首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The target of rapamycin (TOR) signaling pathway is an important mechanism by which cell growth is regulated by nutrient availability in eukaryotes. We provide evidence that the TOR signaling pathway controls mRNA turnover in Saccharomyces cerevisiae. During nutrient limitation (diauxic shift) or after treatment with rapamycin (a specific inhibitor of TOR), multiple mRNAs were destabilized, whereas the decay of other mRNAs was unaffected. Our findings suggest that the regulation of mRNA decay by the TOR pathway may play a significant role in controlling gene expression in response to nutrient depletion. The inhibition of the TOR pathway accelerated the major mRNA decay mechanism in yeast, the deadenylation-dependent decapping pathway. Of the destabilized mRNAs, two different responses to rapamycin were observed. Some mRNAs were destabilized rapidly, while others were affected only after prolonged exposure. Our data suggest that the mRNAs that respond rapidly are destabilized because they have short poly(A) tails prematurely either as a result of rapid deadenylation or reduced polyadenylation. In contrast, the mRNAs that respond slowly are destabilized by rapid decapping. In summary, the control of mRNA turnover by the TOR pathway is complex in that it specifically regulates the decay of some mRNAs and not others and that it appears to control decay by multiple mechanisms.  相似文献   

2.
3.
Sensing extracellular glucose, budding yeast switches from aerobic glycolysis to oxidative phosphorylation to adapt to environmental changes. During the conversion of metabolic mode, mitochondrial function and morphology change significantly. Mitochondria are the main supply factories of energy for various life activities in cells. However, the research on the signal pathways from glucose sensing to changes in mitochondrial function and morphology is still scarce and worthy of further exploration. In this study, we found that in addition to the known involvement of molecular chaperone Hsp82 in stress response during the conversion of metabolic mode, the phosphorylation status of Hsp82 at S485 residue regulates mitochondrial function and morphology to maintain mitochondrial homeostasis. The Hsp82S485A mutant that mimics dephosphorylation at S485 residue showed abnormal growth phenotypes related to mitochondrial defects, such as the petite phenotype, slow growth rates, and inability to use non-fermentable carbon sources. Further exploring the causes of growth defects, we found that the Hsp82S485A mutant caused mitochondrial dysfunction, including a decrease in cellular oxygen consumption rate, defects in mitochondrial electron transport chain, decreased mitochondrial membrane potential and complete loss of mtDNA. Furthermore, the Hsp82S485A mutant displayed fragmented or globular mitochondria, which may be responsible for its mitochondrial dysfunction. Our findings suggested that the phosphorylation status of Hsp82 at S485 residue might regulate mitochondrial function and morphology by affecting the stability of mitochondrial fission and fusion-related proteins. Thus, Hsp82 might be a key molecule in the signal pathway from glucose sensing to changes in mitochondrial function and morphology.  相似文献   

4.
5.
Magnesium (Mg) is an essential enzyme cofactor and a key structural component of biological molecules, but relatively little is known about the molecular components required for Mg homeostasis in eukaryotic cells. The yeast genome encodes four characterized members of the CorA Mg transporter superfamily located in the plasma membrane (Alr1 and Alr2) or the mitochondrial inner membrane (Mrs2 and Lpe10). We describe a fifth yeast CorA homolog (Mnr2) required for Mg homeostasis. MNR2 gene inactivation was associated with an increase in both the Mg requirement and the Mg content of yeast cells. In Mg-replete conditions, wild-type cells accumulated an intracellular store of Mg that supported growth under deficient conditions. An mnr2 mutant was unable to access this store, suggesting that Mg was trapped in an intracellular compartment. Mnr2 was localized to the vacuole membrane, implicating this organelle in Mg storage. The mnr2 mutant growth and Mg-content phenotypes were dependent on vacuolar proton-ATPase activity, but were unaffected by the loss of mitochondrial Mg uptake, indicating a specific dependence on vacuole function. Overexpression of Mnr2 suppressed the growth defect of an alr1 alr2 mutant, indicating that Mnr2 could function independently of the ALR genes. Together, our results implicate a novel eukaryotic CorA homolog in the regulation of intracellular Mg storage.MAGNESIUM (Mg) is a critical factor in a wide variety of biological processes (Elin 1994), and there are at least 300 Mg-dependent enzymes (Williams 1993; Cowan 1995). Given its diverse roles in biology, understanding how cells maintain Mg homeostasis is of fundamental importance. Maintaining a consistent Mg concentration in the cytosol and organelles is likely to require tight regulation of passive influx, active efflux, and sequestration mechanisms. Despite the importance of these mechanisms, relatively little is known about the molecular identity, function, and regulation of Mg transporters in eukaryotic cells.The yeast Alr1 and Alr2 proteins were the first eukaryotic Mg transporters identified. ALR1 inactivation conferred Mg-dependent growth and blocked Mg uptake (MacDiarmid and Gardner 1998; Graschopf et al. 2001). The closely related ortholog Alr2 was not essential for growth, but could compensate for the loss of Alr1 when overexpressed and was found to physically associate with Alr1 in vivo (MacDiarmid and Gardner 1998; Wachek et al. 2006). Further studies identified two related proteins in the mitochondrial inner membrane (Mrs2 and Lpe10). Both proteins were required for the entry of Mg into the mitochondrial matrix, and loss-of-function mutations in either gene caused similar reductions in mitochondrial function and Mg content (Bui et al. 1999; Gregan et al. 2001a,b). All four of these proteins are members of the metal ion transporter (MIT) superfamily, the founder member of which is CorA from Salmonella typhimurium (Gardner 2003; Knoop et al. 2005). In general, MIT proteins mediate rapid, membrane-potential-dependent transport, suggesting that they form Mg-selective channels (MacDiarmid and Gardner 1998; Liu et al. 2002; Kolisek et al. 2003; Froschauer et al. 2004; Schindl et al. 2007). Although divergent in primary sequence, typical MIT proteins possess two conserved structural features: a pair of transmembrane domains close to the C terminus and a triad of conserved residues (glycine–methionine–asparagine) that are essential for Mg transport (Knoop et al. 2005). The low number of transmembrane domains predicted to be present in MIT proteins suggested that oligomerization was required for ion transport (Kolisek et al. 2003; Warren et al. 2004), and independent crystallographic studies of a CorA homolog from Thermotoga maritima support this model (Eshaghi et al. 2006; Lunin et al. 2006; Payandeh and Pai 2006). T. maritima CorA formed a homopentamer of subunits in which the C-terminal transmembrane domains clustered together to form a membrane-spanning pore. The N-terminal regions of the subunits formed a cytosolic “funnel” domain that incorporated several apparent Mg-binding sites, suggesting a regulatory role for this domain. Genetic studies provided evidence that the binding of Mg ions to these sites altered the conformation of the complex and decreased channel activity (Payandeh and Pai 2006; Payandeh et al. 2008). The activity of the Mrs2 protein was also shown to be dependent on Mg concentration (Schindl et al. 2007), suggesting that both prokaryotic and eukaryotic MIT proteins can respond directly to the cytosolic or matrix Mg concentration to promote homeostasis.A fifth CorA homolog (YKL064w) is present in the yeast genome, but has not been characterized (MacDiarmid and Gardner 1998). The Ykl064w protein shares the two predicted transmembrane domains and conserved GMN motif characteristic of Mg-transporting members of the MIT family (MacDiarmid and Gardner 1998; Knoop et al. 2005). Phylogenetic analysis revealed that Ykl064w belongs to a subgroup of fungal MIT proteins in which a tryptophan residue replaces the conserved phenylalanine preceding the GMN motif (Knoop et al. 2005). Most sequenced yeast and fungal genomes include at least one Alr1 and one Ykl064w-type ortholog (Knoop et al. 2005). The presence of two discrete groups of fungal CorA proteins suggested that the Ykl064w-related proteins perform a novel function. For this reason, we decided to investigate the role of Ykl064w in ion homeostasis. Here we report that Ykl064w is a vacuolar membrane protein that is required for Mg homeostasis and present evidence implicating this protein in the regulation of intracellular Mg storage.  相似文献   

6.
Strains of Saccharomyces cerevisiae accumulated intracellular trehalose up to 105 mg/g cell dry wt with 90% survival. Viability could be correlated to trehalose levels during ethanol fermentation albeit the disaccharide did not seem to contribute to fermentation yields. Trehalose-6-phosphate synthase showed high activity (up to 279 mu/mg protein) even at high residual sucrose concentration (115 g/l) in the wort suggesting to be a response of yeast cells to the osmotic stress conditions.  相似文献   

7.
8.
Respiratory metabolism depends on mitochondrial DNA, yet the mechanisms that ensure the inheritance of the mitochondrial genome are largely obscure. Recent studies with Saccharomyces cerevisiae suggest that distinct factors mediate the active segregation of mitochondrial DNA during mitotic growth. The identification of the proteins required for the maintenance of the mitochondrial genome provides clues to the mechanisms of, and molecular machinery involved in, mitochondrial DNA inheritance.  相似文献   

9.
Meiotic development (sporulation) in the yeast Saccharomyces cerevisiae is induced by nutritional deprivation. Smk1 is a meiosis-specific MAP kinase homolog that controls spore morphogenesis after the meiotic divisions have taken place. In this study, recessive mutants that suppress the sporulation defect of a smk1-2 temperature-sensitive hypomorph were isolated. The suppressors are partial function alleles of CDC25 and CYR1, which encode the Ras GDP/GTP exchange factor and adenyl cyclase, respectively, and MDS3, which encodes a kelch-domain protein previously implicated in Ras/cAMP signaling. Deletion of PMD1, which encodes a Mds3 paralog, also suppressed the smk1-2 phenotype, and a mds3-Δ pmd1-Δ double mutant was a more potent suppressor than either single mutant. The mds3-Δ, pmd1-Δ, and mds3-Δ pmd1-Δ mutants also exhibited mitotic Ras/cAMP phenotypes in the same rank order. The effect of Ras/cAMP pathway mutations on the smk1-2 phenotype required the presence of low levels of glucose. Ime2 is a meiosis-specific CDK-like kinase that is inhibited by low levels of glucose via its carboxy-terminal regulatory domain. IME2-ΔC241, which removes the carboxy-terminal domain of Ime2, exacerbated the smk1-2 spore formation phenotype and prevented cyr1 mutations from suppressing smk1-2. Inhibition of Ime2 in meiotic cells shortly after Smk1 is expressed revealed that Ime2 promotes phosphorylation of Smk1's activation loop. These findings demonstrate that nutrients can negatively regulate Smk1 through the Ras/cAMP pathway and that Ime2 is a key activator of Smk1 signaling.  相似文献   

10.
线粒体是一种由两层膜包被的细胞器,其功能和结构的稳定性取决于线粒体膜上精确的磷脂组成及分布。线粒体膜上的大部分脂类物质由内质网合成,既而转运到线粒体。而部分脂类利用内质网上产生的前体,在线粒体内膜上合成。由此可见,线粒体膜脂的生物合成需要线粒体与内质网以及线粒体外膜(outer mitochondrial membrane, OMM)与内膜(inner mitochondrial membrane, IMM)之间进行大量的脂质转运。目前认为,这种运输过程既可在拴系因子(tether factors)形成的膜结合部位(membrane contact sites, MCSs)内发生,也可借助脂质转运蛋白(lipid transfer proteins, LTPs)完成。近年来,研究者以酵母为对象,建立了多种线粒体磷脂转运(phospholipid trafficking)的模型,这使人们初步理解了线粒体磷脂转运的机制。本综述总结了酵母线粒体磷脂转运的最新发现,并对这些磷脂转运的模型进行了讨论,以期为今后深入了解线粒体脂类代谢提供参考。  相似文献   

11.
Molecular Biology Reports - Diploid cells of Saccharomyces cerevisiae undergo either pseudohyphal differentiation or sporulation in response to depletion of carbon and nitrogen sources. Distinct...  相似文献   

12.
13.
In the present study we sought to determine the source of heat-induced oxidative stress. We investigated the involvement of mitochondrial respiratory electron transport in post-diauxic-phase cells under conditions of lethal heat shock. Petite cells were thermosensitive, had increased nuclear mutation frequencies, and experienced elevated levels of oxidation of an intracellular probe following exposure to a temperature of 50 degrees C. Cells with a deletion in COQ7 leading to a deficiency in coenzyme Q had a much more severe thermosensitivity phenotype for these oxidative endpoints following heat stress compared to that of petite cells. In contrast, deletion of the external NADH dehydrogenases NDE1 and NDE2, which feed electrons from NADH into the electron transport chain, abrogated the levels of heat-induced intracellular fluorescence and nuclear mutation frequency. Mitochondria isolated from COQ7-deficient cells secreted more than 30 times as much H(2)O(2) at 42 as at 30 degrees C, while mitochondria isolated from cells simultaneously deficient in NDE1 and NDE2 secreted no H(2)O(2). We conclude that heat stress causes nuclear mutations via oxidative stress originating from the respiratory electron transport chains of mitochondria.  相似文献   

14.
Kai Mao  Daniel J Klionsky 《Autophagy》2013,9(11):1900-1901
As a highly dynamic organelle, mitochondria undergo constitutive fusion and fission as well as biogenesis and degradation. Mitophagy, selective mitochondrial degradation through autophagy, is a conserved cellular process used for the elimination of excessive and damaged mitochondria in eukaryotes. Despite the significance of mitophagy in cellular physiology and pathophysiologies, the underlying mechanism of this process is far from clear. In this report, we studied the role of mitochondrial fission during mitophagy, and uncover a direct link between the fission complex and mitophagy machinery in Saccharomyces cerevisiae.  相似文献   

15.
Summary One mutant of mitochondrial origin resistant to miconazole has been isolated and characterized in S. cerevisiae. The mutation is linked to the locus oli1, the structural gene for subunit 9 of ATPase on mitochondrial DNA. Miconazole inhibited the mitochondrial ATPase of the wild type while the enzyme of the resistant mutant was insensitive to this effect. Levels of ATP decreased to one-third of the control in the wild type in the presence of miconazole, while they were unaffected in the mutant.Abbreviations MNNG N-methyl-N-nitrosoguanidine - Mics/Micr phenotypic sensitivity/resistance to miconazole - M 1 R mitochondrial locus conferring miconazole resistance - rho+/rho- grand/cytoplasmic petite - rhoo cytoplasmic petite deleted of all mitochondrial DNA - w+ mitochondrial locus conferring polarity of recombination  相似文献   

16.
17.
C155 and E252 are respiratory-defective mutants of Saccharomyces cerevisiae, previously assigned to complementation groups G37 and G142, respectively. The following evidence suggested that both mutants were likely to have lesions in components of the mitochondrial translational machinery: C155 and E252 display a pleiotropic deficiency in cytochromes a, a3 and b; both strains are severly limited in their ability to incorporate radioactive methionine into the mitochondrial translation products and, in addition, display a tendency to loose wild-type mitochondrial DNA. This set of characteristics is commonly found in strains affected in mitochondrial protein synthesis. To identify the biochemical lesions, each mutant was transformed with a wild-type yeast genomic library and clones complemented for the respiratory defect were selected for growth on a non-fermentable substrate. Analysis of the cloned genes revealed that C155 has a mutation in a protein which has high sequence similarity to bacterial elongation factor G and that E252 has a mutation in a protein homologous to bacterial initiation factor 2. Disruption of the chromosomal copy of each gene in a wild-type haploid yeast induced a phenotype analogous to that of the original mutants, but does not affect cell viability. These results indicate that both gene products function exclusively in mitochondrial protein synthesis. Subcloning of the IFM1 gene, coding for the mitochondrial initiation factor, indicates that the amino-terminal 423 residues of the protein are sufficient to promote peptide-chain initiation in vivo.  相似文献   

18.
19.
The Saccharomyces cerevisiae CDC9 gene encodes a DNA ligase protein that is targeted to both the nucleus and the mitochondria. While nuclear Cdc9p is known to play an essential role in nuclear DNA replication and repair, its role in mitochondrial DNA dynamics has not been defined. It is also unclear whether additional DNA ligase proteins are present in yeast mitochondria. To address these issues, mitochondrial DNA ligase function in S.cerevisiae was analyzed. Biochemical analysis of mitochondrial protein extracts supported the conclusion that Cdc9p was the sole DNA ligase protein present in this organelle. Inactivation of mitochondrial Cdc9p function led to a rapid decline in cellular mitochondrial DNA content in both dividing and stationary yeast cultures. In contrast, there was no apparent defect in mitochondrial DNA dynamics in a yeast strain deficient in Dnl4p (Deltadnl4). The Escherichia coli ECO:RI endonuclease was targeted to yeast mitochondria. Transient expression of this recombinant ECO:RI endonuclease led to the formation of mitochondrial DNA double-strand breaks. While wild-type and Deltadnl4 yeast were able to rapidly recover from this mitochondrial DNA damage, clones deficient in mitochondrial Cdc9p were not. These results support the conclusion that yeast rely upon a single DNA ligase, Cdc9p, to carry out mitochondrial DNA replication and recovery from both spontaneous and induced mitochondrial DNA damage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号