首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Organogenesis》2013,9(3):167-175
Cryopreservation would potentially very much facilitate the inventory control and distribution of laboratory-produced organs and tissues. Although simple freezing methods are effective for many simple tissues, bioartificial organs and complex tissue constructs may be unacceptably altered by ice formation and dissolution. Vitrification, in which the liquids in a living system are converted into the glassy state at low temperatures, provides a potential alternative to freezing that can in principle avoid ice formation altogether. The present report provides a brief overview of the problem of renal vitrification. We report here the detailed case history of a rabbit kidney that survived vitrification and subsequent transplantation, a case that demonstrates both the fundamental feasibility of complex system vitrification and the obstacles that must still be overcome, of which the chief one in the case of the kidney is adequate distribution of cryoprotectant to the renal medulla. Medullary equilibration can be monitored by monitoring urine concentrations of cryoprotectant, and urine flow rate correlates with vitrification solution viscosity and the speed of equilibration. By taking these factors into account and by using higher perfusion pressures as per the case of the kidney that survived vitrification, it is becoming possible to design protocols for equilibrating kidneys that protect against both devitrification and excessive cryoprotectant toxicity.  相似文献   

2.
保存活体的肺癌组织将为肺癌发病基因筛查和靶向药物筛选等体外实验研究提供更完整的样本信息. 本文对活体肺癌组织的玻璃化保存方法进行研究,首先采用针浸法玻璃化保存单块肺癌组织,对所需低温保护剂的浓度和平衡时间进行了优化;其次采用冻存管对多块肺癌组织样本进行玻璃化保存,对低温保护剂溶液体积以及平衡时间进行了优化;最后对慢速冷冻、不加低温保护剂快速冷冻、玻璃化冷冻3种冷冻方法的冻存效果进行比较并通过低温显微分析其冰晶损伤机理.结果表明,20% EG+20% DMSO+0.5 mol/L海藻糖作为低温保护剂,在平衡溶液和玻璃化溶液分别加载3 min和1 min时,针浸法和0.25 ml冻存管内玻璃化冻存,复苏后组织活力最高,分别约为79.96%与80.44%. 免疫组化显示玻璃化保存肺癌组织经过复苏后,相比慢速冷冻和无保护剂快速冷冻,组织结构损伤较小,组织内细胞TUNEL阳性表达较少. 低温显微结果表明,玻璃化保存组织内部及周围只出现少量细小冰晶,而慢速冷冻、快速冷冻组织皆出现明显冰晶.  相似文献   

3.
Fahy GM  Wowk B  Wu J  Paynter S 《Cryobiology》2004,48(1):22-35
Long-term preservation of complex engineered tissues and organs at cryogenic temperatures in the absence of ice has been prevented to date by the difficulty of discovering combinations of cryoprotectants that are both sufficiently non-toxic and sufficiently stable to allow viability to be maintained and ice formation to be avoided during slow cooling to the glass transition temperature and subsequent slow rewarming. A new theory of the origin of non-specific cryoprotectant toxicity was shown to account, in a rabbit renal cortical slice model, for the toxicities of 20 vitrification solutions and to permit the design of new solutions that are dramatically less toxic than previously known solutions for diverse biological systems. Unfertilized mouse ova vitrified with one of the new solutions were successfully fertilized and regained 80% of the absolute control (untreated) rate of development to blastocysts, whereas ova vitrified in VSDP, the best previous solution, developed to blastocysts at a rate only 30% of that of controls. Whole rabbit kidneys perfused at -3 degrees C with another new solution at a concentration of cryoprotectant (8.4M) that was previously 100% lethal at this temperature exhibited no damage after transplantation and immediate contralateral nephrectomy. It appears that cryoprotectant solutions that are composed to be at the minimum concentrations needed for vitrification at moderate cooling rates are toxic in direct proportion to the average strength of water hydrogen bonding by the polar groups on the permeating cryoprotectants in the solution. Vitrification solutions that are based on minimal perturbation of intracellular water appear to be superior and provide new hope that the successful vitrification of natural organs as well as tissue engineered or clonally produced organ and tissue replacements can be achieved.  相似文献   

4.
Precision-cut tissue slices of both hepatic and extra-hepatic origin are extensively used as an in vitro model to predict in vivo drug metabolism and toxicity. Cryopreservation would greatly facilitate their use. In the present study, we aimed to improve (1) rapid freezing and warming (200 degrees C/min) using 18% Me(2)SO as cryoprotectant and (2) vitrification with high molarity mixtures of cryoprotectants, VM3 and VS4, as methods to cryopreserve precision-cut rat liver and kidney slices. Viability after cryopreservation and subsequent 3-4h of incubation at 37 degrees C was determined by measuring ATP content and by microscopical evaluation of histological integrity. Confirming earlier studies, viability of rat liver slices was maintained at high levels by rapid freezing and thawing with 18% Me(2)SO. However, vitrification of liver slices with VS4 resulted in cryopreservation damage despite the fact that cryoprotectant toxicity was low, no ice was formed during cooling and devitrification was prevented. Viability of liver slices was not improved by using VM3 for vitrification. Kidney slices were found not to survive cryopreservation by rapid freezing. In contrast, viability of renal medullary slices was almost completely maintained after vitrification with VS4, however vitrification of renal cortex slices with VS4 was not successful, partly due to cryoprotectant toxicity. Both kidney cortex and medullary slices were vitrified successfully with VM3 (maintaining viability at 50-80% of fresh slice levels), using an optimised pre-incubation protocol and cooling and warming rates that prevented both visible ice-formation and cracking of the formed glass. In conclusion, vitrification is a promising approach to cryopreserve precision-cut (kidney) slices.  相似文献   

5.
The first successful cryopreservation of fish embryos was reported in the Japanese flounder by vitrification [Chen and Tian, Theriogenology, 63, 1207-1219, 2005]. Since very high concentrations of cryoprotectants are needed for vitrification and fish embryos have a large volume, Japanese flounder embryos must have low sensitivity to cryoprotectant toxicity and high permeability to water and cryoprotectants. So, we investigated the sensitivity and the permeability of Japanese flounder embryos. In addition, we assessed the survival of flounder embryos after vitrification with solutions containing methanol and propylene glycol, following Chen and Tian's report. The embryos were relatively insensitive to the toxicity of individual cryoprotectants at lower concentrations, especially methanol and propylene glycol as their report. Although their permeability to water and cryoprotectants could not be measured from volume changes in cryoprotectant solutions, the embryos appeared to be permeable to methanol but less permeable to DMSO, ethylene glycol, and propylene glycol. Although vitrification solutions containing methanol and propylene glycol, which were used in Chen and Tian's report, were toxic to embryos, a small proportion of embryos did survived. However, when vitrified with the vitrification solutions, no embryos survived after warming. The embryos became opaque during cooling with liquid nitrogen, indicating the formation of intracellular ice during cooling. When embryos had been kept in vitrification solutions for 60 min after being treated with the vitrification solution, some remained transparent during cooling, but became opaque during warming. This suggests that dehydration and/or permeation by cryoprotectants were insufficient for vitrification of the embryos even after they had been over-treated with the vitrification solutions. Thus, Chen and Tian's cryopreservation method lacks general application to Japanese flounder embryos.  相似文献   

6.
de Graaf IA  Koster HJ 《Cryobiology》2001,43(3):224-237
This study examined whether tissue vitrification, promoted by partitioning within the tissue, could be the mechanism explaining the high viability of rat liver slices, rapidly frozen after preincubation with 18% Me2SO or VS4 (a 7.5 M mixture of Me2SO, 1,2-propanediol, and formamide with weight ratio 21.5:15:2.4). To achieve this, we first determined the extent to which crystallization or vitrification occurred in cryoprotectant solutions (Me2SO and VS4) and within liver slices impregnated with these solutions. Second, we determined how these events were related to survival of slices after thawing. Water crystallization was evaluated by differential scanning calorimetry and viability was determined by histomorphological examination of the slices after culturing at 37 degrees C for 4 h. VS4-preincubated liver slices indeed behaved differently from bulk VS4 solution, because, when vitrified, they had a lower tendency to devitrify. Vitrified VS4-preincubated slices that were warmed sufficiently rapid to prevent devitrification had a high viability. When VS4 was diluted (to 75%) or if warming was not fast enough to prevent ice formation, slices had a low viability. With 45% Me2SO, low viability of cryopreserved slices was caused by cryoprotectant toxicity. Surprisingly, liver slices preincubated with 18% Me2SO or 50% VS4 had a high viability despite the formation of ice within the slice. In conclusion, tissue vitrification provides a mechanism that explains the high viability of VS4-preincubated slices after ultrarapid freezing and thawing (>800 degrees C/min). Slices that are preincubated with moderately concentrated cryoprotectant solutions (18% Me2SO, 50% VS4) and cooled rapidly (100 degrees C/min) survive cryopreservation despite the formation of ice crystals within the slice.  相似文献   

7.
Organ transplantation is the gold standard treatment for end-stage organ failure. Due to the severe shortage of transplantable organs, only a tiny fraction of patients may receive timely organ transplantation every year. Decellularization-recellularization technology using allogeneic and xenogeneic organs is currently conceived to be a promising solution to generate functionally transplantable organs in vitro. This approach, however, still faces tremendous technological challenges, one of them being the ability to evaluate and preserve the integrity of vascular architectures upon decellularization and cryostorage of the whole organ matrices so that the off-the-shelf organ grafts are available on demand for clinical applications. In the present study, we report a Micro-CT imaging method for evaluating the integrity of vasculature of the decellularized whole organ scaffolds with/without freezing/thawing. The method uses radiopaque Microfil perfusion and x-ray fluoroscopy to acquire high-resolution angiography of the organ matrix. The whole rat kidney is decellularized using a new multistep perfusion protocol with the combined use of Triton X-100 and DNase. The decellularized kidney matrix is then cryopreserved after the pretreatment with different cryoprotectant solutions. The reconstructed tomographic images from Micro-CT confirm various structural alterations in the vasculature of the whole decellularized kidney matrix with/without frozen storage. The freezing damage to the vascular architectures can be reduced by perfusing cryoprotectant solutions into the whole kidney matrix. Ice-free cryopreservation with the vitrification solution VS83 can successfully preserve the integrity of the whole kidney matrix's vasculature after frozen storage.  相似文献   

8.
Ice formation in the freeze-tolerant wood frog (Rana sylvatica) induces the production and distribution of the cryoprotectant, glucose. Concomitantly, organs undergo a beneficial dehydration which likely inhibits mechanical injury during freezing. Together, these physiological responses promote freezing survival when frogs are frozen under slow cooling regimes. Rapid cooling, however, is lethal. We tested the hypothesis that the injurious effects of rapid cooling stem from an inadequate distribution of glucose to tissues and an insufficient removal of water from tissues during freezing. Accordingly, we compared glucose and water contents of five organs (liver, heart, skeletal muscle, eye, brain) from wood frogs cooled slowly or rapidly during freezing to -2.5 degrees C. Glucose concentrations in organs from slowly cooled frogs were significantly elevated over unfrozen controls, but no significant increases occurred in rapidly cooled frogs. Organs from slowly cooled frogs contained significantly less water than did those from controls, whereas water contents from rapidly cooled frogs generally were unchanged. Rapid cooling therefore inhibited the production and distribution of cryoprotectant and organ dehydration during freezing. This inhibition may result from an accelerated, premature failure of the cardiovascular system.  相似文献   

9.
G M Fahy  D I Levy  S E Ali 《Cryobiology》1987,24(3):196-213
Vitrification solutions are aqueous cryoprotectant solutions which do not freeze when cooled at moderate rates to very low temperatures. Vitrification solutions have been used with great success for the cryopreservation of some biological systems but have been less successful or unsuccessful with other systems, and more fundamental knowledge about vitrification solutions is required. The purpose of the present survey is to show that a general understanding of the physical behavior and biological effects of vitrification solutions, as well as an understanding of the conditions under which vitrification solutions are required, is gradually emerging. Detailed nonequilibrium phase diagram information in combination with specific information on the tolerance of biological systems to ice and to cryoprotectant at subzero temperatures provides a quantitative theoretical basis for choosing between vitrification and freezing. The vitrification behavior of mixtures of cryoprotective agents during cooling is predictable from the behavior of the individual agents, and the behavior of individual agents is gradually becoming predictable from the details of their molecular structures. Progress is continuing concerning the elucidation of mechanisms and cellular sites of toxicity and mechanisms for the reduction of toxicity. Finally, important new information is rapidly emerging concerning the crystallization of previously vitrified cryoprotectant solutions during warming. It appears that vitrification tendency, toxicity, and devitrification all depend on subtle variations in the organization of water around dissolved substances.  相似文献   

10.
The aims of this study were to investigate if kidney preservation could be enhanced by cooling of the organs to high sub-zero temperatures after depression of their freezing points by addition of glycerol, and to study whether the added amounts of this compound would confer protection to the organs during freezing and thawing at slow rates.Glycerol was added and removed gradually by continuous, hypothermic perfusion, and the post-preservation viability was assessed by autotransplantation.Brief cooling to ?5 °C of kidneys perfused with 3 m glycerol was found to be compatible with life-sustaining posttransplant function, whereas no kidneys stored at that temperature for 5 days survived.Slow cooling af kidneys glycerolized to 3 m to ?80 °C was associated with a marked increase in vascular resistance after thawing, and none of such frozen kidneys functioned after transplantation. They showed immediately after revascularization severe impairment of the circulation, and vascular damage was observed by light microscopy. The use of 5 m glycerol for cryoprotection attenuated this rise in vascular resistance and reduced the release of the endocellular enzyme, lactate dehydrogenase after thawing, indicating less cellular damage although no kidneys functioned after grafting.It is suggested that the mechanical effect of interstitial and intravascular ice formation is a major factor in damage to intact organs during freezing, and that further injury is produced by incomplete removal of the cryoprotectant before transplantation.  相似文献   

11.
Ice formation inside or outside cells has been proposed to be a factor causing cryoinjury to cells/tissues during cryopreservation. How to control, reduce, or eliminate the ice formation has been an important research topic in fundamental cryobiology. The objective of this study was to test a hypothesis that the coupled interaction of microwave radiation and cryoprotectant concentration could significantly influence ice formation and enhance potential vitrification in cryopreservation media at a relative slow cooling rate. Test samples consisted of a series of solutions with ethylene glycol (a cryoprotectant) concentration ranging from 3 to 5.5M.A specific microwave resonant cavity was built and utilized to provide an intense oscillating electric field. Solutions were simultaneously exposed to this electric field and cooled to −196°C by rapid immersion in liquid nitrogen. Control samples were similarly submerged in liquid nitrogen but without the microwave field. The amount of ice formation was determined by analysis of digital images of the samples. The morphology of the solidified samples was observed by cryomicroscopy. It was found that ice formation was greatly influenced by microwave irradiation. For example, ice formation could be reduced by roughly 56% in 3.5Methylene glycol solutions. An average reduction of 66% was observed in 4.5Msolutions. Statistical analysis indicated that the main effects of microwave and ethylene glycol concentration as well as the interaction between these two factors significantly (P< 0.01) influenced ice formation amount, confirming the hypothesis. This preliminary study suggests that a combined use of microwave irradiation and cryoprotectant might be a potential approach to control ice formation in cells/tissues during the cooling process and to enhance vitrification of these biomaterials for long-term cryopreservation.  相似文献   

12.
The first step in the cryopreservation of cells or tissues is often the movement of a permeating cryoprotectant into the cells or tissues from the solution into which they have been placed. The cryoprotectant enters the cells or tissues by thermodynamic equilibration with the surroundings. In the reverse case, thermodynamic equilibration also drives the removal of permeating cryoprotectants by a dilution solution at the end of the preservation process when the cells or tissues are being readied for use. There have been reports of tissues having equilibrium cryoprotectant concentrations lower than that of the surrounding carrier solution. For various tissues, the equilibrium concentration of cryoprotectant inside the tissue is either equal to, or lower than the cryoprotectant concentration of the surrounding solution. A simple thermodynamic treatment of the solution-tissue equilibrium shows that an equilibrium concentration difference can exist between a tissue and the surrounding solution if a pressure difference can be maintained.  相似文献   

13.
Osteochondral allograft transplantation can treat full thickness cartilage and bone lesions in the knee and other joints, but the lack of widespread articular cartilage banking limits the quantity of cartilage available for size and contour matching. To address the limited availability of cartilage, vitrification can be used to store harvested joint tissues indefinitely. Our group's reported vitrification protocol [Biomaterials 33 (2012) 6061–6068] takes 9.5 h to load cryoprotectants into intact articular cartilage on bone and achieves high cell viability, but further optimization is needed to shorten this protocol for clinical use. Herein, we use engineering models to calculate the spatial and temporal distributions of cryoprotectant concentration, solution vitrifiability, and freezing point for each step of the 9.5-h protocol. We then incorporate the following major design choices for developing a new shorter protocol: (i) all cryoprotectant loading solution concentrations are reduced, (ii) glycerol is removed as a cryoprotectant, and (iii) an equilibration step is introduced to flatten the final cryoprotectant concentration profiles. We also use a new criterion—the spatially and temporally resolved prediction of solution vitrifiability—to assess whether a protocol will be successful instead of requiring that each cryoprotectant individually reaches a certain concentration. A total cryoprotectant loading time of 7 h is targeted, and our new 7-h protocol is predicted to achieve a level of vitrifiability comparable to the proven 9.5-h protocol throughout the cartilage thickness.  相似文献   

14.
Jiao A  Han X  Critser JK  Ma H 《Cryobiology》2006,52(3):386-392
During freezing, cells are often damaged directly or indirectly by ice formation. Vitrification is an alternative approach to cryopreservation that avoids ice formation. The common method to achieve vitrification is to use relatively high concentrations of cryoprotectant agents (CPA) in combination with a relatively slow cooling rate. However, high concentrations of CPAs have potentially damaging toxic and/or osmotic effects on cells. Therefore, establishing methods to achieve vitrification with lower concentrations of CPAs through ultra-fast cooling rates would be advantageous in these aspects. These ultra-fast cooling rates can be realized by a cooling system with an ultra-high heat transfer coefficient (h) between the sample and coolant. The oscillating motion heat pipe (OHP), a novel cooling device utilizing the pressure change to excite the oscillation motion of the liquid plugs and vapor bubbles, can significantly increase h and may fulfill this aim. The current investigation was designed to numerically study the effects of different values of h on the transient heat transfer characteristics and vitrification tendencies of the cell suspension during the cooling processes in an ultra-thin straw (100 microm in diameter). The transient temperature distribution, the cooling rate and the volume ratio (x) of the ice quantity to the maximum crystallizable ice of the suspension were calculated. From these numerical results, it is concluded that the ultra-high h (>10(4) W/m2 K) obtained by OHPs could facilitate vitrification by efficiently decreasing x as well as the time to pass through the dangerous temperature region where the maximum ice formation happens. For comparison, OHPs can decrease both of the parameters to less than 20% of those from the widely used open pulled straw methods. Therefore, the OHP method will be a promising approach to improving vitrification tendencies of CPA solutions and could also decrease the required concentration of CPAs for vitrification, both of which are of great importance for the successful cryopreservation of cells by vitrification.  相似文献   

15.
Wusteman M  Robinson M  Pegg D 《Cryobiology》2004,48(2):179-189
If large pieces of tissue and organs are to be successfully stored at low temperatures, some means must be found to minimize the disruption of extracellular structures by the ice that develops during conventional cryopreservation methods. The use of sufficiently high concentrations of cryoprotectant (CPA) to vitrify rather than freeze the tissue is a possible solution to this problem, and the retention of function of embryos and elastic arteries after vitrification suggests that some cells and tissues at least can withstand exposure to the high concentrations of CPA necessary for this process to occur. There are, however, additional problems in applying vitrifying techniques to bulky tissues and organs. These are related to the additional time required for tissue equilibration of CPA to occur and the consequences for toxic injury, the difficulty in achieving sufficiently rapid and uniform cooling rates to produce the required glassy state, and the even more rapid and uniform warming rates that are necessary to avoid devitrification. Non-uniformity of temperature will increase the risk of mechanical stresses and fractures developing in the glass during rapid warming. This paper reviews possible strategies and the progress that has been made in overcoming these problems. This will include the permeation of CPA mixtures into whole tissues and possibilities for reducing their toxicity by the inclusion of adjuncts such as ice inhibitors and sugars. The warming of tissues by dielectric heating is currently the only practical means by which sufficiently rapid rates can be achieved in bulky tissues given that the tolerable limits of CPA concentration will most likely be insufficient to prevent the development of ice nuclei during cooling. The biological effects of microwaves are reviewed and their effectiveness in producing the required uniformity in warming of tissue models of various shapes are discussed.  相似文献   

16.
W J Armitage 《Cryobiology》1989,26(4):318-327
Corneal endothelium, a monolayer of cells lining the inner surface of the cornea, is particularly susceptible to freezing injury. Ice formation damages the structural and functional integrity of the endothelium, and this results in a loss of corneal transparency. Instead of freezing, an alternative method of cryopreservation is vitrification, which avoids damage associated with ice formation. Vitrification at practicable cooling rates, however, requires exposure of tissues to very high concentrations of cryoprotectants, and this can cause damage through chemical toxicity and osmotic stress. The effects of a vitrification solution (VS1) containing 2.62 mol/liter (20.5%, w/v) dimethyl sulfoxide, 2.62 mol/liter (15.5%, w/v) acetamide, 1.32 mol/liter (10%, w/v) propane-1,2-diol, and 6% (w/v) polyethylene glycol were studied on corneal endothelium. Endothelial function was assessed by monitoring corneal thickness during 6 hr of perfusion at 35 degrees C with a Ringer solution supplemented with glutathione and adenosine. Various dilutions of the vitrification solution were introduced and removed in a stepwise manner to mitigate osmotic stress. Survival of endothelium after exposure to VS1 or a solution containing 90% of the cryoprotectant concentrations in VS1 (90% VS1) was dependent on the duration of exposure, the temperature of exposure, and the dilution protocol. The basic dilution protocol was performed at 25 degrees C: corneas were transferred from 90% VS1 or VS1 into 50% VS1 for 15 min, followed by 25% VS1 for 15 min and finally into isosmotic Ringer solution. Using this protocol, corneal endothelium survived exposure to 90% VS1 for 15 min at -5 degrees C, but 5 min in VS1 at -5 degrees C was harmful and resulted in some very large and misshapen endothelial cells. This damage was not ameliorated by using a sucrose dilution technique; but endothelial function was improved when the temperature of exposure to VS1 was reduced from -5 to -10 degrees C. Exposure to VS1 for 5 min at -5 degrees C was well tolerated, however, when the temperature of the first dilution step into 50% VS1 was reduced from 25 to 0 degree C. The large, misshapen cells were not observed under these conditions nor after exposure to VS1 at -10 degrees C. These results suggested that damage was the result of cryoprotectant toxicity rather than osmotic stress. Thus, corneal endothelium survived exposure to two solutions of cryoprotectants, namely, 90% VS1 and VS1, that were sufficiently concentrated to vitrify. Whether corneas can be cooled fast enough in these solutions to achieve vitrification and warmed fast enough to avoid devitrification remains to be determined.  相似文献   

17.
《Cryobiology》2016,72(3):472-480
A simple method to cryopreserve adherent monolayers of neuronal cells is currently not available, but the development of this technique could facilitate numerous applications in the field of biomedical engineering, cell line development, and drug screening. However, complex tissues of some exceptional animals survive freezing in nature. These animals are known to accumulate several small molecular weight solutes prior to freezing. Following a similar strategy, we investigated the effects of osmolytes such as trehalose, proline, and sucrose as additives to the traditional cryoprotectant dimethyl sulfoxide (Me2SO) in modulating the cryopreservation outcome of mouse neuroblastoma (Neuro-2a) cells. Neuro-2a cells adhered to cell culture plates were incubated for 24 h at varying concentrations of trehalose, proline, sucrose and combinations of these compounds. Cells were cryopreserved for 24 h and cell viability post-freezing and thawing was quantified by trypan blue exclusion assay. On average, only 13.5% of adherent cells survived freezing in the presence of 10% Me2SO alone (control). Pre-incubation of cells with medium containing both trehalose and proline severely decreased cell proliferation, but increased cell recovery to about 53% of control. Furthermore, characterization using Raman microspectroscopy revealed that the addition of both trehalose and proline to 10% Me2SO substantially increased the size, and altered the nature, of ice crystals formed during freezing. Our results suggest that pre-incubation of Neuro-2a cells with trehalose and proline in combination provides cell protection along with alterations of ice structure in order to increase cell survival post-freezing.  相似文献   

18.
The aim of this study was to develop a rapid method of canine semen freezing without cooling equilibration using treatment with different cryoprotectant agents (CPAs) and freezing in liquid nitrogen (LN(2)) vapor in a 0.5-mL straw via modifying vitrification. Ejaculates from eight beagle dogs were frozen with different CPAs (CPA-free, 5% glycerol, 5% ethylene glycol, and 10% ethylene glycol) and freezing times (direct plunging into LN(2) or freezing for 1, 2, 3, or 10 min in LN(2) vapor before plunging into LN(2)). Frozen-thawed sperm were evaluated for motility, viability, normal morphology, and plasma- and acrosome-membrane integrities. The 5% glycerol treatment resulted in improved sperm motility, plasma-membrane integrity and acrosome-membrane integrity (P<0.05). Freezing in LN(2) vapor showed improved sperm motility, viability, and plasma membrane integrity (P<0.05), and freezing for more than 2 min in LN(2) vapor increased acrosome-membrane integrity compared with direct plunging into LN(2) (P<0.05). The direct plunging into LN(2) showed no motile sperm. However, freezing for more than 2 min in LN(2) vapor increased the total abnormalities compared to direct plunging into LN(2) (P<0.05). In conclusion, use of 5% glycerol and freezing in LN(2) vapor were essential for the rapid freezing of canine sperm without cooling equilibration. In particular, holding for 2 min in LN(2) vapor was sufficient to yield successful rapid freezing. This rapid freezing method is simple and effective in canine sperm and would be helpful to offer information for trial of vitrification in large volumes of canine sperm.  相似文献   

19.
The objective of the study reported here was to elucidate the optimal equilibration conditions for carrying out vitrification of two-cell mouse embryos, using a solution containing 2M dimethyl sulfoxide, 1M acetamide, and 3M propylene glycol (DAP213) as a cryoprotectant. Embryos were subjected to an equilibration process under 20 conditions of a combination of different temperatures (10 to 37 degrees C) and times (5 to 90 sec), and viability of the embryos was assessed by the rate of development into blastocysts and into live fetuses. As a result, these rates of development into blastocysts did not differ from those for unfrozen embryos. The rate of development of frozen-thawed embryos into live fetuses under conditions of 30 sec. at 20 degrees C, which was selected as having by highest operability, was 55.2%, comparable to the value (65.0%) for unfrozen embryos. Thus, the optimal equilibration condition for vitrification of two-cell mouse embryos, using DAP213 solution, was 30 sec at 20 degrees C, under which embryo viability was maximized, and this equilibration process was considered useful as a practical two-cell embryo freezing process in the vitrification method.  相似文献   

20.
Partial ovaries from mice, hamsters, rabbits, Japanese monkeys and rats have survived deep-freezing and returned to a normal morphological state after being thawed and transplanted into the rat uterine cavity. This report describes the ice-free cryopreservation of mouse and other ovaries at -196 degrees C by vitrification. The vitrification solution was based on the solutions reported by Rall & Fahy [16]. After ovaries had been exposed to the vitrification solution, they were frozen, with their suspending medium, by liquid nitrogen. After freezing, the ovaries were thawed in 37 degrees C water. The viability of the previously frozen ovarian tissue was tested by transplanting it into the uterine cavity of pseudopregnant rats. Seven days after transplantation, the ovaries were removed with the rat uterus, and stained with haematoxylin and eosin for histological examination. Survival of the frozen-thawed the ovaries in the rat uterine cavity demonstrates that these ovaries can tolerate exposure to osmotic dehydration and vitrification in a concentrated solution of cryoprotectant and are then immunologically acceptable to the uterine cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号