the growth of Saccharomyces carlsbergensis and Saccharomyces cerevisiae. The growth inhibitory concentrations of T-2 toxin were 40 and 100 μg/ml, respectively, for exponentially growing cultures of the two yeasts. S. carlsbergensis was more sensitive to the toxin and exhibited a biphasic dose-response curve. Addition of the toxin at 10 μg/ml of S. carlsbergensis culture resulted in a retardation of growth as measured turbidimetrically, after only 30 to 40 min. This action was reversible upon washing the cells free of the toxin. The sensitivity of the yeasts to the toxin was dependent upon the types and concentrations of carbohydrates used in the growth media. The sensitivity of the cells to the toxin decreased in glucose-repressed cultures. These results suggest that T-2 toxin interferes with mitochondrial functions of these yeasts. 相似文献
3.
In growing cells of Saccharomyces cerevisiae and Saccharomyces carlsbergensis, T-2 toxin inhibits cell growth. We have examined the role of the yeast membranes in the uptake mechanism(s) of T-2 toxin. The effects of membrane-modulating agents, ethanol, cetyltrimethylammonium bromide, Triton X-100, and heat were studied; these agents were found to increase the sensitivity of the yeasts toward T-2 toxin. In the presence of 5% (vol/vol) ethanol, 2 micrograms of T-2 toxin per ml caused complete inhibition of growth. In the presence of 1 microgram of cetyltrimethylammonium bromide per ml, yeast cells became sensitive to T-2 toxin, starting with a concentration of 0.5 micrograms/ml. Triton X-100 at concentrations below 1% (vol/vol) sensitized the cells toward T-2 toxin, but at higher concentrations it protected the cells from T-2 toxin. Temperatures of incubation between 7 and 30 degrees C influenced the growth reduction caused by T-2 toxin. The greatest observed reduction of growth in T-2 toxin-treated cultures occurred at 30 degrees C. To further prove that the membrane influences the interaction of T-2 toxin with yeasts, we have studied a yeast mutant with a reduced plasma membrane permeability (G. H. Rank et al., Mol. Gen. Genet. 152:13-18, 1977). This yeast mutant proved to be resistant to T-2 toxin concentrations of up to 50 micrograms/ml. These results show that the membrane plays a significant role in the interaction of T-2 toxin with yeast cells. 相似文献
4.
Molecular analysis of the mitochondrial transcription factor mtf2 of Saccharomyces cerevisiae 总被引:3,自引:0,他引:3
T Lisowsky 《Molecular & general genetics : MGG》1990,220(2):186-190
5.
Metabolic effects of trichothecene T-2 toxin 总被引:1,自引:0,他引:1
G G Khachatourians 《Canadian journal of physiology and pharmacology》1990,68(7):1004-1008
Cereals and other agricultural products contaminated with trichothecene mycotoxins are unfit for consumption. Until recently, the metabolic effects of T-2 toxin (T-2) were thought to reside in its ability to inhibit protein synthesis. It is now clear that trichothecenes have multiple effects, including inhibition of DNA, RNA, and protein synthesis in several cellular systems, inhibition of in vitro protein synthesis, inhibition of mitochondrial functions, effects on cell division, normal cell shape, and hemolysis of erythrocytes. It is argued that these effects are pleiotropic responses of the cell's biosynthetic network to protein synthesis inhibition. However, in studies with erythrocytes, which lack nuclei and protein synthesis, changes in cell shape and lytic response towards T-2 are observed. Susceptibility to lysis is species dependent and correlates with the presence of phosphatidylcholine. Owing to their amphipathic nature, T-2 and other trichothecenes could exert their cytotoxicity by acting on cell membranes. As for cell energetics, T-2 inhibits the mitochondrial electron transport system, with succinic dehydrogenase as one site of action. Although initial investigations of the metabolic effects of T-2 mediated cytotoxicity suggested the inhibition of protein synthesis as the principal site of action, current thought suggests that the effects of trichothecenes are much more diverse. 相似文献
6.
In growing cells of Saccharomyces cerevisiae and Saccharomyces carlsbergensis, T-2 toxin inhibits cell growth. We have examined the role of the yeast membranes in the uptake mechanism(s) of T-2 toxin. The effects of membrane-modulating agents, ethanol, cetyltrimethylammonium bromide, Triton X-100, and heat were studied; these agents were found to increase the sensitivity of the yeasts toward T-2 toxin. In the presence of 5% (vol/vol) ethanol, 2 micrograms of T-2 toxin per ml caused complete inhibition of growth. In the presence of 1 microgram of cetyltrimethylammonium bromide per ml, yeast cells became sensitive to T-2 toxin, starting with a concentration of 0.5 micrograms/ml. Triton X-100 at concentrations below 1% (vol/vol) sensitized the cells toward T-2 toxin, but at higher concentrations it protected the cells from T-2 toxin. Temperatures of incubation between 7 and 30 degrees C influenced the growth reduction caused by T-2 toxin. The greatest observed reduction of growth in T-2 toxin-treated cultures occurred at 30 degrees C. To further prove that the membrane influences the interaction of T-2 toxin with yeasts, we have studied a yeast mutant with a reduced plasma membrane permeability (G. H. Rank et al., Mol. Gen. Genet. 152:13-18, 1977). This yeast mutant proved to be resistant to T-2 toxin concentrations of up to 50 micrograms/ml. These results show that the membrane plays a significant role in the interaction of T-2 toxin with yeast cells. 相似文献
7.
8.
The effect of deoxynivalenol (DON) and T-2 toxin on mitotic index (MI) and relative division rate (RDR) in actively dividing onion (Allium cepa L.) root-tip cells was studied. Both these toxins resulted in decline of mitotic activity which was inversely proportional to the concentrations of these toxins. T-2 was more effective resulting in 59% RDR value at 2.5 ppm whereas DON treated root cells had 78% RDR at the same concentration as compared to respective sets of controls. 相似文献
9.
The effects of the trichothecene mycotoxins (acetyl T-2 toxin, T-2 toxin, HT-2 toxin, palmityl T-2 toxin, diacetoxyscirpenol (DAS), deoxynivalenol (DON), and T-2 tetraol) on bovine platelet function were examined in homologous plasma stimulated with platelet activating factor (PAF). The mycotoxins inhibited platelet function with the following order of potency: acetyl T-2 toxin > palmityl T-2 toxin = DAS > HT-2 toxin = T-2 toxin. While T-2 tetraol was completely ineffective as an inhibitor, DON exhibited minimal inhibitory activity at concentrations above 10×10?4M. The stability of the platelet aggregates formed was significantly reduced in all mycotoxin treated platelets compared to that of the untreated PAF controls. It is suggested that the increased sensitivity of PAF stimulated bovine platelets to the more lipophilic mycotoxins may be related to their more efficient partitioning into the platelet membrane compared to the more hydrophilic compounds. 相似文献
10.
11.
12.
GTP-binding proteins, known as G proteins, play important roles in transducing signals generated by the binding of specific ligands to cell surface receptors. We examined the possibility that a G protein is involved in transducing the concanavalin A (Con A) signal for IL-2 production using a T-cell hybridoma, FS6-14.13, and the bacterial toxins, pertussis toxin (PTX) and cholera toxin (CTX). These toxins are known to interact with and modify the functions of G proteins. High concentrations of PTX (25-50 micrograms/ml) stimulated IL-2 production in the FS-6 cells in the absence of Con A, presumably due to the ability of its B subunit to crosslink membrane proteins. However, in the presence of Con A, PTX inhibited IL-2 production at concentrations ranging from 0.05 to 50 micrograms/ml. It is unlikely that this inhibition was due to a competitive interaction between Con A and PTX for binding sites at the cell surface, since high concentrations of PTX only minimally reduced Con A-FITC binding, evaluated by FACS analysis. In addition, concentrations of PTX which were not able to stimulate IL-2 production in the absence of Con A, retained their ability to inhibit IL-2 production in the presence of Con A. These data suggest the involvement of the PTX A subunit in this activity. In support of this possibility, PTX catalyzed ADP-ribosylation of a Mr = 41,000-Da protein in FS-6 membranes. This strongly suggests that a PTX substrate is involved in transducing the Con A signal for IL-2 production in FS-6 cells. CTX also inhibited Con A-induced IL-2 production, an effect mimicked by the addition of dibutyryl-cAMP. This suggests that a CTX substrate linked to the adenylyl cyclase-cAMP pathway is probably not involved in transducing the stimulatory Con A signal, but may play a role in downregulating T-cell activation. 相似文献
13.
L-Asparagine auxotrophs of Saccharomyces cerevisiae: genetic and phenotypic characterization. 下载免费PDF全文
G E Jones 《Journal of bacteriology》1978,134(1):200-207
L-Asparagine auxotrophy in Saccharomyces cerevisiae is the result of mutation in each of two unlinked cistrons, ASN1 and ASN2. Mutation in only one of these cistrons yields growth indistinguishable from that of wild-type cells under a variety of nutritional stresses. Relatively high concentrations of L-asparagine are required to permit maximal growth of the auxotrophs, and the amino acid requirement cannot be satisfied by a variety of other amino acids that serve as nitrogen sources for cell growth. Although reversion of the mutations can occur, haploid populations of cells containing only low frequencies of prototrophs can be maintained easily. In diploid cells heteroallelic for certain combinations of alleles of the two genes, mitotic recombination gives rise to prototrophic cells that accumulate to high frequency in populations of the cells. 相似文献
14.
Extensive phenotypic diversity or variation exists in clonal populations of microorganisms and is thought to play a role in adaptation to novel environments. This phenotypic variation or instability, which occurs by multiple mechanisms, may be a form of cellular differentiation and a stochastic means for modulating gene expression. This work dissects a case of phenotypic variation in a clinically derived Saccharomyces cerevisiae strain involving a cox15 ochre mutation, which acts as a reporter. The ochre mutation reverts to sense at a low frequency while tRNA-Tyr ochre suppressors (SUP-o) arise at a very high frequency to produce this phenotypic variation. The SUP-o mutations are highly pleiotropic. In addition, although all SUP-o mutations within the eight-member tRNA-Tyr gene family suppress the ochre mutation reporter, there are considerable phenotypic differences among the different SUP-o mutants. Finally, and of particular interest, there is a strong position effect on mutation frequency within the eight-member tRNA-Tyr gene family, with one locus, SUP6, mutating at a much higher than average frequency and two other loci, SUP2 and SUP8, mutating at much lower than average frequencies. Mechanisms for the position effect on mutation frequency are evaluated. 相似文献
15.
Yeast killer toxin: purification and characterisation of the protein toxin from Saccharomyces cerevisiae. 总被引:10,自引:0,他引:10
Killer toxin from killer strains of Saccharomyces cerevisiae was isolated from concentrates of extracellular medium by precipitation in poly(ethylene glycol) and chromatography through glyceryl-controlled-pore glass. The toxin migrated as a single protein band on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. A molecular weight of 11470 was determined for the toxin protein from its electrophoretic mobility and amino acid composition. Gel filtration of the active toxin indicated that the 11,470-Mr monomer was the active unit. Electrophoretic comparison of extracellular concentrates from a killer strain and an isogenic non-killer showed the presence of the toxin protein only in the killer-derived material. The activity of the toxin was most stable between pH 4.2 and 4.6. At 30 degrees C toxin from a superkiller strain was more stable than that from a normal killer. 相似文献
16.
17.
The effects of the previously identified mutations in nuclear genes SRM8, SRM12, SRM15, and SRM17 on the maintenance of chromosomes and recombinant plasmids in Saccharomyces cerevisiae cells and on cell sensitivity to ionizing radiation were studied. The srm8 mutation caused instability of chromosome maintenance in diploid cells. In yeast cells with the intact mitochondrial genome, all examined srm mutations decreased the mitotic stability of a centromeric recombinant plasmid with the chromosomal ARS element. Mutations srm12, srm15, and srm17 also decreased the mitotic stability of a centromereless plasmid containing the same ARS element, whereas the srm8 mutation did not markedly affect the maintenance of this plasmid. Mutations srm8, srm12, and srm17 were shown to increase cell sensitivity to gamma-ray irradiation. The SRM8 gene was mapped, cloned, and found to correspond to the open reading frame YJLO76w in chromosome X. 相似文献
18.
19.
20.
Repair of oxidative damage in mitochondrial DNA of Saccharomyces cerevisiae: involvement of the MSH1-dependent pathway 总被引:2,自引:0,他引:2
Mitochondrial DNA (mtDNA) is located close to the respiratory chain, a major source of reactive oxygen species (ROS). This proximity makes mtDNA more vulnerable than nuclear DNA to damage by ROS. Therefore, the efficient repair of oxidative lesions in mtDNA is essential for maintaining the stability of the mitochondrial genome. A series of genetic and biochemical studies has indicated that eukaryotic cells, including the model organism Saccharomyces cerevisiae, use several alternative strategies to prevent mutagenesis induced by endogenous oxidative damage to nuclear DNA. However, apart from base excision repair (BER), no other pathways involved in the repair of oxidative damage in mtDNA have been identified. In this study, we have examined mitochondrial mutagenesis in S. cerevisiae cells which lack the activity of the Ogg1 glycosylase, an enzyme playing a crucial role in the removal of 8-oxoG, the most abundant oxidative lesion of DNA. We show that the overall frequency of the mitochondrial oligomycin-resistant (Olir) mutants is increased in the ogg1 strain by about one order of magnitude compared to that of the wild-type strain. Noteworthy, in the mitochondrial oli1 gene, G:C to T:A transversions are generated approximately 50-fold more frequently in the ogg1 mutant relative to the wild-type strain. We also demonstrate that the increased frequency of Olir mutants in the ogg1 strain is markedly reduced by the presence of plasmids encoding Msh1p, a homologue of the bacterial mismatch protein MutS, which specifically functions in mitochondria. This suppression of the mitochondrial mutator phenotype of the ogg1 strain seems to be specific, since overexpression of the mutant allele msh1-R813W failed to exert this effect. Finally, we also show that the increased frequency of Olir mutants arising in an msh1/MSH1 heterozygote grown in glucose-containing medium is further enhanced if the cells are cultivated in glycerol-containing medium, i.e. under conditions when the respiratory chain is fully active. Taken together, these results strongly suggest that MSH1-dependent repair represents a significant back-up to mtBER in the repair of oxidative damage in mtDNA. 相似文献