首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of angiotensin II (100 nm) on the electrical membrane properties of zona fasciculata cells isolated from calf adrenal gland were studied using the whole cell patch recording method. In current-clamp condition, angiotension II induced a biphasic membrane response which began by a transient hyperpolarization followed by a depolarization more positive than the control resting potential. These effects were abolished by Losartan (10−5 m), an antagonist of angiotensin receptors of type 1. The angiotensin II-induced transient hyperpolarization was characterized in voltage-clamp condition from a holding potential of −10 mV. Using either the perforated or the standard recording method, a transient outward current accompanied by an increase of the membrane conductance was observed in response to the hormonal stimulation. This outward current consisted of an initial fast peak followed by an oscillating or a slowly decaying plateau current. In Cl-free solution, the outward current reversed at −78.5 mV, a value close to E K. It was blocked by external TEA (20 mm) and by apamin (50 nm). In K+-free solution, the transient outward current, sensitive to Cl channel blocker DPC (400 μm), reversed at −52 mV, a more positive potential than E Cl. Its magnitude changed in the same direction as the driving force for Cl. The hormone-induced transient outward current was never observed when EGTA (5 mm) was added to the pipette solution. The plateau current was suppressed in nominally Ca2+-free solution (47% of cells) and was reversibly blocked by Cd2+ (300 μm) but not by nisoldipine (0.5–1 μm) which inhibited voltage-gated Ca2+ currents identified in this cell type. The present experiments show that the transient hyperpolarization induced by angiotensin II is due to Ca2+-dependent K+ and Cl currents. These two membrane currents are co-activated in response to an internal increase of [Ca2+] i originating from intra- and extracellular stores. Received: 29 May 1997/Revised: 4 November 1997  相似文献   

2.
De-differentiation of vascular smooth muscle cells (VSMCs) plays a critical role in the development of atherosclerosis, a chronic inflammatory disease involving various cytokines such as tumor necrosis factor-α (TNFα). Myocardin is a co-factor of serum response factor (SRF) and is considered to be the master regulator of VSMC differentiation. It binds to SRF and regulates the expression of contractile proteins in VSMCs. Myocardin is also known to inhibit VSMC proliferation by inhibiting the NF-κB pathway, whereas TNFα is known to activate the NF-κB pathway in VSMCs. NF-κB activation has also been shown to inhibit myocardin expression and smooth muscle contractile marker genes. However, it is not definitively known whether TNFα regulates the expression and activity of myocardin in VSMCs. The current study aimed to investigate the role of TNFα in regulating myocardin and VSMC function. Our studies showed that TNFα down-regulated myocardin expression and activity in cultured VSMCs by activating the NF-κB pathway, resulting in decreased VSMC contractility and increased VSMC proliferation. Surprisingly, we also found that TNFα prevented myocardin mRNA degradation, and resulted in a further significant increase in myocardin expression and activity in differentiated VSMCs. Both the NF-κB and p44/42 MAPK pathways were involved in TNFα regulation of myocardin, which further increased the contractility of VSMCs. These differential effects of TNFα on myocardin seemingly depended on whether VSMCs were in a differentiated or de-differentiated state. Taken together, our results demonstrate that TNFα differentially regulates myocardin expression and activity, which may play a key role in regulating VSMC functions.  相似文献   

3.
Previous studies have shown that the whole-cell current-voltage (I-V) relation of unstimulated sheep parotid cells is dominated by two K+ conductances, one outwardly and the other inwardly rectifying. We now show that once these K+ conductances are blocked by replacement of pipette K+ with Na+ and by the addition of 5 mmol/liter CsCl to the bath, there remains an outwardly rectifying conductance with a reversal potential of 0 mV. Replacement of 120 mmol/liter NaCl in the pipette solution with an equimolar amount of Na-glutamate shifted the reversal potential of this residual current to -55 mV, indicating that the conductance was Cl? selective. The Cl? current was activated by increasing the free Ca2+ in the pipette solution from 10 to 100 nmol/liter. When the Ca2+ concentration in the pipette solution was 10 nmol/liter, the relaxations observed in response to membrane depolarization could be fitted with a single exponential, whose time constant increased from 81 to 183 ms as the pipette potential was increased from -30 to +60 mV. Relaxation analysis showed that the current was activated by membrane depolarization. Reversal potential measurements in experiments in which external Cl? was replaced with various anions, gave the following relative permeabilities: SCN- (1.80) > I- (1.09) > CI- (1) > NO 3 - (0.92) > Br- (0.75). The relative conductances were: SCN- (2.18) > I- (1.07) > Cl? (1.00) > Br- (0.91) > NO 3 - (0.50). The Cl? current was blocked by NPPB (ID50 ≈ 10 μm), DIDS (10 or 30 μmol/liter) and furosemide (100 μmol/liter).  相似文献   

4.
5.
Ca2+ and Mg2+ are important mediators and regulators of intracellular Ca2+ signaling in muscle. The effects of changes of cytosolic [Ca2+] or [Mg2+] on elementary Ca2+ release events were determined, as functions of concentration and time, in single fast-twitch permeabilized fibers of rat and frog. Ca2+ sparks were identified and their parameters measured in confocal images of fluo-4 fluorescence. Solutions with different [Ca2+] or [Mg2+] were rapidly exchanged while imaging. Faster and spatially homogeneous changes of [Ca2+] (reaching peaks >100 microM) were achieved by photolysing Ca NP-EGTA with laser flashes. In both species, incrementing cytosolic [Ca2+] caused a steady, nearly proportional increase in spark frequency, reversible upon [Ca2+] reduction. A greater change in spark frequency, usually transient, followed sudden increases in [Ca2+] after a lag of 100 ms or more. The nonlinearity, lag, and other features of this delayed effect suggest that it requires increase of [Ca2+] inside the SR. In the frog only, increases in cytosolic [Ca2+] often resulted, after a lag, in sparks that propagated transversally. An increase in [Mg2+] caused a fall of spark frequency, but with striking species differences. In the rat, but not the frog, sparks were observed at 4-40 mM [Mg2+]. Reducing [Mg2+] below 2 mM, which should enable the RyR channel's activation (CICR) site to bind Ca2+, caused progressive increase in spark frequency in the frog, but had no effect in the rat. Spark propagation and enhancement by sub-mM Mg2+ are hallmarks of CICR. Their absence in the rat suggests that CICR requires RyR3 para-junctional clusters, present only in the frog. The observed frequency of sparks corresponds to a channel open probability of 10(-7) in the frog or 10(-8) in the rat. Together with the failure of photorelease to induce activation directly, this indicates a basal inhibition of channels in situ. It is proposed that relief of this inhibition could be the mechanism by which increased SR load increases spark frequency.  相似文献   

6.
To examine the involvement of Na+,K+,2Cl cotransport in monovalent ion fluxes in vascular smooth muscle cells (VSMC), we compared the effect of bumetanide on 86Rb, 36Cl and 22Na uptake by quiescent cultures of VSMC from rat aorta. Under basal conditions, the values of bumetanide-sensitive (BS) inward and outward 86Rb fluxes were not different. Bumetanide decreased basal 86Rb uptake by 70–75% with a K i of ∼0.2–0.3 μm. At concentrations ranging up to 1 μm, bumetanide did not affect 36Cl influx and reduced it by 20–30% in the range from 3 to 100 μm. In contrast to 86Rb and 36Cl influx, bumetanide did not inhibit 22Na uptake by VSMC. BS 86Rb uptake was completely abolished in Na+- or Cl-free media. In contrast to 86Rb, basal BS 36Cl influx was not affected by Na+ o and K+ o . Hyperosmotic and isosmotic shrinkage of VSMC increased 86Rb and 36Cl influx to the same extent. Shrinkage-induced increments of 86Rb and 36Cl uptake were completely abolished by bumetanide with a K i or ∼0.3 μm. Shrinkage did not induce BS 86Rb and 36Cl influx in (Na+ or Cl)- and (Na+ or K+)-depleted media, respectively. In the presence of an inhibitor of Na+/H+ exchange (EIPA), neither hyperosmotic nor isosmotic shrinkage activated 22Na influx. Bumetanide (1 μm) did not modify basal VSMC volume and intracellular content of sodium, potassium and chloride but abolished the regulatory volume increase in isosmotically-shrunken VSMC. These data demonstrate the absence of the functional Na+,K+,2Cl cotransporter in VSMC and suggest that in these cells basal and shrinkage-induced BS K+ influx is mediated by (Na+ o + Cl o )-dependent K+/K+ exchange and Na+ o -dependent K+,Cl cotransport, respectively. Received: 30 January 1996/Revised: 20 May 1996  相似文献   

7.
The large conductance Ca2+-activated K+ (BK) channel, expressed abundantly in vascular smooth muscle cells (SMCs), is a key determinant of vascular tone. BK channel activity is tightly regulated by its accessory β1 subunit (BK-β1). However, BK channel function is impaired in diabetic vessels by increased ubiquitin/proteasome-dependent BK-β1 protein degradation. Muscle RING finger protein 1 (MuRF1), a muscle-specific ubiquitin ligase, is implicated in many cardiac and skeletal muscle diseases. However, the role of MuRF1 in the regulation of vascular BK channel and coronary function has not been examined. In this study, we hypothesized that MuRF1 participated in BK-β1 proteolysis, leading to the down-regulation of BK channel activation and impaired coronary function in diabetes. Combining patch clamp and molecular biological approaches, we found that MuRF1 expression was enhanced, accompanied by reduced BK-β1 expression, in high glucose-cultured human coronary SMCs and in diabetic vessels. Knockdown of MuRF1 by siRNA in cultured human SMCs attenuated BK-β1 ubiquitination and increased BK-β1 expression, whereas adenoviral expression of MuRF1 in mouse coronary arteries reduced BK-β1 expression and diminished BK channel-mediated vasodilation. Physical interaction between the N terminus of BK-β1 and the coiled-coil domain of MuRF1 was demonstrated by pulldown assay. Moreover, MuRF1 expression was regulated by NF-κB. Most importantly, pharmacological inhibition of proteasome and NF-κB activities preserved BK-β1 expression and BK-channel-mediated coronary vasodilation in diabetic mice. Hence, our results provide the first evidence that the up-regulation of NF-κB-dependent MuRF1 expression is a novel mechanism that leads to BK channelopathy and vasculopathy in diabetes.  相似文献   

8.
This combined study of patch-clamp and intracellular Ca2+ ([Ca2+] i ) measurement was undertaken in order to identify signaling pathways that lead to activation of Ca2+-dependent Cl channels in cultured rat retinal pigment epithelial (RPE) cells. Intracellular application of InsP3 (10 μm) led to an increase in [Ca2+] i and activation of Cl currents. In contrast, intracellular application of Ca2+ (10 μm) only induced transient activation of Cl currents. After full activation by InsP3, currents were insensitive to removal of extracellular Ca2+ and to the blocker of I CRAC, La3+ (10 μm), despite the fact that both maneuvers led to a decline in [Ca2+] i . The InsP3-induced rise in Cl conductance could be prevented either by thapsigargin-induced (1 μm) depletion of intracellular Ca2+ stores or by removal of Ca2+ prior to the experiment. The effect of InsP3 could be mimicked by intracellular application of the Ca2+-chelator BAPTA (10 mm). Block of PKC (chelerythrine, 1 μm) had no effect. Inhibition of Ca2+/calmodulin kinase (KN-63, KN-92; 5 μm) reduced Cl-conductance in 50% of the cells investigated without affecting [Ca2+] i . Inhibition of protein tyrosine kinase (50 μm tyrphostin 51, 5 μm genistein, 5 μm lavendustin) reduced an increase in [Ca2+] i and Cl conductance. In summary, elevation of [Ca] i by InsP3 leads to activation of Cl channels involving cytosolic Ca2+ stores and Ca2+ influx from extracellular space. Tyrosine kinases are essential for the Ca2+-independent maintenance of this conductance. Received: 15 October 1998/Revised: 3 March 1999  相似文献   

9.
10.
Fibulin-1 (FBLN-1) is a secreted glycoprotein that is associated with extracellular matrix (ECM) formation and rebuilding. Abnormal and exaggerated deposition of ECM proteins is a hallmark of many fibrotic diseases, such as chronic obstructive pulmonary disease (COPD) where small airway fibrosis occurs. The aim of this study was to investigate the regulation of FBLN-1 by transforming growth factor beta 1 (TGF-β1) (a pro-fibrotic stimulus) in primary human airway smooth muscle (ASM) cells from volunteers with and without COPD. Human ASM cells were seeded at a density of 1×104 cells/cm2, and stimulated with or without TGF-β1 (10 ng/ml) for 72 hours before FBLN-1 deposition and soluble FBLN-1 were measured. Fold change in FBLN-1 mRNA was measured at 4, 8, 24, 48, 72 hours. In some experiments, cycloheximide (0.5 µg/ml) was used to assess the regulation of FBLN-1 production. TGF-β1 decreased the amount of soluble FBLN-1 both from COPD and non-COPD ASM cells. In contrast, the deposition of FBLN-1 into the ECM was increased in ASM cells obtained from both groups. TGF-β1 did not increase FBLN-1 gene expression at any of the time points. There were no differences in the TGF-β1 induced FBLN-1 levels between cells from people with or without COPD. Cycloheximide treatment, which inhibits protein synthesis, decreased both the constitutive release of soluble FBLN-1, and TGF-β1 induced ECM FBLN-1 deposition. Furthermore, in cycloheximide treated cells addition of soluble FBLN-1 resulted in incorporation of FBLN-1 into the ECM. Therefore the increased deposition of FBLN-1 by ASM cells into the ECM following treatment with TGF-β1 is likely due to incorporation of soluble FBLN-1 rather than de-novo synthesis.  相似文献   

11.
Skeletal muscles show a high plasticity to cope with various physiological demands. Different muscle types can be distinguished by the force, endurance, contraction/relaxation kinetics (fast-twitch vs. slow-twitch muscles), oxidative/glycolytic capacity, and also with respect to Ca2+-signaling components. Changes in Ca2+ signaling and associated Ca2+-dependent processes are thought to underlie the high adaptive capacity of muscle fibers. Here we investigated the consequences and the involved mechanisms caused by the ectopic expression of the Ca2+-binding protein parvalbumin (PV) in C2C12 myotubes in vitro, and conversely, the effects caused by its absence in in fast-twitch muscles of parvalbumin null-mutant (PV−/−) mice in vivo. The absence of PV in fast-twitch muscle tibialis anterior (TA) resulted in an increase in the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and of its positive regulator, the deacetylase sirtuin 1 (SIRT1). TA muscles from PV−/− mice also have an increased mitochondrial volume. Mild ionophore treatment of control (PV-devoid) C2C12 myotubes causing a moderate elevation in [Ca2+]c resulted in an increase in mitochondrial volume, together with elevated PGC-1α and SIRT1 expression levels, whilst it increased PV expression levels in myotubes stably transfected with PV. In PV-expressing myotubes the mitochondrial volume, PGC-1α and SIRT1 were significantly lower than in control C2C12 myotubes already at basal conditions and application of ionophore had no effect on either one. SIRT1 activation causes a down-regulation of PV in transfected myotubes, whilst SIRT1 inhibition has the opposite effect. We conclude that PV expression and mitochondrial volume in muscle cells are inversely regulated via a SIRT1/PGC-1α signaling axis.  相似文献   

12.
An amiloride-sensitive, Ca2+-activated nonselective cation (NSC) channel in the apical membrane of fetal rat alveolar epithelium plays an important role in stimulation of Na+ transport by a beta adrenergic agonist (beta agonist). We studied whether Ca2+ has an essential role in the stimulation of the NSC channel by beta agonists. In cell-attached patches formed on the epithelium, terbutaline, a beta agonist, increased the open probability (P o ) of the NSC channel to 0.62 ± 0.07 from 0.03 ± 0.01 (mean ±se; n= 8) 30 min after application of terbutaline in a solution containing 1 mm Ca2+. The P o of the terbutaline-stimulated NSC channel was diminished in the absence of extracellular Ca2+ to 0.26 ± 0.05 (n= 8). The cytosolic Ca2+ concentration ([Ca2+] c ) in the presence and absence of extracellular Ca2+ was, respectively, 100 ± 6 and 20 ± 2 nm (n= 7) 30 min after application of terbutaline. The cytosolic Cl concentration ([Cl] c ) in the presence and absence of extracellular Ca2+ was, respectively, 20 ± 1 and 40 ± 2 mm (n= 7) 30 min after application of terbutaline. The diminution of [Ca2+] c from 100 to 20 nm itself had no significant effects on the P o if the [Cl] c was reduced to 20 mm; the P o was 0.58 ± 0.10 at 100 nm [Ca2+] c and 0.55 ± 0.09 at 20 nm [Ca2+] c (n= 8) with 20 mm [Cl] c in inside-out patches. On the other hand, the P o (0.28 ± 0.10) at 20 nm [Ca2+] c with 40 mm [Cl] c was significantly lower than that (0.58 ± 0.10; P < 0.01; n= 8) at 100 nm [Ca2+] c with 20 mm [Cl] c , suggesting that reduction of [Cl] c is an important factor stimulating the NSC channel. These observations indicate that the extracellular Ca2+ plays an important role in the stimulatory action of beta agonist on the NSC channel via reduction of [Cl] c . Received: 11 August 2000/Revised: 4 December 2000  相似文献   

13.
Mitogen-activated protein kinase phosphatase 1 (MKP-1) represses MAPK-driven signalling and plays an important anti-inflammatory role in asthma and airway remodelling. Although MKP-1 is corticosteroid-responsive and increased by cAMP-mediated signalling, the upregulation of this critical anti-inflammatory protein by long-acting β2-agonists and clinically-used corticosteroids has been incompletely examined to date. To address this, we investigated MKP-1 gene expression and protein upregulation induced by two long-acting β2-agonists (salmeterol and formoterol), alone or in combination with the corticosteroid fluticasone propionate (abbreviated as fluticasone) in primary human airway smooth muscle (ASM) cells in vitro. β2-agonists increased MKP-1 protein in a rapid but transient manner, while fluticasone induced sustained upregulation. Together, long-acting β2-agonists increased fluticasone-induced MKP-1 and modulated ASM synthetic function (measured by interleukin 6 (IL-6) and interleukin 8 (IL-8) secretion). As IL-6 expression (like MKP-1) is cAMP/adenylate cyclase-mediated, the long-acting β2-agonist formoterol increased IL-6 mRNA expression and secretion. Nevertheless, when added in combination with fluticasone, β2-agonists significantly repressed IL-6 secretion induced by tumour necrosis factor α (TNFα). Conversely, as IL-8 is not cAMP-responsive, β2-agonists significantly inhibited TNFα-induced IL-8 in combination with fluticasone, where fluticasone alone was without repressive effect. In summary, long-acting β2-agonists increase fluticasone-induced MKP-1 in ASM cells and repress synthetic function of this immunomodulatory airway cell type.  相似文献   

14.
Summary The net loss of KCl observed in Ehrlich ascites cells during regulatory volume decrease (RVD) following hypotonic exposure involves activation of separate conductive K+ and Cl transport pathways. RVD is accelerated when a parallel K+ transport pathway is provided by addition of gramicidin, indicating that the K+ conductance is rate limiting. Addition of ionophore A23187 plus Ca2+ also activates separate K+ and Cl transport pathways, resulting in a hyperpolarization of the cell membrane. A calculation shows that the K+ and Cl conductance is increased 14-and 10-fold, respectively. Gramicidin fails to accelerate the A23187-induced cell shrinkage, indicating that the Cl conductance is rate limiting. An A23187-induced activation of42K and36Cl tracer fluxes is directly demonstrated. RVD and the A23187-induced cell shrinkage both are: (i) inhibited by quinine which blocks the Ca2+-activated K+ channel. (ii) unaffected by substitution of NO 3 or SCN for Cl, and (iii) inhibited by the anti-calmodulin drug pimozide. When the K+ channel is blocked by quinine but bypassed by addition of gramicidin, the rate of cell shrinkage can be used to monitor the Cl conductance. The Cl conductance is increased about 60-fold during RVD. The volume-induced activation of the Cl transport pathway is transient, with inactivation within about 10 min. The activation induced by ionophore A23187 in Ca2+-free media (probably by release of Ca2+ from internal stores) is also transient, whereas the activation is persistent in Ca2+-containing media. In the latter case, addition of excess EGTA is followed by inactivation of the Cl transport pathway. These findings suggest that a transient increase in free cytosolic Ca2+ may account for the transient activation of the Cl transport pathway. The activated anion transport pathway is unselective, carrying both Cl, Br, NO 3 , and SCN. The anti-calmodulin drug pimozide blocks the volume- or A23187-induced Cl transport pathway and also blocks the activation of the K+ transport pathway. This is demonstrated directly by42K flux experiments and indirectly in media where the dominating anion (SCN) has a high ground permeability. A comparison of the A23187-induced K+ conductance estimated from42K flux measurements at high external K+, and from net K flux measurements suggests single-file behavior of the Ca2+-activated K+ channel. The number of Ca2+-activated K+ channels is estimated at about 100 per cell.  相似文献   

15.
Whole-cell patch clamp experiments were performed on cultured human cytotrophoblast cells incubated for 24–48 hr after their isolation from term placentas. Cl-selective currents were examined using K+-free solutions. Under nonstimulated conditions, most cells initially expressed only small background leak currents. However, inclusion of 0.2 mm GTPγS in the electrode solution caused activation of an outwardly rectifying conductance which showed marked time-dependent activation at depolarized potentials above +20 mV. Stimulation of this conductance by GTPγS was found to be Ca2+-dependent since GTPγS failed to activate currents when included in a Ca2+-free electrode solution. In addition, similar currents could be activated by increasing the [Ca2+] of the pipette solution to 500 nm. The Ca2+-activated conductance was judged to be Cl-selective, since reversal potentials were predicted by Nernst equilibrium potentials for Cl. This conductance could also be reversibly inhibited by addition of the anion channel blocker DIDS to the bath solution at a dose of 100 μm. Preliminary experiments indicated the presence of a second whole-cell anion conductance in human cytotrophoblast cells, which may be activated by cell swelling. Possible roles for the Ca2+-activated Cl conductance in human placental trophoblast are discussed. Received: 9 November 1995/Revised: 18 January 1996  相似文献   

16.
Estrogen replacement therapies have been suggested to be beneficial in alleviating symptoms of overactive bladder. However, the precise regulatory mechanisms of estrogen in urinary bladder smooth muscle (UBSM) at the cellular level remain unknown. Large conductance voltage- and Ca2+-activated K+ (BK) channels, which are key regulators of UBSM function, are suggested to be non-genomic targets of estrogens. This study provides an electrophysiological investigation into the role of UBSM BK channels as direct targets for 17β-estradiol, the principle estrogen in human circulation. Single BK channel recordings on inside-out excised membrane patches and perforated whole cell patch-clamp were applied in combination with the BK channel selective inhibitor paxilline to elucidate the mechanism of regulation of BK channel activity by 17β-estradiol in freshly-isolated guinea pig UBSM cells. 17β-Estradiol (100 nM) significantly increased the amplitude of depolarization-induced whole cell steady-state BK currents and the frequency of spontaneous transient BK currents in freshly-isolated UBSM cells. The increase in whole cell BK currents by 17β-estradiol was eliminated upon blocking BK channels with paxilline. 17β-Estradiol (100 nM) significantly increased (~3-fold) the single BK channel open probability, indicating direct 17β-estradiol-BK channel interactions. 17β-Estradiol (100 nM) caused a significant hyperpolarization of the membrane potential of UBSM cells, and this hyperpolarization was reversed by blocking the BK channels with paxilline. 17β-Estradiol (100 nM) had no effects on L-type voltage-gated Ca2+ channel currents recorded under perforated patch-clamp conditions. This study reveals a new regulatory mechanism in the urinary bladder whereby BK channels are directly activated by 17β-estradiol to reduce UBSM cell excitability.  相似文献   

17.
The presence of Ca2+-activated Cl currents (ICl(Ca)) in vascular smooth muscle cells (VSMCs) is well established. ICl(Ca) are supposedly important for arterial contraction by linking changes in [Ca2+]i and membrane depolarization. Bestrophins and some members of the TMEM16 protein family were recently associated with ICl(Ca). Two distinct ICl(Ca) are characterized in VSMCs; the cGMP-dependent ICl(Ca) dependent upon bestrophin expression and the ‘classical’ Ca2+-activated Cl current, which is bestrophin-independent. Interestingly, TMEM16A is essential for both the cGMP-dependent and the classical ICl(Ca). Furthermore, TMEM16A has a role in arterial contraction while bestrophins do not. TMEM16A’s role in the contractile response cannot be explained however only by a simple suppression of the depolarization by Cl channels. It is suggested that TMEM16A expression modulates voltage-gated Ca2+ influx in a voltage-independent manner and recent studies also demonstrate a complex role of TMEM16A in modulating other membrane proteins.  相似文献   

18.
The whole-cell patch-clamp technique has been used to study membrane currents in cultured rabbit medullary thick ascending limb (MTAL) epithelial cells. A Ca2+-activated K+ current was characterized by its voltage-dependent and Ca2+-dependent properties. When the extracellular K+ ion concentration was increased from 2 to 140 mm, the rereversal potential (Ek) was shifted from –85 to 0 mV with a slope of 46 mV per e-fold change. The Ca2+-activated K+ current is blocked by charybdotoxin (CTX) in a manner similar to the apical membrane Ca2+-activated K+ channel studied with the single channel patch-clamp technique. The results suggest that the Ca2+-activated K+ current is the predominant, large conductance and Ca2+-dependent K+ pathway in the cultured MTAL cell apical membrane. The biophysical properties and physiological regulation of a Cl current were also investigated. This current was activated by stimulation of intracellular cAMP using forskolin and isobutyl-1-methylxanthine (IBMX). The current-voltage (I–V) relationship of the Cl current showed an outward-rectifying pattern in symmetrical Cl solution. The Cl selectivity of the whole-cell current was confirmed by tail current analysis in different Cl concentration bath solutions. Several Cl channel blockers were found to be effective in blocking the outward-rectifying Cl current in MTAL cells. The cAMP-dependent Cl transport in MTAL cells was further confirmed by measuring changes in the intensity of Cl sensitive dye using fluorescence microscopy. These results suggest that the Cl channel in the apical or basolateral membrane of MTAL cells may be regulated by cAMP-dependent protein-kinase-induced phosphorylation.This study was supported by the National Institutes of Health grants GM46834 to L.L. and DK32753 to W.B.G., and by a Grant-in-Aid from the American Heart Association of Ohio to L.L.  相似文献   

19.
Chloroquine (CQ), a bitter tasting drug widely used in treatment of malaria, is associated gastrointestinal side effects including nausea or diarrhea. In the present study, we investigated the effect of CQ on electrolyte transport in rat ileum using the Ussing chamber technique. The results showed that CQ evoked an increase in short circuit current (ISC) in rat ileum at lower concentration (≤5×10−4 M ) but induced a decrease at higher concentrations (≥10−3 M). These responses were not affected by tetrodotoxin (TTX). Other bitter compounds, such as denatoniumbenzoate and quinine, exhibited similar effects. CQ-evoked increase in ISC was partly reduced by amiloride(10−4 M), a blocker of epithelial Na+ channels. Furosemide (10−4 M), an inhibitor of Na+-K+ -2Cl co-transporter, also inhibited the increased ISC response to CQ, whereas another Cl channel inhibitor, CFTR(inh)-172(10−5M), had no effect. Intriguingly, CQ-evoked increases were almost completely abolished by niflumic acid (10−4M), a relatively specific Ca2+-activated Cl channel (CaCC) inhibitor. Furthermore, other CaCC inhibitors, such as DIDS and NPPB, also exhibited similar effects. CQ-induced increases in ISC were also abolished by thapsigargin(10−6M), a Ca2+ pump inhibitor and in the absence of either Cl or Ca2+ from bathing solutions. Further studies demonstrated that T2R and CaCC-TMEM16A were colocalized in small intestinal epithelial cells and the T2R agonist CQ evoked an increase of intracelluar Ca2+ in small intestinal epithelial cells. Taken together, these results demonstrate that CQ induces Cl secretion in rat ileum through CaCC at low concentrations, suggesting a novel explanation for CQ-associated gastrointestinal side-effects during the treatment of malaria.  相似文献   

20.
The presence of Ca2+-activated Cl currents (ICl(Ca)) in vascular smooth muscle cells (VSMCs) is well established. ICl(Ca) are supposedly important for arterial contraction by linking changes in [Ca2+]i and membrane depolarization. Bestrophins and some members of the TMEM16 protein family were recently associated with ICl(Ca). Two distinct ICl(Ca) are characterized in VSMCs; the cGMP-dependent ICl(Ca) dependent upon bestrophin expression and the ‘classical’ Ca2+-activated Cl current, which is bestrophin-independent. Interestingly, TMEM16A is essential for both the cGMP-dependent and the classical ICl(Ca). Furthermore, TMEM16A has a role in arterial contraction while bestrophins do not. TMEM16A’s role in the contractile response cannot be explained however only by a simple suppression of the depolarization by Cl channels. It is suggested that TMEM16A expression modulates voltage-gated Ca2+ influx in a voltage-independent manner and recent studies also demonstrate a complex role of TMEM16A in modulating other membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号