共查询到20条相似文献,搜索用时 0 毫秒
1.
Mei-Chen Liao Michael D. Hoos Darryl Aucoin Mahiuddin Ahmed Judianne Davis Steven O. Smith William E. Van Nostrand 《The Journal of biological chemistry》2010,285(46):35590-35598
Accumulation of amyloid β-protein (Aβ) into brain parenchymal plaques and the cerebral vasculature is a pathological feature of Alzheimer disease and related disorders. Aβ peptides readily form β-sheet-containing oligomers and fibrils. Previously, we reported a strong interaction between myelin basic protein (MBP) and Aβ peptides that resulted in potent inhibition of fibril assembly (Hoos, M. D., Ahmed, M., Smith, S. O., and Van Nostrand, W. E. (2007) J. Biol. Chem. 282, 9952–9961; Hoos, M. D., Ahmed, M., Smith, S. O., and Van Nostrand, W. E. (2009) Biochemistry 48, 4720–4727). MBP is recognized as a highly post-translationally modified protein. In the present study, we demonstrate that human MBP purified from either brain or a bacterial recombinant expression system comparably bound to Aβ and inhibited Aβ fibril assembly indicating that post-translational modifications are not required for this activity. We also show that purified mouse brain MBP and recombinantly expressed mouse MBP similarly inhibited Aβ fibril formation. Through a combination of biochemical and ultrastructural techniques, we demonstrate that the binding site for Aβ is located in the N-terminal 64 amino acids of MBP and that a stable peptide (MBP1) comprising these residues was sufficient to inhibit Aβ fibrillogenesis. Under conditions comparable with those used for Aβ, the fibrillar assembly of amylin, another amyloidogenic peptide, was not inhibited by MBP1, although MBP1 still bound to it. This observation suggests that the potent inhibitory effect of MBP on fibril formation is not general to amyloidogenic peptides. Finally, MBP1 could prevent the cytotoxic effects of Aβ in primary cortical neurons. Our findings suggest that inhibition of Aβ fibril assembly by MBP, mediated through its N-terminal domain, could play a role in influencing amyloid formation in Alzheimer disease brain and corresponding mouse models. 相似文献
2.
Can Zhang Andrew Browne Daniel Child Jason R. DiVito Jesse A. Stevenson Rudolph E. Tanzi 《The Journal of biological chemistry》2010,285(12):8515-8526
Alzheimer disease (AD) is a devastating neurodegenerative disease with complex and strong genetic inheritance. Four genes have been established to either cause familial early onset AD (APP, PSEN1, and PSEN2) or to increase susceptibility for late onset AD (APOE). To date ∼80% of the late onset AD genetic variance remains elusive. Recently our genome-wide association screen identified four novel late onset AD candidate genes. Ataxin 1 (ATXN1) is one of these four AD candidate genes and has been indicated to be the disease gene for spinocerebellar ataxia type 1, which is also a neurodegenerative disease. Mounting evidence suggests that the excessive accumulation of Aβ, the proteolytic product of β-amyloid precursor protein (APP), is the primary AD pathological event. In this study, we ask whether ATXN1 may lead to AD pathogenesis by affecting Aβ and APP processing utilizing RNA interference in a human neuronal cell model and mouse primary cortical neurons. We show that knock-down of ATXN1 significantly increases the levels of both Aβ40 and Aβ42. This effect could be rescued with concurrent overexpression of ATXN1. Moreover, overexpression of ATXN1 decreased Aβ levels. Regarding the underlying molecular mechanism, we show that the effect of ATXN1 expression on Aβ levels is modulated via β-secretase cleavage of APP. Taken together, ATXN1 functions as a genetic risk modifier that contributes to AD pathogenesis through a loss-of-function mechanism by regulating β-secretase cleavage of APP and Aβ levels. 相似文献
3.
Hidekuni Yamakawa Sosuke Yagishita Eugene Futai Shoichi Ishiura 《The Journal of biological chemistry》2010,285(3):1634-1642
The amyloid-β (Aβ) peptide, widely known as the causative molecule of Alzheimer disease (AD), is generated by the sequential cleavage of amyloid precursor protein (APP) by the aspartyl proteases BACE1/β-secretase and presenilin/γ-secretase. Inhibition of BACE1, therefore, is a promising strategy for preventing the progression of AD. However, β-secretase inhibitors (BSIs) exhibit unexpectedly low potency in cells expressing “Swedish mutant” APP (APPswe) and in the transgenic mouse Tg2576, an AD model overexpressing APPswe. The Swedish mutation dramatically accelerates β-cleavage of APP and hence the generation of Aβ; this acceleration has been assumed to underlie the poor inhibitory activity of BSI against APPswe processing. Here, we studied the mechanism by which the Swedish mutation causes this BSI potency decrease. Surprisingly, decreased BSI potency was not observed in an in vitro assay using purified BACE1 and substrates, indicating that the accelerated β-cleavage resulting from the Swedish mutation is not its underlying cause. By focusing on differences between the cell-based and in vitro assays, we have demonstrated here that the potency decrease is caused by the aberrant subcellular localization of APPswe processing and not by accelerated β-cleavage or the accumulation of the C-terminal fragment of β-cleaved APP. Because most patients with sporadic AD express wild type APP, our findings suggest that the wild type mouse is superior to the Tg2576 mouse as a model for determining the effective dose of BSI for AD patients. This work provides novel insights into the potency decrease of BSI and valuable suggestions for its development as a disease-modifying agent. 相似文献
4.
Anna G. Vorobyeva Randall Lee Sean Miller Charles Longen Michal Sharoni Preeti J. Kandelwal Felix J. Kim Daniel R. Marenda Aleister J. Saunders 《The Journal of biological chemistry》2014,289(48):33258-33274
Alzheimer disease (AD) is a progressive neurodegenerative disease leading to memory loss. Numerous lines of evidence suggest that amyloid-β (Aβ), a neurotoxic peptide, initiates a cascade that results in synaptic dysfunction, neuronal death, and eventually cognitive deficits. Aβ is generated by the proteolytic processing of the amyloid precursor protein (APP), and alterations to this processing can result in Alzheimer disease. Using in vitro and in vivo models, we identified cyclopamine as a novel regulator of γ-secretase-mediated cleavage of APP. We demonstrate that cyclopamine decreases Aβ generation by altering APP retrograde trafficking. Specifically, cyclopamine treatment reduced APP-C-terminal fragment (CTF) delivery to the trans-Golgi network where γ-secretase cleavage occurs. Instead, cyclopamine redirects APP-CTFs to the lysosome. These data demonstrate that cyclopamine treatment decreases γ-secretase-mediated cleavage of APP. In addition, cyclopamine treatment decreases the rate of APP-CTF degradation. Together, our data demonstrate that cyclopamine alters APP processing and Aβ generation by inducing changes in APP subcellular trafficking and APP-CTF degradation. 相似文献
5.
Simone Eggert Brea Midthune Barbara Cottrell Edward H. Koo 《The Journal of biological chemistry》2009,284(42):28943-28952
The amyloid precursor protein (APP) plays a central role in Alzheimer disease (AD) pathogenesis because sequential cleavages by β- and γ-secretase lead to the generation of the amyloid-β (Aβ) peptide, a key constituent in the amyloid plaques present in brains of AD individuals. In several studies APP has recently been shown to form homodimers, and this event appears to influence Aβ generation. However, these studies have relied on APP mutations within the Aβ sequence itself that may affect APP processing by interfering with secretase cleavages independent of dimerization. Therefore, the impact of APP dimerization on Aβ production remains unclear. To address this question, we compared the approach of constitutive cysteine-induced APP dimerization with a regulatable dimerization system that does not require the introduction of mutations within the Aβ sequence. To this end we generated an APP chimeric molecule by fusing a domain of the FK506-binding protein (FKBP) to the C terminus of APP. The addition of the synthetic membrane-permeant drug AP20187 induces rapid dimerization of the APP-FKBP chimera. Using this system we were able to induce up to 70% APP dimers. Our results showed that controlled homodimerization of APP-FKBP leads to a 50% reduction in total Aβ levels in transfected N2a cells. Similar results were obtained with the direct precursor of β-secretase cleavage, C99/SPA4CT-FKBP. Furthermore, there was no modulation of different Aβ peptide species after APP dimerization in this system. Taken together, our results suggest that APP dimerization can directly affect γ-secretase processing and that dimerization is not required for Aβ production.The mechanism of β-amyloid protein (Aβ)2 generation from the amyloid precursor protein is of major interest in Alzheimer disease research because Aβ is the major constituent of senile plaques, one of the neuropathological hallmarks of Alzheimer disease (1, 2). In the amyloidogenic pathway Aβ is released from the amyloid precursor protein (APP) (3) after sequential cleavages by β-secretase BACE1 (4–6) and by the γ-secretase complex (7, 8). BACE1 cleavage releases the large ectodomain of APP while generating the membrane-anchored C-terminal APP fragment (CTF) of 99 amino acids (C99). Cleavage of β-CTF by γ-secretase leads to the secretion of Aβ peptides of various lengths and the release of the APP intracellular domain (AICD) into the cytosol (9–11). The γ-secretase complex consists of at least four proteins: presenilin, nicastrin, Aph-I, and Pen-2 (12). Presenilin is thought to be the catalytic subunit of the enzyme complex (13), but how the intramembrane scission is carried out remains to be elucidated. Alternatively, APP can first be cleaved in the non-amyloidogenic pathway by α-secretase within the Aβ domain between Lys-16 and Leu-17 (14, 15). This cleavage releases the APP ectodomain (APPsα) while generating the membrane-bound C-terminal fragment (α-CTF) of 83 amino acids (C83). The latter can be further processed by the γ-secretase complex, resulting in the secretion of the small 3-kDa fragment p3 and the release of AICD.APP, a type I transmembrane protein (16) of unclear function, may act as a cell surface receptor (3). APP and its two homologues, APLP1 and APLP2, can dimerize in a homotypic or heterotypic manner and, in so doing, promote intercellular adhesion (17). In vivo interaction of APP, APLP1, and APLP2 was demonstrated by cross-linking studies from brain homogenates (18). To date at least four domains have been reported to promote APP dimerization; that is, the E1 domain containing the N-terminal growth factor-like domain and copper binding domain (17), the E2 domain containing the carbohydrate domain in the APP ectodomain (19), the APP juxtamembrane region (20), and the transmembrane domain (21, 22). In the latter domain the dimerization appears to be mediated by the GXXXG motif near the luminal face of the transmembrane region (21, 23). In addition to promoting cell adhesion, APP dimerization has been proposed to increase susceptibility to cell death (20, 24).Interestingly, by introducing cysteine mutations into the APP juxtamembrane region, it was shown that stable dimers through formation of these disulfide linkages result in significantly enhanced Aβ production (25). This finding is consistent with the observation that stable Aβ dimers are found intracellularly in neurons and in vivo in brain (26). Taken together, these results have led to the idea that APP dimerization can positively regulate Aβ production. However, other laboratories have not been able to confirm some of these observations using slightly different approaches (23, 27).To further address the question of how dimerization of APP affects cleavage by α-, β-, and γ-secretase, we chose to test this with a controlled dimerization system. Accordingly, we engineered a chimeric APP molecule by fusing a portion of the FK506-binding protein (FKBP) to the C terminus of APP such that the addition of the synthetic membrane-permeant bifunctional compound, AP20187, will induce dimerization of the APP-FKBP chimera in a controlled manner by binding to the FKBP domains. Using this system, efficient dimerization of APP up to 70% can be achieved in a time and concentration-dependent fashion. Our studies showed that controlled homodimerization of APP-FKBP leads to decreased total Aβ levels in transfected N2a cells. Homodimerization of the β-CTF/C99 fragment, the direct precursor of γ-secretase cleavage, showed comparable results. In addition, induced dimerization of APP did not lead to a modulation of different Aβ peptides as it was reported for GXXXG mutants within the transmembrane domain of APP (21). 相似文献
6.
7.
Toral Jakhria Andrew L. Hellewell Morwenna Y. Porter Matthew P. Jackson Kevin W. Tipping Wei-Feng Xue Sheena E. Radford Eric W. Hewitt 《The Journal of biological chemistry》2014,289(52):35781-35794
Fragmentation of amyloid fibrils produces fibrils that are reduced in length but have an otherwise unchanged molecular architecture. The resultant nanoscale fibril particles inhibit the cellular reduction of the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), a substrate commonly used to measure cell viability, to a greater extent than unfragmented fibrils. Here we show that the internalization of β2-microglobulin (β2m) amyloid fibrils is dependent on fibril length, with fragmented fibrils being more efficiently internalized by cells. Correspondingly, inhibiting the internalization of fragmented β2m fibrils rescued cellular MTT reduction. Incubation of cells with fragmented β2m fibrils did not, however, cause cell death. Instead, fragmented β2m fibrils accumulate in lysosomes, alter the trafficking of lysosomal membrane proteins, and inhibit the degradation of a model protein substrate by lysosomes. These findings suggest that nanoscale fibrils formed early during amyloid assembly reactions or by the fragmentation of longer fibrils could play a role in amyloid disease by disrupting protein degradation by lysosomes and trafficking in the endolysosomal pathway. 相似文献
8.
9.
Kaiwei Liang Liuqing Yang Chen Yin Zhimin Xiao Junjian Zhang Yumin Liu Jian Huang 《The Journal of biological chemistry》2010,285(2):935-942
Postmenopausal estrogen depletion is a characterized risk factor for Alzheimer disease (AD), a human disorder linked to high levels of β-amyloid peptide (Aβ) in brain tissue. Previous studies suggest that estrogen negatively regulates the level of Aβ in the brain, but the molecular mechanism is unknown. Here, we provide evidence that estrogen promotes Aβ degradation mainly through a principal Aβ degrading enzyme, neprilysin, in neuroblastoma SH-SY5Y cells. We also demonstrate that up-regulation of neprilysin by estrogen is dependent on both estrogen receptor α and β (ERα and ERβ), and ligand-activated ER regulates expression of neprilysin through physical interactions between ER and estrogen response elements (EREs) identified in the neprilysin gene. These results were confirmed by in vitro gel shift and in vivo chromatin immunoprecipitation analyses, which demonstrate specific binding of ERα and ERβ to two putative EREs in the neprilysin gene. The EREs also enhance ERα- and ERβ-dependent reporter gene expression in a yeast model system. Therefore, the study described here provides a putative mechanism by which estrogen positively regulates expression of neprilysin to promote degradation of Aβ, reducing risk for AD. These results may lead to novel approaches to prevent or treat AD. 相似文献
10.
Chikashi Terao Koichiro Ohmura Masaki Katayama Meiko Takahashi Miki Kokubo Gora Diop Yoshinobu Toda Natsuki Yamamoto Human Disease Genomics Working Group Rheumatoid Arthritis Clinical Genetic Study Consortium Reiko Shinkura Masakazu Shimizu Ivo Gut Simon Heath Inga Melchers Toshiaki Manabe Mark Lathrop Tsuneyo Mimori Ryo Yamada Fumihiko Matsuda 《PloS one》2011,6(6)
11.
Madepalli K. Lakshmana Il-Sang Yoon Eunice Chen Elizabetta Bianchi Edward H. Koo David E. Kang 《The Journal of biological chemistry》2009,284(18):11863-11872
Accumulation of the amyloid β (Aβ) peptide derived from the
proteolytic processing of amyloid precursor protein (APP) is the defining
pathological hallmark of Alzheimer disease. We previously demonstrated that
the C-terminal 37 amino acids of lipoprotein receptor-related protein (LRP)
robustly promoted Aβ generation independent of FE65 and specifically
interacted with Ran-binding protein 9 (RanBP9). In this study we found that
RanBP9 strongly increased BACE1 cleavage of APP and Aβ generation. This
pro-amyloidogenic activity of RanBP9 did not depend on the KPI domain or the
Swedish APP mutation. In cells expressing wild type APP, RanBP9 reduced cell
surface APP and accelerated APP internalization, consistent with enhanced
β-secretase processing in the endocytic pathway. The N-terminal half of
RanBP9 containing SPRY-LisH domains not only interacted with LRP but also with
APP and BACE1. Overexpression of RanBP9 resulted in the enhancement of APP
interactions with LRP and BACE1 and increased lipid raft association of APP.
Importantly, knockdown of endogenous RanBP9 significantly reduced Aβ
generation in Chinese hamster ovary cells and in primary neurons,
demonstrating its physiological role in BACE1 cleavage of APP. These findings
not only implicate RanBP9 as a novel and potent regulator of APP processing
but also as a potential therapeutic target for Alzheimer disease.The major defining pathological hallmark of Alzheimer disease
(AD)2 is the
accumulation of amyloid β protein (Aβ), a neurotoxic peptide derived
from β- and γ-secretase cleavages of the amyloid precursor protein
(APP). The vast majority of APP is constitutively cleaved in the middle of the
Aβ sequence by α-secretase (ADAM10/TACE/ADAM17) in the
non-amyloidogenic pathway, thereby abrogating the generation of an intact
Aβ peptide. Alternatively, a small proportion of APP is cleaved in the
amyloidogenic pathway, leading to the secretion of Aβ peptides
(37–42 amino acids) via two proteolytic enzymes, β- and
γ-secretase, known as BACE1 and presenilin, respectively
(1).The proteolytic processing of APP to generate Aβ requires the
trafficking of APP such that APP and BACE1 are brought together in close
proximity for β-secretase cleavage to occur. We and others have shown
that the low density lipoprotein receptor-related protein (LRP), a
multifunctional endocytosis receptor
(2), binds to APP and alters
its trafficking to promote Aβ generation. The loss of LRP substantially
reduces Aβ release, a phenotype that is reversed when full-length
(LRP-FL) or truncated LRP is transfected in LRP-deficient cells
(3,
4). Specifically, LRP-CT
lacking the extracellular ligand binding regions but containing the
transmembrane domain and the cytoplasmic tail is capable of rescuing
amyloidogenic processing of APP and Aβ release in LRP deficient cells
(3). Moreover, the LRP soluble
tail (LRP-ST) lacking the transmembrane domain and only containing the
cytoplasmic tail of LRP is sufficient to enhance Aβ secretion
(5). This activity of LRP-ST is
achieved by promoting APP/BACE1 interaction
(6), although the precise
mechanism is unknown. Although we had hypothesized that one or more
NPXY domains in LRP-ST might underlie the pro-amyloidogenic
processing of APP, we recently found that the 37 C-terminal residues of LRP
(LRP-C37) lacking the NPXY motif was sufficient to robustly promote
Aβ production independent of FE65
(7). Because LRP-C37 likely
acts by recruiting other proteins, we used the LRP-C37 region as bait in a
yeast two-hybrid screen, resulting in the identification of 4 new LRP-binding
proteins (7). Among these, we
focused on Ran-binding protein 9 (RanBP9) in this study, which we found to
play a critical role in the trafficking and processing of APP. RanBP9, also
known as RanBPM, acts as a multi-modular scaffolding protein, bridging
interactions between the cytoplasmic domains of a variety of membrane
receptors and intracellular signaling targets. These include Axl and Sky
(8), MET receptor
protein-tyrosine kinase (9),
and β2-integrin LFA-1
(10). Similarly, RanBP9
interacts with Plexin-A receptors to strongly inhibit axonal outgrowth
(11) and functions to regulate
cell morphology and adhesion
(12,
13). Here we show that RanBP9
robustly promotes BACE1 processing of APP and Aβ generation. 相似文献
12.
Lixin Mi Nanqin Gan Amrita Cheema Sivanesan Dakshanamurthy Xiantao Wang David C. H. Yang Fung-Lung Chung 《The Journal of biological chemistry》2009,284(25):17039-17051
Although it is conceivable that cancer preventive isothiocyanates (ITCs), a family of compounds in cruciferous vegetables, induce cell cycle arrest and apoptosis through a mechanism involving oxidative stress, our study shows that binding to cellular proteins correlates with their potencies of apoptosis induction. More recently, we showed that ITCs bind selectively to tubulins. The differential binding affinities toward tubulin among benzyl isothiocyanate, phenethyl isothiocyanate, and sulforaphane correlate well with their potencies of inducing tubulin conformation changes, microtubule depolymerization, and eventual cell cycle arrest and apoptosis in human lung cancer A549 cells. These results support that tubulin binding by ITCs is an early event for cell growth inhibition. Here we demonstrate that ITCs can selectively induce degradation of both α- and β-tubulins in a variety of human cancer cell lines in a dose- and time-dependent manner. The onset of degradation, a rapid and irreversible process, is initiated by tubulin aggregation, and the degradation is proteasome-dependent. Results indicate that the degradation is triggered by ITC binding to tubulin and is irrelevant to oxidative stress. This is the first report that tubulin, a stable and abundant cytoskeleton protein required for cell cycle progression, can be selectively degraded by a small molecule.Microtubules as a major cytoskeleton component in all eukaryotic cells play essential roles such as maintenance of cell polarity, intracellular traffic, organization, and cell motility (1–4). During cell division, the microtubule-formed mitotic spindle ensures the replicated chromosomes separate evenly at the end of the mitotic phase to the two daughter cells (1). It is because of its essential roles in cell growth that microtubules become a valid target for the development of anti-microtubule drugs against the rapidly growing cancer cells (2), as interference of microtubule dynamics arrests cell cycle progression and induces apoptosis (3). Therefore, microtubules have been considered one of the best targets to date for cancer chemotherapy (4).Isothiocyanates (ITCs)3 are among the best studied chemopreventive small molecules (5). The three most studied ITCs, including benzyl-ITC (BITC; abundant in garden cress), phenethyl-ITC (PEITC; in watercress), and sulforaphane (SFN; in broccoli sprouts), have been shown to induce apoptosis and cell cycle arrest (5–8). Although it is believed that oxidative stress plays a role in cell cycle arrest and apoptosis induced by ITCs (6–12), we found that binding to proteins is a predominant intracellular chemical reaction of ITCs, and their protein binding affinities correlate well with inhibition of cell proliferation and induction of apoptosis (13). Recently, we identified tubulin, the microtubule constituent, as an in vivo target of ITCs by two-dimensional gel electrophoresis and mass spectrometry (14). The growth inhibition of human non-small lung cancer A549 cells by ITCs followed the order of BITC > PEITC > SFN. The same order of potency was seen in their binding affinities toward tubulin, induction of its conformational changes, and inhibition of its polymerization. The study provides the first evidence of an in vivo ITC-tubulin binding adduct, indicating that direct modification of cysteines in tubulin by ITCs, rather than oxidative stress, may trigger cell cycle arrest and apoptosis.Here we report an unexpected novel finding that tubulin is selectively degraded in a variety of human cancer cells treated with ITCs. We provide evidence that the degradation is initiated by its binding with ITCs and mediated by the ubiquitin-proteasome pathway. Tubulin has long been viewed as a stable and abundant protein, and its levels in cells are tightly regulated (15). In the literature, the only studies on cellular tubulin level change are related to “the auto-regulation theory,” i.e. when microtubules collapse, the presence of a massive amount of tubulin monomers would selectively destabilize tubulin mRNA and subsequently decrease tubulin protein synthesis (16–18). To our knowledge, there is no report on tubulin degradation as a result of treatment with any agents. Our studies provide strong evidence that supports tubulin as a target of ITCs for cell growth inhibition, pointing to a new mechanism for the anti-microtubule or anti-mitosis effects of ITCs through covalent binding to tubulin and presenting a platform to study protein stability by modification with small molecules. 相似文献
13.
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocyte membranes and is
responsible for adhesion of these surfaces in the multilayered myelin sheath. The pattern of extensive post-translational
modifications of MBP is dynamic during normal central nervous system (CNS) development and during myelin degeneration in multiple
sclerosis (MS), affecting its interactions with the myelin membranes and with other molecules. In particular, the degree of
deimination (or citrullination) of MBP is correlated with the severity of MS, and may represent a primary defect that precedes
neurodegeneration due to autoimmune attack. That the degree of MBP deimination is also high in early CNS development indicates
that this modification plays major physiological roles in myelin assembly. In this review, we describe the structural and
functional consequences of MBP deimination in healthy and diseased myelin.
Special issue dedicated to Drs. Anthony and Celia Campagnoni. 相似文献
14.
Hongjie Wang Debleena Dey Ivan Carrera Dmitriy Minond Elisabetta Bianchi Shaohua Xu Madepalli K. Lakshmana 《The Journal of biological chemistry》2013,288(37):26668-26677
Increased processing of amyloid precursor protein (APP) and accumulation of neurotoxic amyloid β peptide (Aβ) in the brain is central to the pathogenesis of Alzheimer''s disease (AD). Therefore, the identification of molecules that regulate Aβ generation is crucial for future therapeutic approaches for AD. We demonstrated previously that RanBP9 regulates Aβ generation in a number of cell lines and primary neuronal cultures by forming tripartite protein complexes with APP, low-density lipoprotein-related protein, and BACE1, consequently leading to increased amyloid plaque burden in the brain. RanBP9 is a scaffold protein that exists and functions in multiprotein complexes. To identify other proteins that may bind RanBP9 and regulate Aβ levels, we used a two-hybrid analysis against a human brain cDNA library and identified COPS5 as a novel RanBP9-interacting protein. This interaction was confirmed by coimmunoprecipitation experiments in both neuronal and non-neuronal cells and mouse brain. Colocalization of COPS5 and RanBP9 in the same subcellular compartments further supported the interaction of both proteins. Furthermore, like RanBP9, COPS5 robustly increased Aβ generation, followed by increased soluble APP-β (sAPP-β) and decreased soluble-APP-α (sAPP-α) levels. Most importantly, down-regulation of COPS5 by siRNAs reduced Aβ generation, implying that endogenous COPS5 regulates Aβ generation. Finally, COPS5 levels were increased significantly in AD brains and APΔE9 transgenic mice, and overexpression of COPS5 strongly increased RanBP9 protein levels by increasing its half-life. Taken together, these results suggest that COPS5 increases Aβ generation by increasing RanBP9 levels. Thus, COPS5 is a novel RanBP9-binding protein that increases APP processing and Aβ generation by stabilizing RanBP9 protein levels. 相似文献
15.
Thushara P. Abeyweera Xiangyu Chen Susan A. Rotenberg 《The Journal of biological chemistry》2009,284(26):17648-17656
Engineered overexpression of protein kinase Cα (PKCα) was previously shown to endow nonmotile MCF-10A human breast cells with aggressive motility. A traceable mutant of PKCα (Abeyweera, T. P., and Rotenberg, S. A. (2007) Biochemistry 46, 2364–2370) revealed that α6-tubulin is phosphorylated in cells expressing traceable PKCα and in vitro by wild type PKCα. Gain-of-function, single site mutations (Ser → Asp) were constructed at each PKC consensus site in α6-tubulin (Ser158, Ser165, Ser241, and Thr337) to simulate phosphorylation. Following expression of each construct in MCF-10A cells, motility assays identified Ser165 as the only site in α6-tubulin whose pseudophosphorylation reproduced the motile behavior engendered by PKCα. Expression of a phosphorylation-resistant mutant (S165N-α6-tubulin) resulted in suppression of MCF-10A cell motility stimulated either by expression of PKCα or by treatment with PKCα-selective activator diacylglycerol-lactone. MCF-10A cells treated with diacylglycerol-lactone showed strong phosphorylation of endogenous α-tubulin that could be blocked when S165N-α6-tubulin was expressed. The S165N mutant also inhibited intrinsically motile human breast tumor cells that express high endogenous PKCα levels (MDA-MB-231 cells) or lack PKCα and other conventional isoforms (MDA-MB-468 cells). Comparison of Myc-tagged wild type α6-tubulin and S165N-α6-tubulin expressed in MDA-MB-468 cells demonstrated that Ser165 is also a major site of phosphorylation for endogenously active, nonconventional PKC isoforms. PKC-stimulated motility of MCF-10A cells was nocodazole-sensitive, thereby implicating microtubule elongation in the mechanism. These findings support a model in which PKC phosphorylates α-tubulin at Ser165, leading to microtubule elongation and motility. 相似文献
16.
S. Fabio Falsone Andreas J. Kungl Angelika Rek Roberto Cappai Klaus Zangger 《The Journal of biological chemistry》2009,284(45):31190-31199
α-Synuclein is an intrinsically unstructured protein that binds to membranes, forms fibrils, and is involved in neurodegeneration. We used a reconstituted in vitro system to show that the molecular chaperone Hsp90 influenced α-synuclein vesicle binding and amyloid fibril formation, two processes that are tightly coupled to α-synuclein folding. Binding of Hsp90 to monomeric α-synuclein occurred in the low micromolar range, involving regions of α-synuclein that are critical for vesicle binding and amyloidogenesis. As a consequence, both processes were affected. In the absence of ATP, the accumulation of non-amyloid α-synuclein oligomers prevailed over fibril formation, whereas ATP favored fibril growth. This suggests that Hsp90 modulates the assembly of α-synuclein in an ATP-dependent manner. We propose that Hsp90 affects these folding processes by restricting conformational fluctuations of α-synuclein. 相似文献
17.
18.
19.
20.
Carl A. Machutta Gopal R. Bommineni Sylvia R. Luckner Kanishk Kapilashrami Bela Ruzsicska Carlos Simmerling Caroline Kisker Peter J. Tonge 《The Journal of biological chemistry》2010,285(9):6161-6169
Thiolactomycin (TLM), a natural product thiolactone antibiotic produced by species of Nocardia and Streptomyces, is an inhibitor of the β-ketoacyl-acyl carrier protein synthase (KAS) enzymes in the bacterial fatty acid synthase pathway. Using enzyme kinetics and direct binding studies, TLM has been shown to bind preferentially to the acyl-enzyme intermediates of the KASI and KASII enzymes from Mycobacterium tuberculosis and Escherichia coli. These studies, which utilized acyl-enzyme mimics in which the active site cysteine was replaced by a glutamine, also revealed that TLM is a slow onset inhibitor of the KASI enzymes KasA and ecFabB but not of the KASII enzymes KasB and ecFabF. The differential affinity of TLM for the acyl-KAS enzymes is proposed to result from structural change involving the movement of helices α5 and α6 that prepare the enzyme to bind malonyl-AcpM or TLM and that is initiated by formation of hydrogen bonds between the acyl-enzyme thioester and the oxyanion hole. The finding that TLM is a slow onset inhibitor of ecFabB supports the proposal that the long residence time of TLM on the ecFabB homologues in Serratia marcescens and Klebsiella pneumonia is an important factor for the in vivo antibacterial activity of TLM against these two organisms despite the fact that the in vitro MIC values are only 100–200 μg/ml. The mechanistic data on the interaction of TLM with KasA will provide an important foundation for the rational development of high affinity KasA inhibitors based on the thiolactone skeleton. 相似文献