首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
LolA accommodates the acyl chains of lipoproteins in its hydrophobic cavity and shuttles between the inner and outer membranes through the hydrophilic periplasm to place lipoproteins in the outer membrane. The LolA(I93C/F140C) derivative, in which Cys replaces Ile at position 93 and Phe at position 140, strongly inhibited growth in the absence of a reducing agent because of the lethal intramolecular disulfide bond between the two Cys residues. Expression of I93C/F140C was found to activate the Cpx two-component system, which responds to cell envelope stress. The inhibition of growth by I93C/F140C was partly suppressed by overproduction of LolCDE, which is an ATP-binding cassette transporter and mediates the transfer of lipoproteins from the inner membrane to LolA. A substantial portion of the oxidized form, but not the reduced one, of I93C/F140C expressed on LolCDE overproduction was recovered in the membrane fraction, whereas wild-type LolA was localized in the periplasm even when LolCDE was overproduced. Moreover, LolCDE overproduction stabilized I93C/F140C and therefore caused an increase in its level. Taken together, these results indicate that oxidized I93C/F140C stably binds to LolCDE, which causes strong envelope stress.There are more than 90 different species of lipoproteins in the Escherichia coli envelope, most of which are localized on the periplasmic side of the outer membrane (29, 31) They each have an N-terminal cysteine covalently modified with three acyl chains, and are anchored to membranes via these lipid tails (25). Although some of these proteins have been shown to be involved in important cellular processes, such as biogenesis of the outer membrane (1, 14, 24, 35), drug transport (11), and signal transduction (7), the functions of the majority of them remain unknown. The Lol system, composed of five Lol proteins, is required for the sorting and targeting of outer membrane-specific lipoproteins (30).Lipoprotein precursors are sequentially processed to their mature forms on the periplasmic side of the inner membrane after their translocation across the inner membrane by Sec translocon (21). Those destined for the outer membrane then each form a complex with LolCDE (36), a member of ATP-binding cassette (ABC) transporter family, in the inner membrane. LolA, a periplasmic lipoprotein-specific carrier, receives lipoproteins from LolCDE in an ATP hydrolysis-dependent manner and forms a water-soluble complex with a lipoprotein (13). The complex then traverses the periplasmic space from the inner to the outer membrane, where lipoproteins are transferred from LolA to a lipoprotein receptor, LolB (14), in a mouth-to-mouth manner (20). Finally, lipoproteins are anchored to the outer membrane through the action of LolB (32).LolA is composed of 11 antiparallel β-sheets and 3 α-helices, which form an incomplete β-barrel structure with a lid covering the barrel (28). The cavity formed inside the barrel is hydrophobic and is considered to be the binding site for the acyl chains of lipoproteins. To elucidate the role of the opening and closing of the hydrophobic cavity in lipoprotein transfer reactions, the LolA(I93C/F140C) mutant, in which cysteine replaces Ile93 in the α2 helix and Phe140 in the β10 strand, was previously constructed (34). In I93C/F140C expressed in the periplasm, an intramolecular disulfide bond was formed between the two cysteine residues. This oxidized form of I93C/F140C was fixed in the closed conformation and was unable to release lipoproteins from the inner membrane, suggesting that opening of the cavity is crucial for the LolA function (34). Biochemical studies subsequently showed that the LolA cavity indeed undergoes opening and closing upon the binding and release of lipoproteins, respectively (19). Moreover, it was found that only the closed form of LolA is active in the lipoprotein release reaction.I93C/F140C exhibited the strongest growth inhibition among the LolA mutants so far isolated, although it was fully active in the presence of a reducing agent (34). We show here that oxidized I93C/F140C strongly activates the Cpx two-component system (23) that responds to cell envelope stress, whereas overproduction of LolCDE partly suppresses the toxic effect of I93C/F140C.  相似文献   

2.
3.
4.
5.
Understanding the activation mechanism of Cys loop ion channel receptors is key to understanding their physiological and pharmacological properties under normal and pathological conditions. The ligand-binding domains of these receptors comprise inner and outer β-sheets and structural studies indicate that channel opening is accompanied by conformational rearrangements in both β-sheets. In an attempt to resolve ligand-dependent movements in the ligand-binding domain, we employed voltage-clamp fluorometry on α1 glycine receptors to compare changes mediated by the agonist, glycine, and by the antagonist, strychnine. Voltage-clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. In the inner β-sheet, we labeled residues in loop 2 and in binding domain loops D and E. At each position, strychnine and glycine induced distinct maximal fluorescence responses. The pre-M1 domain responded similarly; at each of four labeled positions glycine produced a strong fluorescence signal, whereas strychnine did not. This suggests that glycine induces conformational changes in the inner β-sheet and pre-M1 domain that may be important for activation, desensitization, or both. In contrast, most labeled residues in loops C and F yielded fluorescence changes identical in magnitude for glycine and strychnine. A notable exception was H201C in loop C. This labeled residue responded differently to glycine and strychnine, thus underlining the importance of loop C in ligand discrimination. These results provide an important step toward mapping the domains crucial for ligand discrimination in the ligand-binding domain of glycine receptors and possibly other Cys loop receptors.Glycine receptor (GlyR)3 chloride channels are pentameric Cys loop receptors that mediate fast synaptic transmission in the nervous system (1, 2). This family also includes nicotinic acetylcholine receptors (nAChRs), γ-aminobutyric acid type A and type C receptors, and serotonin type 3 receptors. Individual subunits comprise a large ligand-binding domain (LBD) and a transmembrane domain consisting of four α-helices (M1–M4). The LBD consists of a 10-strand β-sandwich made of an inner β-sheet with six strands and an outer β-sheet with four strands (3). The ligand-binding site is situated at the interface of adjacent subunits and is formed by loops A–C from one subunit and loops D–F from the neighboring subunit (3).The activation mechanism of Cys loop receptors is currently the subject of intense investigation because it is key to understanding receptor function under normal and pathological conditions (4, 5). Based on structural analysis of Torpedo nAChRs, Unwin and colleagues (6, 7) originally proposed that agonist binding induced the inner β-sheet to rotate, whereas the outer β-sheet tilted slightly upwards with loop C clasping around the agonist. These movements were thought to be transmitted to the transmembrane domain via a differential movement of loop 2 (β1-β2) and loop 7 (β6-β7) (both part of the inner β-sheet) and the pre-M1 domain (which is linked via a β-strand to the loop C in the outer sheet). The idea of large loop C movements accompanying agonist binding is supported by structural and functional data (3, 813). However, a direct link between loop C movements and channel gating has proved more difficult to establish. Although computational modeling studies have suggested that this loop may be a major component of the channel opening mechanism (1418), experimental support for this model is not definitive. Similarly, loop F is also thought to move upon ligand binding, although there is as yet no consensus as to whether these changes represent local or global conformational changes (11, 1921). Recently, a comparison of crystal structures of bacterial Cys loop receptors in the closed and open states revealed that although both the inner and outer β-sheets exhibit different conformations in closed and open states, the pre-M1 domain remains virtually stationary (22, 23). It is therefore relevant to question whether loop C, loop F, and pre-M1 movements are essential for Cys loop receptor activation.Strychnine is a classical competitive antagonist of GlyRs (24, 25), and to date there is no evidence that it can produce LBD structural changes. In this study we use voltage-clamp fluorometry (VCF) to compare glycine- and strychnine-induced conformational changes in the GlyR loops 2, C, D, E, and F and the pre-M1 domain in an attempt to determine whether they signal ligand-binding events, local conformational changes, or conformational changes associated with receptor activation.In a typical VCF experiment, a domain of interest is labeled with an environmentally sensitive fluorophore, and current and fluorescence are monitored simultaneously during ligand application. VCF is ideally suited for identifying ligand-specific conformational changes because it can report on electrophysiologically silent conformational changes (26), such as those induced by antagonists. Indeed, VCF has recently provided valuable insights into the conformational rearrangements of various Cys loop receptors (19, 21, 2733).  相似文献   

6.
A central question in Wnt signaling is the regulation of β-catenin phosphorylation and degradation. Multiple kinases, including CKIα and GSK3, are involved in β-catenin phosphorylation. Protein phosphatases such as PP2A and PP1 have been implicated in the regulation of β-catenin. However, which phosphatase dephosphorylates β-catenin in vivo and how the specificity of β-catenin dephosphorylation is regulated are not clear. In this study, we show that PP2A regulates β-catenin phosphorylation and degradation in vivo. We demonstrate that PP2A is required for Wnt/β-catenin signaling in Drosophila. Moreover, we have identified PR55α as the regulatory subunit of PP2A that controls β-catenin phosphorylation and degradation. PR55α, but not the catalytic subunit, PP2Ac, directly interacts with β-catenin. RNA interference knockdown of PR55α elevates β-catenin phosphorylation and decreases Wnt signaling, whereas overexpressing PR55α enhances Wnt signaling. Taken together, our results suggest that PR55α specifically regulates PP2A-mediated β-catenin dephosphorylation and plays an essential role in Wnt signaling.Wnt/β-catenin signaling plays essential roles in development and tumorigenesis (13). Our previous work found that β-catenin is sequentially phosphorylated by CKIα4 and GSK3 (4), which creates a binding site for β-Trcp (5), leading to degradation via the ubiquitination/proteasome machinery (3). Mutations in β-catenin or APC genes that prevent β-catenin phosphorylation or ubiquitination/degradation lead ultimately to cancer (1, 2).In addition to the involvement of kinases, protein phosphatases, such as PP1, PP2A, and PP2C, are also implicated in Wnt/β-catenin regulation. PP2C and PP1 may regulate dephosphorylation of Axin and play positive roles in Wnt signaling (6, 7). PP2A is a multisubunit enzyme (810); it has been reported to play either positive or negative roles in Wnt signaling likely by targeting different components (1121). Toward the goal of understanding the mechanism of β-catenin phosphorylation, we carried out siRNA screening targeting several major phosphatases, in which we found that PP2A dephosphorylates β-catenin. This is consistent with a recent study where PP2A is shown to dephosphorylate β-catenin in a cell-free system (18).PP2A consists of a catalytic subunit (PP2Ac), a structure subunit (PR65/A), and variable regulatory B subunits (PR/B, PR/B′, PR/B″, or PR/B‴). The substrate specificity of PP2A is thought to be determined by its B subunit (9). By siRNA screening, we further identified that PR55α, a regulatory subunit of PP2A, specifically regulates β-catenin phosphorylation and degradation. Mechanistically, we found that PR55α directly interacts with β-catenin and regulates PP2A-mediated β-catenin dephosphorylation in Wnt signaling.  相似文献   

7.
Redox-active copper is implicated in the pathogenesis of Alzheimer disease (AD), β-amyloid peptide (Aβ) aggregation, and amyloid formation. Aβ·copper complexes have been identified in AD and catalytically oxidize cholesterol and lipid to generate H2O2 and lipid peroxides. The site and mechanism of this abnormality is not known. Growing evidence suggests that amyloidogenic processing of the β-amyloid precursor protein (APP) occurs in lipid rafts, membrane microdomains enriched in cholesterol. β- and γ-secretases, and Aβ have been identified in lipid rafts in cultured cells, human and rodent brains, but the role of copper in lipid raft amyloidogenic processing is presently unknown. In this study, we found that copper modulates flotillin-2 association with cholesterol-rich lipid raft domains, and consequently Aβ synthesis is attenuated via copper-mediated inhibition of APP endocytosis. We also found that total cellular copper is associated inversely with lipid raft copper levels, so that under intracellular copper deficiency conditions, Aβ·copper complexes are more likely to form. This explains the paradoxical hypermetallation of Aβ with copper under tissue copper deficiency conditions in AD.Imbalance of metal ions has been recognized as one of the key factors in the pathogenesis of Alzheimer disease (AD).2 Aberrant interactions between copper or zinc with the β-amyloid peptide (Aβ) released into the glutamatergic synaptic cleft vicinity could result in the formation of toxic Aβ oligomers and aggregation into plaques characteristic of AD brains (reviewed in Ref. 1). Copper, iron, and zinc are highly concentrated in extracellular plaques (2, 3), and yet brain tissues from AD (46) and human β-amyloid precursor protein (APP) transgenic mice (710) are paradoxically copper deficient compared with age-matched controls. Elevation of intracellular copper levels by genetic, dietary, and pharmacological manipulations in both AD transgenic animal and cell culture models is able to attenuate Aβ production (7, 9, 1115). However, the underlying mechanism is at present unclear.Abnormal cholesterol metabolism is also a contributing factor in the pathogenesis of AD. Hypercholesterolemia increases the risk of developing AD-like pathology in a transgenic mouse model (16). Epidemiological and animal model studies show that a hypercholesterolemic diet is associated with Aβ accumulation and accelerated cognitive decline, both of which are further aggravated by high dietary copper (17, 18). In contrast, biochemical depletion of cholesterol using statins, inhibitors of 3-hydroxy-3-methyglutaryl coenzyme A reductase, and methyl-β-cyclodextrin, a cholesterol sequestering agent, inhibit Aβ production in animal and cell culture models (1925).Cholesterol is enriched in lipid rafts, membrane microdomains implicated in Aβ generation from APP cleavage by β- and γ-secretases. Recruitment of BACE1 (β-secretase) into lipid rafts increases the production of sAPPβ and Aβ (23, 26). The β-secretase-cleaved APP C-terminal fragment (β-CTF), and γ-secretase, a multiprotein complex composed of presenilin (PS1 or PS2), nicastrin (Nct), PEN-2 and APH-1, colocalize to lipid rafts (27). The accumulation of Aβ in lipid rafts isolated from AD and APP transgenic mice brains (28) provided further evidence that cholesterol plays a role in APP processing and Aβ generation.Currently, copper and cholesterol have been reported to modulate APP processing independently. However, evidence indicates that, despite tissue copper deficiency, Aβ·Cu2+ complexes form in AD that catalytically oxidize cholesterol and lipid to generate H2O2 and lipid peroxides (e.g. hydroxynonenal and malondialdehyde), which contribute to oxidative damage observed in AD (2935). The underlying mechanism leading to the formation of pathological Aβ·Cu2+ complexes is unknown. In this study, we show that copper alters the structure of lipid rafts, and attenuates Aβ synthesis in lipid rafts by inhibition of APP endocytosis. We also identify a paradoxical inverse relationship between total cellular copper levels and copper distribution to lipid rafts, which appear to possess a privileged pool of copper where Aβ is more likely to interact with Cu2+ under copper-deficiency conditions to form Aβ·Cu2+ complexes. These data provide a novel mechanism by which cellular copper deficiency in AD could foster an environment for potentially adverse interactions between Aβ, copper, and cholesterol in lipid rafts.  相似文献   

8.
9.
10.
According to the lipid raft theory, the plasma membrane contains small domains enriched in cholesterol and sphingolipid, which may serve as platforms to organize membrane proteins. Using methyl-β-cyclodextrin (MβCD) to deplete membrane cholesterol, many G protein-coupled receptors have been shown to depend on putative lipid rafts for proper signaling. Here we examine the hypothesis that treatment of HEK293 cells stably expressing FLAG-tagged μ-opioid receptors (HEK FLAG-μ) or δ-opioid receptors (HEK FLAG-δ) with MβCD will reduce opioid receptor signaling to adenylyl cyclase. The ability of the μ-opioid agonist [d-Ala2,N-Me-Phe4,Gly5-ol]enkephalin to acutely inhibit adenylyl cyclase or to cause sensitization of adenylyl cyclase following chronic treatment was attenuated with MβCD. These effects were due to removal of cholesterol, because replenishment of cholesterol restored [d-Ala2,N-Me-Phe4,Gly5-ol]enkephalin responses back to control values, and were confirmed in SH-SY5Y cells endogenously expressing μ-opioid receptors. The effects of MβCD may be due to uncoupling of the μ receptor from G proteins but were not because of decreases in receptor number and were not mimicked by cytoskeleton disruption. In contrast to the results in HEK FLAG-μ cells, MβCD treatment of HEK FLAG-δ cells had no effect on acute inhibition or sensitization of adenylyl cyclase by δ-opioid agonists. The differential responses of μ- and δ-opioid agonists to cholesterol depletion suggest that μ-opioid receptors are more dependent on cholesterol for efficient signaling than δ receptors and can be partly explained by localization of μ- but not δ-opioid receptors in cholesterol- and caveolin-enriched membrane domains.Membrane cholesterol can alter the function of integral proteins, such as G protein-coupled receptors, through cholesterol-protein interactions and by changes in membrane viscosity (1). In addition, cholesterol interacts with other lipids found in the bilayer, particularly sphingolipids (2), which allows for tight and organized packing that can precipitate the formation of specialized domains within the plasma membrane (3). These domains have become an area of intense research interest and have been termed lipid or membrane rafts (4). The study of membrane rafts in intact cells is controversial, due in part to the limitations of the current methods used to study rafts (5, 6). Regardless, the membrane environment formed in regions of high cholesterol and sphingolipids may be such that certain proteins have an affinity for these regions, especially proteins with a propensity to interact with cholesterol.Many G protein-coupled receptors and signaling proteins have been found to prefer cholesterol-enriched domains leading to the hypothesis that these domains can organize signaling molecules in the membrane to enhance or inhibit specific signaling events (7). This includes μ- (8, 9), δ- (10, 11), and κ-opioid receptors (12). In addition, Gαi (1217), Gαo (16), and adenylyl cyclase isoforms 3 (18), 5/6 (9, 18, 19), and 8 (20) have been found to associate with cholesterol and/or the cholesterol-binding protein caveolin. Activated opioid receptors couple to Gαi/o proteins and acutely inhibit the activity of adenylyl cyclase. Longer term exposure to opioid agonists causes sensitization of adenylyl cyclase and a rebound overshoot of cAMP production upon withdrawal of the agonist (21). Consequently, we sought to assess the role of cholesterol depletion on the ability of μ- and δ-opioid receptor agonists to inhibit and cause sensitization of adenylyl cyclase.There are conflicting data for the effect of changes in membrane cholesterol on opioid signaling. For example, an increase in plasma membrane microviscosity by addition of cholesteryl hemisuccinate to SH-SY5Y cell membranes increased μ-opioid receptor coupling to G proteins (22). Conversely, removal of membrane cholesterol from Chinese hamster ovary cells has been shown to either decrease (23) or increase (24) the coupling of μ-opioid receptors to G proteins, as measured by [35S]GTPγS3 binding stimulated by the μ-opioid agonist DAMGO. Furthermore, the effect of cholesterol removal on δ-opioid agonist-stimulated [35S]GTPγS binding varies by cell type (10, 25). In these previous studies, the variety of cell types utilized and the conflicting results make comparisons between opioid receptor types difficult. The objective of this study was to directly compare the role of membrane cholesterol in modulating acute and chronic μ- and δ-opioid signaling in the same cell systems using identical methods, including the following: 1) depletion of cholesterol by the cholesterol-sequestering agent methyl-β-cyclodextrin (MβCD); 2) separation of cholesterol-enriched membranes by sucrose gradient ultracentrifugation; and 3) clustering of lipid raft patches in whole cells with cholera toxin B subunit.In initial experiments using human embryonic kidney (HEK) cells heterologously expressing μ- or δ-opioid receptors, we found that δ-opioid receptors were located in caveolin-poor fractions following 1% Triton X-100 homogenization and sucrose gradient ultracentrifugation. This differs from studies using a detergent-free method to identify lipid raft fractions (10, 11). In contrast, we found that the μ-opioid receptor was found in both caveolin-poor and caveolin-rich fractions, in accordance with previous literature (8, 9). This differential localization of opioid receptors led us to test the hypothesis that, in contrast to the μ-opioid receptor, the δ-opioid receptor would not be dependent on cholesterol for signaling. The results show that μ- but not δ-opioid receptors have a dependence on cholesterol for signaling to adenylyl cyclase and that this effect is much more pronounced following chronic exposure to opioids.  相似文献   

11.
Paneth cells are a secretory epithelial lineage that release dense core granules rich in host defense peptides and proteins from the base of small intestinal crypts. Enteric α-defensins, termed cryptdins (Crps) in mice, are highly abundant in Paneth cell secretions and inherently resistant to proteolysis. Accordingly, we tested the hypothesis that enteric α-defensins of Paneth cell origin persist in a functional state in the mouse large bowel lumen. To test this idea, putative Crps purified from mouse distal colonic lumen were characterized biochemically and assayed in vitro for bactericidal peptide activities. The peptides comigrated with cryptdin control peptides in acid-urea-PAGE and SDS-PAGE, providing identification as putative Crps. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry experiments showed that the molecular masses of the putative α-defensins matched those of the six most abundant known Crps, as well as N-terminally truncated forms of each, and that the peptides contain six Cys residues, consistent with identities as α-defensins. N-terminal sequencing definitively revealed peptides with N termini corresponding to full-length, (des-Leu)-truncated, and (des-Leu-Arg)-truncated N termini of Crps 1–4 and 6. Crps from mouse large bowel lumen were bactericidal in the low micromolar range. Thus, Paneth cell α-defensins secreted into the small intestinal lumen persist as intact and functional forms throughout the intestinal tract, suggesting that the peptides may mediate enteric innate immunity in the colonic lumen, far from their upstream point of secretion in small intestinal crypts.Antimicrobial peptides (AMPs)2 are released by epithelial cells onto mucosal surfaces as effectors of innate immunity (15). In mammals, most AMPs derive from two major families, the cathelicidins and defensins (6). The defensins comprise the α-, β-, and θ-defensin subfamilies, which are defined by the presence of six cysteine residues paired in characteristic tridisulfide arrays (7). α-Defensins are highly abundant in two primary cell lineages: phagocytic leukocytes, primarily neutrophils, of myeloid origin and Paneth cells, which are secretory epithelial cells located at the base of the crypts of Lieberkühn in the small intestine (810). Neutrophil α-defensins are stored in azurophilic granules and contribute to non-oxidative microbial cell killing in phagolysosomes (11, 12), except in mice whose neutrophils lack defensins (13). In the small bowel, α-defensins and other host defense proteins (1418) are released apically as components of Paneth cell secretory granules in response to cholinergic stimulation and after exposure to bacterial antigens (19). Therefore, the release of Paneth cell products into the crypt lumen is inferred to protect mitotically active crypt cells from colonization by potential pathogens and confer protection against enteric infection (7, 20, 21).Under normal, homeostatic conditions, Paneth cells are not found outside the small bowel, although they may appear ectopically in response to local inflammation throughout the gastrointestinal tract (22, 23). Paneth cell numbers increase progressively throughout the small intestine, occurring at highest numbers in the distal ileum (24). Mouse Paneth cells express numerous α-defensin isoforms, termed cryptdins (Crps) (25), that have broad spectrum antimicrobial activities (6, 26). Collectively, α-defensins constitute approximately seventy percent of the bactericidal peptide activity in mouse Paneth cell secretions (19), selectively killing bacteria by membrane-disruptive mechanisms (2730). The role of Paneth cell α-defensins in gastrointestinal mucosal immunity is evident from studies of mice transgenic for human enteric α-defensin-5, HD-5, which are immune to infection by orally administered Salmonella enterica sv. typhimurium (S. typhimurium) (31).The biosynthesis of mature, bactericidal α-defensins from their inactive precursors requires activation by lineage-specific proteolytic convertases. In mouse Paneth cells, inactive ∼8.4-kDa Crp precursors are processed intracellularly into microbicidal ∼4-kDa Crps by specific cleavage events mediated by matrix metalloproteinase-7 (MMP-7) (32, 33). MMP-7 null mice exhibit increased susceptibility to systemic S. typhimurium infection and decreased clearance of orally administered non-invasive Escherichia coli (19, 32). Although the α-defensin proregions are sensitive to proteolysis, the mature, disulfide-stabilized peptides resist digestion by their converting enzymes in vitro, whether the convertase is MMP-7 (32), trypsin (34), or neutrophil serine proteinases (35). Because α-defensins resist proteolysis in vitro, we hypothesized that Paneth cell α-defensins resist degradation and remain in a functional state in the large bowel, a complex, hostile environment containing varied proteases of both host and microbial origin.Here, we report on the isolation and characterization of a population of enteric α-defensins from the mouse colonic lumen. Full-length and N-terminally truncated Paneth cell α-defensins were identified and are abundant in the distal large bowel lumen.  相似文献   

12.
Apolipoprotein E-containing lipoproteins (LpE) are generated in the central nervous system by glial cells, primarily astrocytes, and are recognized as key players in lipid metabolism and transport in the brain. We previously reported that LpE protect retinal ganglion neurons from apoptosis induced by withdrawal of trophic additives (Hayashi, H., Campenot, R. B., Vance, D. E., and Vance, J. E. (2007) J. Neurosci. 27, 1933–1941). LpE bind to low density lipoprotein receptor-related protein-1 and initiate a signaling pathway that involves activation of protein kinase Cδ and inhibition of the pro-apoptotic glycogen synthase kinase-3β. We now show that uptake of LpE is not required for the neuroprotection. Experiments with inhibitors of phospholipase Cγ1 and RNAi knockdown studies demonstrate that activation of phospholipase Cγ1 is required for the anti-apoptotic signaling pathway induced by LpE. In addition, the protein phosphatase-2B, calcineurin, is involved in a neuronal death pathway induced by removal of trophic additives, and LpE inhibit calcineurin activation. LpE also attenuate neuronal death caused by oxidative stress. Moreover, physiologically relevant apoE3-containing lipoproteins generated by apoE3 knock-in mouse astrocytes more effectively protect neurons from apoptosis than do apoE4-containing lipoproteins. Because inheritance of the apoE4 allele is the strongest known genetic risk factor for Alzheimer disease, the reduced neuroprotection afforded by apoE4-containing LpE might contribute to the neurodegeneration characteristic of this disease.The lipoprotein composition of cerebrospinal fluid differs from that of plasma because the blood-brain barrier prevents the movement of lipoproteins from the peripheral circulation into the central nervous system (CNS)3 (1). The CNS contains a distinct population of lipoprotein particles that are generated within the CNS and are thought to play important roles in the metabolism and transport of lipids within the brain. These lipoproteins are the size and density of plasma high density lipoproteins and contain apolipoprotein (apo) E and apoJ as their major protein constituents (25). The apoE-containing lipoproteins (LpE) in the CNS are generated by non-neuronal glial cells, primarily astrocytes (5). Astrocytes are thought to provide nutrient support for neurons by delivering lipoproteins to neurons for axonal growth (6) and synaptogenesis (7). Interest in the function of apoE in the nervous system has blossomed recently because after nerve injury the synthesis of apoE dramatically increases (by up to 150-fold) (6, 8). In addition, inheritance of the ϵ4 allele of apoE instead of the more common ϵ3 allele is the strongest genetic risk factor known for development of late-onset Alzheimer disease (9, 10). Furthermore, apoE3-containing lipoproteins have been reported to stimulate axon growth more efficiently than those containing apoE4 (11, 12). Thus, it has been proposed that LpE assist in repairing neurons after injury.Our laboratory has reported that astrocyte-derived LpE stimulate axon extension of retinal ganglion cells (RGCs; CNS neurons) by binding to a neuronal receptor of the low density lipoprotein receptor family on axons (13). Neurons in the CNS express several receptors of this superfamily for which apoE is a ligand (2, 14, 15). Some of these receptors can function both in the endocytosis of ligands (16) and in signaling pathways that are required for normal brain development (17, 18). Recently, we demonstrated that glia-derived LpE strikingly protect cultured RGCs from apoptosis induced by withdrawal of trophic additives (19). The prevention of neuronal apoptosis was promoted by LpE binding to the multifunctional low density lipoprotein receptor-related protein-1 (LRP1) whereupon a signaling pathway was initiated that involved activation of protein kinase Cδ and inactivation of the pro-apoptotic kinase, glycogen synthase kinase-3β (19).The aim of the present study was to dissect further the mechanism by which LpE protect RGC from apoptosis. We demonstrate that uptake of LpE is not required for the prevention of apoptosis. Furthermore, a signaling pathway induced upon binding of LpE to LRP1 requires the action of phospholipase Cγ1 upstream of protein kinase Cδ. Our data also show that glial LpE containing apoE3 are more protective against apoptosis than are apoE4-containing lipoproteins.  相似文献   

13.
Cholesterol oxides, in particular 7-ketocholesterol, are proatherogenic compounds that induce cell death in the vascular wall when localized in lipid raft domains of the cell membrane. Deleterious effects of 7-ketocholesterol can be prevented by vitamin E, but the molecular mechanism involved is unclear. In this study, unlike γ-tocopherol, the α-tocopherol vitamin E form was found to prevent 7-ketocholesterol-mediated apoptosis of A7R5 smooth muscle cells. To be operative, α-tocopherol needed to be added to the cells before 7-ketocholesterol, and its anti-apoptotic effect was reduced and even suppressed when added together or after 7-ketocholesterol, respectively. Both pre- and co-treatment of the cells with α-tocopherol resulted in the redistribution of 7-ketocholesterol out of the sphingolipid/cholesterol-enriched (lipid raft) domains. In turn, fewer amounts of α-tocopherol associated with lipid rafts on 7-ketocholesterol-pretreated cells compared with untreated cells, with no prevention of cell death in this case. In further support of the implication of lipid raft domains, the dephosphorylation/inactivation of Akt-PKB was involved in the 7-ketocholesterol-induced apoptosis. Akt-PKB dephosphorylation was prevented by α-tocopherol, but not γ-tocopherol pretreatment.It has been suggested that cholesterol oxide-induced apoptosis is a key event in the initiation and progression of atherosclerosis lesions (1, 2). In the initial step of the disease, cholesterol oxides in modified low density lipoproteins were found to promote the death of endothelial cells lining the intravascular lumen (1, 2). In more advanced stages and as the atherosclerotic lesion progresses, cholesterol oxides could also contribute to the destruction of foam cells and vascular smooth muscle cells, to the formation of the lipid core, to the reduction of cell proliferation, and eventually to plaque destabilization (1, 2). Among cholesterol oxides that are mainly synthesized during oxidation of low density lipoproteins, 7-ketocholesterol is one of the most abundant in plasma and atherosclerotic lesions (3). Moreover, in a number of cell models, it has been established that 7-ketocholesterol is one of the cholesterol oxide derivatives with the highest pro-apoptotic potential (4, 5). The 7-ketocholesterol derivative associates preferentially with membrane lipid raft domains (6), which are characterized by the lateral packing of glycosphingolipids, sphingolipids, and cholesterol. Because of their insolubility in cold non-ionic detergents, rafts are also called detergent-resistant membranes (7). These structures are thought to be involved in cellular signaling mechanisms (8, 9). It is worthy of note that 7-ketocholesterol has been shown to induce cell death through inactivation of the phosphatidylinositol 3-kinase/Akt signaling pathway (10), which is known to be highly specific to lipid raft domains (9).Vitamin E is composed of closely related molecules, i.e. tocopherols and tocotrienols, which are each composed of four α, β, γ, and δ analogues. Although vitamin E was widely studied for its ability to prevent cellular damage by reactive oxygen species, it has recently been the subject of intense research for its putative, non-antioxidant functions (11, 12). Among the various forms of vitamin E, α-tocopherol is most abundant in the body as it is specifically recognized by the liver α-tocopherol transfer protein. Although several studies have shown that vitamin E has the ability to counteract the pro-apoptotic effect of 7-ketocholesterol in cultured cells (10, 13), the underlying molecular mechanism is unclear.In the present study the molecular mechanism involved in the vitamin E-mediated protection against apoptosis induced by 7-ketocholesterol was investigated on the well known A7R5 aortic smooth muscle cell model. It is reported here that α-tocopherol, but not γ-tocopherol, effectively protects the cells against 7-ketocholesterol-induced apoptosis when applied as a pretreatment before the addition of 7-ketocholesterol. Unlike γ-tocopherol, α-tocopherol was able to activate the Akt-PKB anti-apoptotic signaling pathway in the lipid raft domains (14), leading to phosphorylation and, thus, inactivation of Bad (15). Most importantly, the protective effect of α-tocopherol is shown to operate through its prior incorporation into the lipid raft domains of the plasma membrane, which leads to the subsequent exclusion and, thus, inactivation of 7-ketocholesterol.  相似文献   

14.
15.
16.
17.
18.
Prion propagation involves a conformational transition of the cellular form of prion protein (PrPC) to a disease-specific isomer (PrPSc), shifting from a predominantly α-helical conformation to one dominated by β-sheet structure. This conformational transition is of critical importance in understanding the molecular basis for prion disease. Here, we elucidate the conformational properties of a disulfide-reduced fragment of human PrP spanning residues 91–231 under acidic conditions, using a combination of heteronuclear NMR, analytical ultracentrifugation, and circular dichroism. We find that this form of the protein, which similarly to PrPSc, is a potent inhibitor of the 26 S proteasome, assembles into soluble oligomers that have significant β-sheet content. The monomeric precursor to these oligomers exhibits many of the characteristics of a molten globule intermediate with some helical character in regions that form helices I and III in the PrPC conformation, whereas helix II exhibits little evidence for adopting a helical conformation, suggesting that this region is a likely source of interaction within the initial phases of the transformation to a β-rich conformation. This precursor state is almost as compact as the folded PrPC structure and, as it assembles, only residues 126–227 are immobilized within the oligomeric structure, leaving the remainder in a mobile, random-coil state.Prion diseases, such as Creutzfeldt-Jacob and Gerstmann-Sträussler-Scheinker in humans, scrapie in sheep, and bovine spongiform encephalopathy in cattle, are fatal neurological disorders associated with the deposition of an abnormally folded form of a host-encoded glycoprotein, prion (PrP)2 (1). These diseases may be inherited, arise sporadically, or be acquired through the transmission of an infectious agent (2, 3). The disease-associated form of the protein, termed the scrapie form or PrPSc, differs from the normal cellular form (PrPC) through a conformational change, resulting in a significant increase in the β-sheet content and protease resistance of the protein (3, 4). PrPC, in contrast, consists of a predominantly α-helical structured domain and an unstructured N-terminal domain, which is capable of binding a number of divalent metals (512). A single disulfide bond links two of the main α-helices and forms an integral part of the core of the structured domain (13, 14).According to the protein-only hypothesis (15), the infectious agent is composed of a conformational isomer of PrP (16) that is able to convert other isoforms to the infectious isomer in an autocatalytic manner. Despite numerous studies, little is known about the mechanism of conversion of PrPC to PrPSc. The most coherent and general model proposed thus far is that PrPC fluctuates between the dominant native state and minor conformations, one or a set of which can self-associate in an ordered manner to produce a stable supramolecular structure composed of misfolded PrP monomers (3, 17). This stable, oligomeric species can then bind to, and stabilize, rare non-native monomer conformations that are structurally complementary. In this manner, new monomeric chains are recruited and the system can propagate.In view of the above model, considerable effort has been devoted to generating and characterizing alternative, possibly PrPSc-like, conformations in the hope of identifying common properties or features that facilitate the formation of amyloid oligomers. This has been accomplished either through PrPSc-dependent conversion reactions (1820) or through conversion of PrPC in the absence of a PrPSc template (2125). The latter approach, using mainly disulfide-oxidized recombinant PrP, has generated a wide range of novel conformations formed under non-physiological conditions where the native state is relatively destabilized. These conformations have ranged from near-native (14, 26, 27), to those that display significant β-sheet content (21, 23, 2833). The majority of these latter species have shown a high propensity for aggregation, although not all are on-pathway to the formation of amyloid. Many of these non-native states also display some of the characteristics of PrPSc, such as increased β-sheet content, protease resistance, and a propensity for oligomerization (28, 29, 31) and some have been claimed to be associated with the disease process (34).One such PrP folding intermediate, termed β-PrP, differs from the majority of studied PrP intermediate states in that it is formed by refolding the PrP molecule from the native α-helical conformation (here termed α-PrP), at acidic pH in a reduced state, with the disulfide bond broken (22, 35). Although no covalent differences between the PrPC and PrPSc have been consistently identified to date, the role of the disulfide bond in prion propagation remains disputed (25, 3639). β-PrP is rich in β-sheet structure (22, 35), and displays many of the characteristics of a PrPSc-like precursor molecule, such as partial resistance to proteinase K digestion, and the ability to form amyloid fibrils in the presence of physiological concentrations of salts (40).The β-PrP species previously characterized, spanning residues 91–231 of PrP, was soluble at low ionic strength buffers and monomeric, according to elution volume on gel filtration (22). NMR analysis showed that it displayed radically different spectra to those of α-PrP, with considerably fewer observable peaks and markedly reduced chemical shift dispersion. Data from circular dichroism experiments showed that fixed side chain (tertiary) interactions were lost, in contrast to the well defined β-sheet secondary structure, and thus in conjunction with the NMR data, indicated that β-PrP possessed a number of characteristics associated with a “molten globule” folding intermediate (22). Such states have been proposed to be important in amyloid and fibril formation (41). Indeed, antibodies raised against β-PrP (e.g. ICSM33) are capable of recognizing native PrPSc (but not PrPC) (4244). Subsequently, a related study examining the role of the disulfide bond in PrP folding confirmed that a monomeric molten globule-like form of PrP was formed on refolding the disulfide-reduced protein at acidic pH, but reported that, under their conditions, the circular dichroism response interpreted as β-sheet structure was associated with protein oligomerization (45). Indeed, atomic force microscopy on oligomeric full-length β-PrP (residues 23–231) shows small, round particles, showing that it is capable of formation of oligomers without forming fibrils (35). Notably, however, salt-induced oligomeric β-PrP has been shown to be a potent inhibitor of the 26 S proteasome, in a similar manner to PrPSc (46). Impairment of the ubiquitin-proteasome system in vivo has been linked to prion neuropathology in prion-infected mice (46).Although the global properties of several PrP intermediate states have been determined (3032, 35), no information on their conformational properties on a sequence-specific basis has been obtained. Their conformational properties are considered important, as the elucidation of the chain conformation may provide information on the way in which these chains pack in the assembly process, and also potentially provide clues on the mechanism of amyloid assembly and the phenomenon of prion strains. As the conformational fluctuations and heterogeneity of molten globule states give rise to broad NMR spectra that preclude direct observation of their conformational properties by NMR (4750), here we use denaturant titration experiments to determine the conformational properties of β-PrP, through the population of the unfolded state that is visible by NMR. In addition, we use circular dichroism and analytical ultracentrifugation to examine the global structural properties, and the distribution of multimeric species that are formed from β-PrP.  相似文献   

19.
Understanding the structural and assembly dynamics of the amyloid β-protein (Aβ) has direct relevance to the development of therapeutic agents for Alzheimer disease. To elucidate these dynamics, we combined scanning amino acid substitution with a method for quantitative determination of the Aβ oligomer frequency distribution, photo-induced cross-linking of unmodified proteins (PICUP), to perform “scanning PICUP.” Tyr, a reactive group in PICUP, was substituted at position 1, 10, 20, 30, or 40 (for Aβ40) or 42 (for Aβ42). The effects of these substitutions were probed using circular dichroism spectroscopy, thioflavin T binding, electron microscopy, PICUP, and mass spectrometry. All peptides displayed a random coil → α/β → β transition, but substitution-dependent alterations in assembly kinetics and conformer complexity were observed. Tyr1-substituted homologues of Aβ40 and Aβ42 assembled the slowest and yielded unusual patterns of oligomer bands in gel electrophoresis experiments, suggesting oligomer compaction had occurred. Consistent with this suggestion was the observation of relatively narrow [Tyr1]Aβ40 fibrils. Substitution of Aβ40 at the C terminus decreased the population conformational complexity and substantially extended the highest order of oligomers observed. This latter effect was observed in both Aβ40 and Aβ42 as the Tyr substitution position number increased. The ability of a single substitution (Tyr1) to alter Aβ assembly kinetics and the oligomer frequency distribution suggests that the N terminus is not a benign peptide segment, but rather that Aβ conformational dynamics and assembly are affected significantly by the competition between the N and C termini to form a stable complex with the central hydrophobic cluster.Alzheimer disease (AD)4 is the most common cause of late-life dementia (1) and is estimated to afflict more than 27 million people worldwide (2). An important etiologic hypothesis is that amyloid β-protein (Aβ) oligomers are the proximate neurotoxins in AD. Substantial in vivo and in vitro evidence supports this hypothesis (312). Neurotoxicity studies have shown that Aβ assemblies are potent neurotoxins (5, 1320), and the toxicity of some oligomers can be greater than that of the corresponding fibrils (21). Soluble Aβ oligomers inhibit hippocampal long term potentiation (4, 5, 13, 15, 17, 18, 22) and disrupt cognitive function (23). Compounds that bind and disrupt the formation of oligomers have been shown to block the neurotoxicity of Aβ (24, 25). Importantly, recent studies in higher vertebrates (dogs) have shown that substantial reduction in amyloid deposits in the absence of decreases in oligomer concentration has little effect on recovery of neurological function (26).Recent studies of Aβ oligomers have sought to correlate oligomer size and biological activity. Oligomers in the supernatants of fibril preparations centrifuged at 100,000 × g caused sustained calcium influx in rat hippocampal neurons, leading to calpain activation and dynamin 1 degradation (27). Aβ-derived diffusible ligand-like Aβ42 oligomers induced inflammatory responses in cultured rat astrocytes (28). A 90-kDa Aβ42 oligomer (29) has been shown to activate ERK1/2 in rat hippocampal slices (30) and bind avidly to human cortical neurons (31), in both cases causing apoptotic cell death. A comparison of the time dependence of the toxic effects of the 90-kDa assembly with that of Aβ-derived diffusible ligands revealed a 5-fold difference, Aβ-derived diffusible ligands requiring more time for equivalent effects (31). A 56-kDa oligomer, “Aβ*56,” was reported to cause memory impairment in middle-aged transgenic mice expressing human amyloid precursor protein (32). A nonamer also had adverse effects. Impaired long term potentiation in rat brain slices has been attributed to Aβ trimers identified in media from cultured cells expressing human amyloid precursor protein (33). Dimers and trimers from this medium also have been found to cause progressive loss of synapses in organotypic rat hippocampal slices (10). In mice deficient in neprilysin, an enzyme that has been shown to degrade Aβ in vivo (34), impairment in neuronal plasticity and cognitive function correlated with significant increases in Aβ dimer levels and synapse-associated Aβ oligomers (35).The potent pathologic effects of Aβ oligomers provide a compelling reason for elucidating the mechanism(s) of their formation. This has been a difficult task because of the metastability and polydispersity of Aβ assemblies (36). To obviate these problems, we introduced the use of the method of photo-induced cross-linking of unmodified proteins (PICUP) to rapidly (<1 s) and covalently stabilize oligomer mixtures (for reviews see Refs. 37, 38). Oligomers thus stabilized no longer exist in equilibrium with monomers or each other, allowing determination of oligomer frequency distributions by simple techniques such as SDS-PAGE (37). Recently, to obtain population-average information on contributions to fibril formation of amino acid residues at specific sites in Aβ, we employed a scanning intrinsic fluorescence approach (39). Tyr was used because it is a relatively small fluorophore, exists natively in Aβ, and possesses the side chain most reactive in the PICUP chemistry (40). Using this approach, we found that the central hydrophobic cluster region (Leu17–Ala21) was particularly important in controlling fibril formation of Aβ40, whereas the C terminus was the predominant structural element controlling Aβ42 assembly (39). Here we present results of studies in which key strategic features of the two methods have been combined to enable execution of “scanning PICUP” and the consequent revelation of site-specific effects on Aβ oligomerization.  相似文献   

20.
Differential inhibitors of Gβγ-effector regions are required to dissect the biological contribution of specific Gβγ-initiated signaling pathways. Here, we characterize PhLP-M1-G149, a Gβγ-interacting construct derived from phosducin-like protein 1 (PhLP) as a differential inhibitor of Gβγ, which, in endothelial cells, prevented sphingosine 1-phosphate-induced phosphorylation of AKT, glycogen synthase kinase 3β, cell migration, and tubulogenesis, while having no effect on ERK phosphorylation or hepatocyte growth factor-dependent responses. This construct attenuated the recruitment of phosphoinositide 3-kinase γ (PI3Kγ) to the plasma membrane and the signaling to AKT in response to Gβγ overexpression. In coimmunoprecipitation experiments, PhLP-M1-G149 interfered with the interaction between PI3Kγ and Gβγ. Other PhLP-derived constructs interacted with Gβγ but were not effective inhibitors of Gβγ signaling to AKT or ERK. Our results indicate that PhLP-M1-G149 is a suitable tool to differentially modulate the Gβγ-initiated pathway linking this heterodimer to AKT, endothelial cell migration, and in vitro angiogenesis. It can be also useful to further characterize the molecular determinants of the Gβγ-PI3Kγ interaction.Heterotrimeric G protein signaling depends on the actions of GTP-loaded Gα and free Gβγ, the two functional components of the heterotrimer, leading to the generation of second messengers and cell specific functional events (1, 2). Differential inhibitors of Gβγ are required to dissect the biological impact of different Gβγ-dependent effectors. Gβγ actions can be blocked by competition with peptides derived from its effectors. For example, the effect of Gβγ on adenylyl cyclase II, G protein-activated inward rectifier K+ channel, G protein-coupled receptor kinase 2, and phospholipase Cβ3, is attenuated by a peptide from adenylyl cyclase II (3). In addition, RACK1 (receptor for activated C kinase 1) selectively inhibits the effect the chemokine receptor CXCR2 on the activation of phospholipase Cβ2 and adenylyl cyclase II in HEK293 cells, without affecting other functions of Gβγ (4). Recently, Smrcka and colleagues characterized the effect of small molecule inhibitors of Gβγ, suggesting their potential application in therapeutic strategies targeting particular Gβγ-dependent pathways (5). Emerging possibilities to target this heterodimer in pathological situations such as inflammation and angiogenesis are based on the role of Gβγ in cell survival and chemotaxis. To the best of our knowledge, no molecular tool is yet available to differentially inhibit Gβγ signaling to AKT.3Gβγ is a key transducer of sphingosine 1-phosphate (S1P)-elicited angiogenic signals promoting endothelial cell migration, proliferation, and survival (612). Multiple Gβγ-dependent effectors are potentially involved in the molecular events required for endothelial cell migration. These include lipid kinases such as PI3Kγ and PI3Kβ (13), and a novel family of Rac guanine nucleotide exchange factors, represented by P-REX1, which is activated by Gβγ and phosphatidylinositol 3,4,5-trisphosphate (1416). Gβγ signaling is frequently attributed to pertussis toxin-sensitive Gi coupled receptors, and it has been consistently revealed by the antagonistic effect of the carboxyl-terminal region of G protein-coupled receptor kinase 2, which sequesters Gβγ thereby inhibiting all its intracellular actions (17). In addition, mutational analysis of Gβ revealed that different residues, all of them mapping to the interface of contact between Gβγ and Gα, are important for the activation of distinct Gβγ effector molecules (18).Phosducin was originally identified as a phosphoprotein restricted to the retina and pineal gland forming a complex with Gβγ (19, 20). It was considered a protein kinase A-sensitive regulator of G protein-mediated signaling (21, 22). Further studies identified a family of phosducin-like proteins (PhLPs) (23, 24). Phosducin and Gα share affinity for the same region of Gβγ, as revealed by the structural analysis of Gβγ in complex with Gα or phosducin and by in vitro binding experiments (25). This area of interaction includes some of the residues considered necessary for the activation of Gβγ-dependent effectors (18, 26). It was initially postulated that phosducin and related proteins, by interfering with the availability of free Gβγ, exert an inhibitory role on Gβγ signaling. However, recent genetic evidence raised an apparently conflicting situation; the knockout of PhLP in fungi resulted in a phenotype equivalent to the absence of Gβγ, contrary to its expected role as an inhibitor (27). Novel experimental evidence indicated that PhLP has a positive effect on Gβγ signaling due to its participation in the assembly of the heterodimer, helping to stabilize free Gβ subunits leaving the ribosome after synthesis (2831).Despite the positive role of full-length PhLP in the assembly of Gβγ heterodimers, it is still possible that different fragments of this protein, which could retain their interaction with distinct regions of Gβγ, might function as inhibitors of Gβγ signaling. Accordingly, we characterized here the effect of different PhLP-derived constructs on the signaling pathways elicited by S1P or HGF in endothelial cells. In addition, we explored the mechanism by which PhLP-M1-G149 interferes with Gβγ preventing the activation of AKT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号