共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Chlorella virus DNA ligase (ChVLig) is an instructive model for mechanistic studies of the ATP-dependent DNA ligase family. ChVLig seals 3'-OH and 5'-PO(4) termini via three chemical steps: 1) ligase attacks the ATP α phosphorus to release PP(i) and form a covalent ligase-adenylate intermediate; 2) AMP is transferred to the nick 5'-phosphate to form DNA-adenylate; 3) the 3'-OH of the nick attacks DNA-adenylate to join the polynucleotides and release AMP. Each chemical step requires Mg(2+). Kinetic analysis of nick sealing by ChVLig-AMP revealed that the rate constant for phosphodiester synthesis (k(step3) = 25 s(-1)) exceeds that for DNA adenylylation (k(step2) = 2.4 s(-1)) and that Mg(2+) binds with similar affinity during step 2 (K(d) = 0.77 mm) and step 3 (K(d) = 0.87 mm). The rates of DNA adenylylation and phosphodiester synthesis respond differently to pH, such that step 3 becomes rate-limiting at pH ≤ 6.5. The pH profiles suggest involvement of one and two protonation-sensitive functional groups in catalysis of steps 2 and 3, respectively. We suggest that the 5'-phosphate of the nick is the relevant protonation-sensitive moiety and that a dianionic 5'-phosphate is necessary for productive step 2 catalysis. Motif VI, located at the C terminus of the OB-fold domain of ChVLig, is a conserved feature of ATP-dependent DNA ligases and GTP-dependent mRNA capping enzymes. Presteady state and burst kinetic analysis of the effects of deletion and missense mutations highlight the catalytic contributions of ChVLig motif VI, especially the Asp-297 carboxylate, exclusively during the ligase adenylylation step. 相似文献
5.
Transcription of the chloroplast DNA: a review 总被引:8,自引:0,他引:8
6.
7.
Sequence analysis of the Lymantria dispar multicapsid nucleopolyhedrovirus (LdMNPV) genome identified an open reading frame (ORF) encoding a 548-amino-acid (62-kDa) protein that showed 35% amino acid sequence identity with vaccinia virus ATP-dependent DNA ligase. Ligase homologs have not been reported from other baculoviruses. The ligase ORF was cloned and expressed as an N-terminal histidine-tagged fusion protein. Incubation of the purified protein with [α-32P]ATP resulted in formation of a covalent enzyme-adenylate intermediate which ran as a 62-kDa labeled band on a sodium dodecyl sulfate-polyacrylamide gel. Loss of the radiolabeled band occurred upon incubation of the intermediate with pyrophosphate, poly(dA) · poly(dT)12–18, or poly(rA) · poly(dT)12–18, characteristics of a DNA ligase II or III. The protein was able to ligate a double-stranded synthetic DNA substrate containing a single nick and inefficiently ligated a 1-nucleotide (nt) gap but did not ligate a 2-nt gap. It was able to ligate short, complementary overhangs but not blunt-ended double-stranded DNA. In a transient DNA replication assay employing six plasmids containing the LdMNPV homologs of the essential baculovirus replication genes, a plasmid containing the DNA ligase gene was neither essential nor stimulatory. All of these results are consistent with the activity of type III DNA ligases, which have been implicated in DNA repair and recombination. 相似文献
8.
9.
10.
DNA ligation is an essential step in DNA replication, repair and recombination. Mammalian cells contain three DNA Ligases that are not interchangeable although they use the same catalytic reaction mechanism. To compare the recruitment of the three eukaryotic DNA Ligases to repair sites in vivo we introduced DNA lesions in human cells by laser microirradiation. Time lapse microscopy of fluorescently tagged proteins showed that DNA Ligase III accumulated at microirradiated sites before DNA Ligase I, whereas we could detect only a faint accumulation of DNA Ligase IV. Recruitment of DNA Ligase I and III to repair sites was cell cycle independent. Mutational analysis and binding studies revealed that DNA Ligase I was recruited to DNA repair sites by interaction with PCNA while DNA Ligase III was recruited via its BRCT domain mediated interaction with XRCC1. Selective recruitment of specialized DNA Ligases may have evolved to accommodate the particular requirements of different repair pathways and may thus enhance efficiency of DNA repair. 相似文献
11.
Genes for yeast tRNATyr and tRNAPhe have been sequenced (Goodman, Olson and Hall, 1977; Valenzuela et al., 1978) which contain additional nucleotides (intervening sequences) within the middle of the gene that are not present in the mature tRNA. We have isolated precursors to rRNATyr and tRNAPhe from a yeast temperature-sensitive mutant (at the rna1 locus) which accumulates only certain precursor tRNAs at the nonpermissive temperature. The tRNATyr and tRNAPhe precursors were analyzed by oligonucleotide mapping; they each contain the intervening sequence and fully matured 5' and 3' termini. Furthermore, these precursors were used as substrates to search for an enzymatic activity which can remove the intervening sequences and religate the ends. We have shown that wild-type yeast contains such an activity, and that this activity specifically removes the intervening sequences to produce mature-sized RNAs. 相似文献
12.
13.
14.
该文介绍线粒体的基因结构、转录顺式作用元件和反式作用因子(RNA聚合酶、mtTFAM、mtTFBM和mtTERF)在线粒体DNA转录的起始、延伸和终止过程中的作用;核基因编码的因子和激素对线粒体DNA转录的调控;线粒体DNA转录调控的研究进展和有待解决的一些问题。 相似文献
15.
16.
17.
Structure of the Abelson murine leukemia virus genome and the homologous cellular gene: studies with cloned viral DNA 总被引:113,自引:0,他引:113
Circular double-stranded DNA produced after infection of mouse cells with Abelson murine leukemia virus (A-MuLV) was isolated and cloned in the phage vector Charon 21A. The resulting clones of the A-MuLV genome show homology to the ends of Moloney MuLV and to a 3.5 kb central region containing sequences unique to Abelson virus. A 2.3 kb restriction fragment containing only A-MuLV-specific sequences was subcloned in the plasmid vector pBR322 and used as a probe for the cellular gene that had been acquired by the virus. DNA from all inbred mouse lines examined contains an identical region of homology spread out over 11 to 20 kb. The cellular gene contains intervening sequences which are lacking in the viral genome. Rat, Chinese hamster, rabbit, chicken and human DNA also show homology to the viral probe. 相似文献
18.
Marcelino Bermúdez-López Irene Poci?o-Merino Humberto Sánchez Andrés Bueno Clàudia Guasch Seba Almedawar Sergi Bru-Virgili Eloi Garí Claire Wyman David Reverter Neus Colomina Jordi Torres-Rosell 《PLoS biology》2015,13(3)
Modification of proteins by SUMO is essential for the maintenance of genome integrity. During DNA replication, the Mms21-branch of the SUMO pathway counteracts recombination intermediates at damaged replication forks, thus facilitating sister chromatid disjunction. The Mms21 SUMO ligase docks to the arm region of the Smc5 protein in the Smc5/6 complex; together, they cooperate during recombinational DNA repair. Yet how the activity of the SUMO ligase is controlled remains unknown. Here we show that the SUMO ligase and the chromosome disjunction functions of Mms21 depend on its docking to an intact and active Smc5/6 complex, indicating that the Smc5/6-Mms21 complex operates as a large SUMO ligase in vivo. In spite of the physical distance separating the E3 and the nucleotide-binding domains in Smc5/6, Mms21-dependent sumoylation requires binding of ATP to Smc5, a step that is part of the ligase mechanism that assists Ubc9 function. The communication is enabled by the presence of a conserved disruption in the coiled coil domain of Smc5, pointing to potential conformational changes for SUMO ligase activation. In accordance, scanning force microscopy of the Smc5-Mms21 heterodimer shows that the molecule is physically remodeled in an ATP-dependent manner. Our results demonstrate that the ATP-binding activity of the Smc5/6 complex is coordinated with its SUMO ligase, through the coiled coil domain of Smc5 and the physical remodeling of the molecule, to promote sumoylation and chromosome disjunction during DNA repair. 相似文献
19.
20.
Alessandra Montecucco Rossella Rossi Giovanni Ferrari A. Ivana Scovassi Ennio Prosperi Giuseppe Biamonti 《Molecular biology of the cell》2001,12(7):2109-2118
In eukaryotic cells DNA replication occurs in specific nuclear compartments, called replication factories, that undergo complex rearrangements during S-phase. The molecular mechanisms underlying the dynamics of replication factories are still poorly defined. Here we show that etoposide, an anticancer drug that induces double-strand breaks, triggers the redistribution of DNA ligase I and proliferating cell nuclear antigen from replicative patterns and the ensuing dephosphorylation of DNA ligase I. Moreover, etoposide triggers the formation of RPA foci, distinct from replication factories. The effect of etoposide on DNA ligase I localization is prevented by aphidicolin, an inhibitor of DNA replication, and by staurosporine, a protein kinase inhibitor and checkpoints' abrogator. We suggest that dispersal of DNA ligase I is triggered by an intra-S-phase checkpoint activated when replicative forks meet topoisomerase II-DNA--cleavable complexes. However, etoposide treatment of ataxia telangiectasia cells demonstrated that ataxia-telangiectasia-mutated activity is not required for the disassembly of replication factories and the formation of replication protein A foci. 相似文献